- 无标题文档
查看论文信息

中文题名:

 狼尾草属种质抗寒与根系构型关联性的研究    

姓名:

 蒋祁娟    

学号:

 2022820043    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095131    

学科名称:

 农学 - 农业 - 农艺与种业    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 草业学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 牧草种质资源评价    

第一导师姓名:

 钟小仙    

第一导师单位:

 江苏省农业科学院    

第二导师姓名:

 薛文韬    

完成日期:

 2024-05-05    

答辩日期:

 2024-05-26    

外文题名:

 Characterizing Networks Between Cold Tolerance and Root Architecture in Genotypes of Pennisetum genus    

中文关键词:

 狼尾草属 ; 抗寒 ; 根系构型 ; 相关性    

外文关键词:

 Pennisetum ; cold tolerance ; Root architecture ; Correlation    

中文摘要:

狼尾草属中一年生美洲狼尾草、多年生象草及杂交狼尾草(美洲狼尾草与象草

杂交种)和高抗寒狼尾草为目前大面积应用的主要类型,其中,多年生象草和杂交

狼尾草为极高产禾本科优质牧草,但在长江以北难自然越冬,只能作为一年生利用;

野生狼尾草种质可在长江以北以多年生方式自然生长,部分种质可耐-20℃极寒气候,

是当前高大型狼尾草最具价值的抗寒遗传亲本。精准筛选、鉴定狼尾草属种质抗寒

性,找出与其关联的关键性状,对狼尾草属抗寒育种至关重要。

本文以野生狼尾草‘陵山’、杂交狼尾草‘苏牧 4 号’、美洲狼尾草‘23B’三

种种质为材料,开发了快速、精准的抗寒鉴定体系,并剖析根系构型的发育动态规

律;通过二者相关性分析,找出决定狼尾草属抗寒性的关键根系特征。

其主要结论如下:

1. 在搭建狼尾草抗寒性鉴定体系中,分别对光周期、土壤含水量、前置处理方

式、冷冻温度和时长五个因素进行比较,最终探索出以配方土为土壤介质、育苗穴

盘为培养媒介、控温控湿长日照生长室为培养环境、4℃为前置和后置条件、-15℃

冷冻 0、40、80、120、160、200min 为冷冻梯度、植株再生株高和根系电导率为核

心性状、Sigmoid 三参数为数学模型、拟合曲线的特征参数 Fr50 为抗寒性参数的完

整抗寒性鉴定体系。

2. 分别对冷冻后 6 个植株再生性状 Fr50 参数进行比较,仅根系电导率计算出的

Fr50 与再生株高 Fr50 间无显著差异。因此,二者是抗寒鉴定体系中的核心参数。对

再生株高和根系电导率性状进行比较发现,野生狼尾草‘陵山’抗寒性最高,杂交

狼尾草‘苏牧 4 号’次之,美洲狼尾草‘23B’抗寒性最弱。

3. 对狼尾草五叶到十四叶共计 10 个叶龄进行动态分析,抗寒性参数 Fr50 均未

随着叶龄增加而呈逐渐增加趋势,而在九叶至十叶期出现峰值后呈现节律波动。其

中野生狼尾草‘陵山’在九叶期出现抗寒性高峰,而杂交狼尾草‘苏牧 4 号’在十

叶期出现峰值,美洲狼尾草‘23B’在十三叶期出现峰值。

4. 比较三种狼尾草 7 个根系构型性状间差异,野生狼尾草‘陵山’总根长、侧

根长、根尖数和根深均最高,杂交狼尾草‘苏牧 4 号’次之,美洲狼尾草‘23B’最

低。比较 7 个根系性状在多叶龄间的动态趋势,总根长、侧根长、不定根长、根尖

数、不定根数量、不定根直径均随叶龄增加呈上升趋势,且野生狼尾草‘陵山’在

十一叶后增加幅度显著高于其他两种种质。唯有不定根深未随叶龄增加而显著增加,

却呈现有节律的波动趋势,且三种狼尾草种质波动节律不同。

5. 进一步比较三种狼尾草 6 个地上部性状在多叶龄间的动态趋势。杂交狼尾草

‘苏牧 4 号’和野生狼尾草‘陵山’的生长速度趋于相同,均显著快于美洲狼尾草

‘23B’。杂交狼尾草‘苏牧 4 号’的株高和茎干重显著高于其他两种,但叶干重三

种狼尾草间无显著区别。杂交狼尾草‘苏牧 4 号’和野生狼尾草‘陵山’的茎叶比

均在十一叶至十二叶期到达峰值,茎干重占比高;美洲狼尾草‘23B’整个生育期茎

叶比均较低,品质显著好于杂交狼尾草‘苏牧 4 号’和狼尾草‘陵山’。

6. 将以上 7 种根系构型性状和 6 种地上部性状进行 Spearman 相关性分析,不定

根长、不定根直径、不定根数量与地上部除茎叶比以外的所有性状呈极显著正相关

(p < 0.000001),相关性系数 r 均高于 0.75,表明根系构型中不定根系特征是决定

狼尾草地上部生长的主要因素。

7. 以 PH-Fr50 和 EC-Fr50 两个核心抗寒性参数与根系构型、地上部性状的 13 个

性状进行 Spearman 相关性分析,仅在不定根深与 PH-Fr50、不定根直径与 EC-Fr50

两组间发现显著正相关。且不定根深与 PH-Fr(20-90)的显著性 p 值和相关性 r 系

数分别呈逐渐下降和上升趋势,而不定根直径与 EC-Fr(20-90)的显著性 p 值和相

关性 r 系数分别呈逐渐上升和下降趋势。

8. 以上相关性结果说明,在长时间冷冻下,狼尾草属不定根系越深其冷冻后再

生能力越强,抗寒性越强;在短时间冷冻条件,不定根直径越粗,其冷冻后根系活

性越高。因此,短时间冷冻后狼尾草属再生能力依赖不定根直径,长时间冷冻后狼

尾草属再生能力依赖不定根深。不定根深度和直径是决定狼尾草抗寒性的关键根系

特征。

以上结果为我国狼尾草高抗寒育种提供了有力支撑。

外文摘要:

Pennisetum is one of the highest yielding forages, but it has poor cold tolerance to

north of the Yangtze River. Wild Pennisetum Alopecuroides germplasm can survive at

north of China as perennials, and some genotype can bare extreme temperature of -20°C,

making them the most valuable genetic material for Pennisetum breeding. Therefore,

accurate screening on the cold tolerance of Pennisetum germplasm and exploiting its

associated traits are crucial for Pennisetum breeding in cold-tolerance improvement.

This study used Pennisetum Alopecuroides, Pennisetum Hybrid (♂purpureum ×

♀glaucum), and pearl millet (23B) as materials, screened the cold tolerance by a fast and

accurate phenotyping system, and analyzed the dynamic development of root system, the

key root traits determining the cold tolerance of Pennisetum were identified by correlation

analysis.

The main conclusions are as follows:

1. Five factors including photoperiod , soil moisture content, pre-treatments, freezing

temperature and duration was conducted for final platform. It was explored that formula

soil as soil medium, seedling trays as the cultivation medium, long-day growth chamber as

the incubation environment, 4°C as the pre- and post-condition, -15°C for the freezing

gradient at 0, 40, 80, 120, 160, and 200 minutes as the cold treatments, plant height and

root conductivity of plant regeneration as the core traits, the three-parameter Sigmoid

function as mathematical model, and the Fr50 of simulated curve as the cold parameter, to

comprehended the final platform.

2. A comparison of the six Fr50 parameters found out, only the Fr50 calculated from

root conductivity showed no significance with Fr50 in plant height, hence, designed as core

parameters of cold tolerance. Comparisons of two core traits revealed that Pennisetum

Alopecuroides had the highest cold tolerance, followed by Pennisetum Hybrid, and the

weakest highest cold tolerance in Pearl Millet (23B).

3. Ten time point dynamics from 5- to 14-leaf of Pennisetum was carried out. The

parameter Fr50 did not gradually increase with leaf age, but showed rhythmic fluctuations

after peaking at the 9- to 10-leaf stage. Pennisetum Alopecuroides quickly reached a peak

of cold tolerance at the 9-leaf stage, while Pennisetum Hybrid peaked at the 10-leaf stage,

and Pearl Millet peaked at the 13-leaf stage.

4. Seven root traits of Pennisetum were compared. The total root length, lateral root

length, root tips, and root depth of Pennisetum Alopecuroides were the highest, followed by

Pennisetum Hybrid, and the lowest in Pearl Millet (23B). The dynamic of the 7 root traits

during the growth stages all showed an upward trend with increasing leaf age, and

Pennisetum Alopecuroides showed a significantly higher increase after the 11-leaf, except

for the root depth, which did not significantly increase with leaf age, but instead showed

rhythmic fluctuations, with different rhythms among the three types of Pennisetum.

5. Further comparison of the dynamics of six above-ground traits during the growth

stages. The growth rate of Pennisetum Hybrid and Pennisetum Alopecuroides tended to be

the same, both significantly faster than pearl millet (23B). The plant height and stem

biomass of Pennisetum Hybrid were significantly higher than the other two types, but there

was no significant difference in leaf biomass among the three types of Pennisetum. The

stem-to-leaf ratio of Pennisetum Hybrid and Pennisetum Alopecuroides reached a peak

from the 11- to 12-leaf stage, with a high proportion of stem biomass; the stem-to-leaf ratio

throughout the growth period of Pearl Millet (23B) was lower, with quality significantly

better than Pennisetum Hybrid and Pennisetum Alopecuroides.

6. Spearman correlation analysis of the 7 root traits and six aboveground traits showed

that the length, diameter, and number of adventitious roots were highly positively

correlated with all traits except the stem-to-leaf ratio (p < 0.000001), and the correlation

coefficient r was greater than 0.75, indicating that the adventitious roots in the root system

were the main factors determining the above ground growth of Pennisetum.

7. Spearman correlation analysis of the two core cold parameters, PH-Fr50 and EC-

Fr50, with 13 traits of root and above-ground traits revealed significant positive

correlations only between the root depth and PH-Fr50, and between the adventitious root

diameter and EC-Fr50. The significance p value and coefficient r of the root depth and PH-

Fr(20-90) showed a gradually decreasing and increasing trend, respectively, while the

significance p value and the coefficient r of the adventitious root diameter and EC-Fr(20-

90) showed a gradually increasing and decreasing trend.

8. The above correlation results indicate that under long-term freezing conditions, the

deeper the adventitious root system of Pennisetum, the stronger its regenerative ability and

cold tolerance; under short-term freezing conditions, the thicker the adventitious roots, the

higher their root activity after freezing. Therefore, the regenerative ability of Pennisetum

after short-term freezing depends on the diameter of the adventitious roots, while the

regenerative ability after long-term freezing depends on the depth of the adventitious roots.

The depth and diameter of the adventitious roots are key root characteristics determining

the cold tolerance of Pennisetum.

These results provide strong support for the breeding of high-cold-tolerance

Pennisetum in China.

参考文献:

[1] 阿不来提, 石定燧, 杨光, 等. 新疆野生狗牙根研究初报[J]. 新疆农业大学学报, 1998, 21(2): 124-127.

[2] 阿不来提, 石定燧, 杨茁萌, 等. 新农一号狗牙根[J]. 草业科学, 2003, 020(009): 30-31.

[3] 陈璨, 阮先乐, 常云霞,等. 多年生粮食作物研究现状[J]. 生物学教学, 2012, 37(8): 2-4.

[4] 陈卢亮. 我国狼尾草属牧草主栽品种特性介绍[J]. 中国奶牛, 2012(03): 5-8.

[5] 邓素媛, 赖志强, 蔡小艳, 等. 几种象草在桂北地区的种植表现[J]. 农业科学与技术:英文

版, 2016, 17(2): 2784-2787.

[6] 丁思悦, 王雨婷, 赵佳琪, 等. 葡萄种质抗寒性鉴定及综合评价[J]. 西北农林科技大学学报

(自然科学版) , 2024(06): 1-15. [7] 郜晋亮, 赵艺璇 多年生稻:水稻生产的又一革命?[M]. 农民日报, 2023: 008.

[8] 张俊梅, 胡伟. 多年生小麦在美国培育成功[J]. 新疆农垦科技, 1999(13).

[9] 顾洪如, 白淑娟, 杨运生, 等. 美洲狼尾草与象草杂交种生产的花期相遇及积温稳定性研究

[J]. 草地学报, 1994(02): 27-32.

[10] 郭祥泉, 吴奇智, 洪伟, 等. 应用电导率探讨邓恩桉不同优株的抗寒性[J]. 亚热带植物科

学, 2012, 41(01): 4.

[11] 何维勋, 罗中岑, 郑俊兰. 水稻花期低温冷害的模拟试验初报[J]. 中国农业气象, 1979(00):

42-47.

[12] 胡海洲. 高 pH 胁迫对拟南芥幼苗主根发生 PCD 的影响[M]. 山东农业大学, 2008.

[13] 黄文华, 莫庸. 春小麦不同叶位及叶龄叶片若干生理生化指标的动态变化[J]. 石河子大学

学报:自然科学版, 1997(03): 1: 4.

[14] 巨关升, 武菊英, 赵军锋, 等. 观赏狼尾草光合特性的研究[C]. 全国面向新世纪的花卉研

究与生产技术开发学术研讨会, 2005(06):451-455.

[15] 孔茹洁, 陈清, 赵英. 网格交叉法与 WinRHIZO 扫描法在植物根长测定中的比较[J]. 天津

师范大学学报: 自然科学版, 2023, 43(04): 20-24.

[16] 赖大伟, 赖志强, 易显凤, 等. 优质高产牧草紫色象草的选育[J]. 草学, 2022(02): 9-19.

[17] 李冬郁, 张忠, 梁英彩, 等. 玉米野生近缘种类玉米的研究和利用[J]. 玉米科学, 2001(02):

11-13.

[18] 李静, 宁德鲁, 马婷, 等. 12 个核桃品种低温半致死温度与抗寒性的关系[J]. 湖南农业科

学, 2015(03): 73-75.

[19] 李骈臻, 周学成, 张常玲, 等. 基于骨架模型的植物根系三维构型可视化方法[J]. 计算机

工程与设计, 2014, 35(11): 3913-3917.

[20] 李胜. 海滨雀稗与狗牙根种质资源的坪用性状评价[M].南京农业大学, 2019.

[21] 李速. 外源水杨酸提高小麦抗寒性的应用研究[M]. 东北农业大学, 2015.

[22] 李桐, 付连双, 刘鑫, 等. 冬小麦抗寒性鉴定的低温处理方式和鉴定指标的研究[J]. 麦类

作物学报, 2019, 39(07): 8.

[23] 林晓红, 施木田, 林三睦. 高温胁迫对金线莲叶绿素荧光参数及 SOD 活性与电导率的影响

[J]. 热带作物学报, 2014, 35(06):1137-1142.

[24] 刘红美, 李玉权, 石建龙, 等. 第 3 代杂交狼尾草优质种苗快速繁育技术研究[J]. 种子,

2016, 35(12): 121-123.

[25] 刘化龙, 杨洛淼, 辛威, 等. 一种寒地水稻抗冷害性鉴定前期模拟实验装置及其方法[M]. 东北农业大学, 2021.

[26] 刘鹏, 周开兵, 王爽, 等. 芒果不同叶龄叶片在增强 UV-B 辐射处理下的损伤和保护响应[J]. 热带生物学报, 2010, 1(04): 7.

[27] 刘平湘. 不同类型冬小麦品种抗晚霜冻能力鉴定及相关生理指标研究[M]. 河南农业大学,

2012

[28] 刘琪, 栾春晶, 李修平. 水稻抗寒生理机制及相关基因研究进展[J]. 南方农业, 2021, 15(14): 188-190.

[29] 刘燕, 刘建秀, 王志勇, 等. 国产海雀稗种质资源抗寒性鉴定[J]. 热带作物学报, 2016, 37(04): 665-671.

[30] 沙国栋. 杂交狼尾草的抗寒能力及越冬保种技术[J]. 江苏农业科学, 1989(11): 40-41.

[31] 孙玉, 孙善澄, 刘少翔, 等. 多年生小麦的培育与选择研究[J]. 种子, 2011, 30(04): 21-26.

[32] 唐欣, 向佐湘, 苏鹏. 狗牙根研究进展[J]. 作物研究, 2009, 23: 383-386.

[33] 田永辉, 梁远发, 令狐昌弟, 等. 冻害、冰雹对茶树生理生化的影响[J]. 山地农业生物学

报, 2005(04): 135-137.

[34] 王丹, 高丽辉, 张超, 等. 低温对玉米苗期生长的影响及抗逆栽培措施[J]. 辽宁农业科学,

2015(04): 60-63.

[35] 王兰, 龙云铭, 田华, 等. 水稻苗期抗寒种质的筛选与鉴定[J]. 核农学报, 2011, 25(02):

208-213.

[36] 王淑嫒. 肥饲两用的优良多年生草——美国苜蓿[J]. 辽宁农业科学, 1984(03): 47-49.

[37] 王涛, 王晓楠, 王明芳, 等. 低温下冬小麦水分含量的变化与抗寒性鉴定[J]. 作物杂志,

2015(01): 6.

[38] 王涛. 冬小麦水分状况及冷相关蛋白基因表达与抗寒性关系的研究[M]. 东北农业大学,

2015.

[39] 温常龙, 赵冰, 杜建材, 等. 黑麦草与羊茅属间杂种研究进展[J]. 中国农业科学, 2010, 43(07): 1346-1354.

[40] 温海峰, 范希峰, 朱毅, 等. 杂交狼尾草作为能源植物的研究进展[J]. 中国农学通报,

2017, 33(03): 99-104.

[41] 温海峰, 范希峰, 朱毅, 等. 杂交狼尾草作为能源植物的研究进展[J]. 中国农学通报,

2017, 33(03): 6.

[42] 吴桂珍, 宋业浩. 杂交狼尾草育苗和大田栽培技术[J]. 安徽农业, 1998(02): 29.

[43] 吴雪莲, Sullivan W. 美国和阿根廷合作培育出多年生玉米[J]. 世界农业, 1982(07): 53-54.

[44] 熊曦, 吴彦奇, 李西. 狗牙根抗寒性生理生化研究进展[J]. 草业科学, 2001(03): 39-41+45.

[45] 徐进, 张莹婷, 张萌, 等. 一种柳杉抗寒性快速鉴定与评价的方法[M]. 南京林业大学,

2020.

[46] 许建锋, 马艳芝, 刘玉祥, 等. 低温胁迫对晚熟桃枝条电导率、SOD 及 POD 活性的影响[J]. 贵州农业科学, 2010, 38(11): 200-202.

[47] 许连彭, 江双林, 孔妲, 等. 杂交狼尾草越冬温度指标[J]. 中国农业气象, 1988(04): 49-

50.

[48] 宣继萍 刘建秀. 坪用狗牙根(Cynodon spp.)优良品种(选系)的抗寒性初步鉴定[J]. 植物资

源与环境学报, 2003(02): 28-32.

[49] 薛文韬. 大麦种质资源盐耐受性的筛选及遗传分析[M]. 贵州大学博士毕业论文, 2018.

[50] 薛文韬, 刘智微, 钟小仙. 一种基于无性繁殖的牧草耐盐性鉴定的方法[P]. 中国专利:

2024101567319.

[51] 徐传保, 赵兰勇, 张延强, 等. 以电导法配合 Logistic 方程确定四种竹子的抗寒性[J]. 北

方园艺, 2009(02): 182-184.

[52] 亚里坤·努尔, 阿不来提. “新农一号”狗牙根足球场草坪的建植与管理技术[J]. 草原与草

坪, 2008(04): 70-72.

[53] 袁学军, 廖丽, 李艳丽, 等. 假俭草体细胞抗寒突变体的筛选及其鉴定[J]. 山东农业大学

学报:自然科学版, 2011, 42(01): 6-10.

[54] 原俊凤, 冯固, 马海燕, 等. 硝态氮对盐分胁迫下囊果碱蓬侧根发育和氮吸收的影响[C]. 第三届全国植物生态学前沿论坛第三届全国克隆植物生态学研讨会, 2009.

[55] 张保青, 杨丽涛, 李杨瑞. 自然条件下甘蔗品种抗寒生理生化特性的比较[J]. 作物学报,

2011, 37(03): 496-505.

[56] 张兆松. 海滨雀稗, 一种极具潜力的应用草种[J]. 世界高尔夫, 2011(10): 91.

[57] 章浚平, 朱其时. 优质高产的饲用草——杂交狼尾草[J]. 今日科技, 1994: 1. [58] 赵桂玲, 刘明国, 郭蕊. 低温胁迫山杏花电导率和 LT50 值的研究[J]. 辽宁林业科技, 2007(01): 6-8+19.

[59] 赵国富, 张成磊. 低温胁迫葡萄新梢电导率和 LT50 值的研究[J]. 现代园艺, 2017(23): 29- 31.

[60] 赵瑞玲, 赵勇, 徐渴, 等. 室内冷冻法鉴定小麦抗寒性的研究[J]. 植物遗传资源学报,

2019, 20(02): 284-296.

[61] 钟小仙, 丁成龙, 顾洪如, 等. 优质高产夏季牧草——杂交狼尾草[J]. 农业科技,

2000(04):60-61.

[62] 钟小仙, 刘智微, 张建丽, 等. 苏丹草-拟高粱杂交种鲜草饲喂獭兔的效果[J]. 江苏农业科

学, 2017, 45(23): 169-171.

[63] 钟小仙, 顾洪如, 丁成龙, 等. 苏丹草与拟高粱远缘杂交初报[J]. 草地学报, 2002(01): 24- 27.

[64] 周瑞莲, 赵哈林. 高寒山区牧草生长过程中低温保护物质的作用[J]. 中国草地, 2001(05):

20-27.

[65] 周瑞莲, 赵哈林. 秋季牧草根系中营养含量和酶活性变化及其抗寒性研究[J]. 植物生态学

报, 1995(04): 345-351.

[66] 周卫星, 白淑娟, 顾洪如, 等. 美洲狼尾草与象草杂交中花期相遇的调节[J]. 草业科学,

1995(06): 30-34.

[67] 邹陈, 杨明凤, 张玲, 等. 棉花障碍型冷害的人工模拟试验研究[J]. 沙漠与绿洲气象,

2016, 10(03): 89-94.

[68] 国卿. 葡萄抗寒露地栽培技术的探讨[J]. 科技创新与应用, 2017(02): 291. [69] 何维勋, 罗中岑, 郑俊兰. 水稻花期低温冷害的模拟试验初报[J]. 中国农业气象, 1979(00):

42-47.

[70] 田永辉, 梁远发, 魏杰, 等. 冻害、冰雹对茶树生理生化的影响[J]. 山地农业生物学报,

2005(02): 135-137+184.

[71] 王跃兵, 杨艺博. 东北露地葡萄安全越冬技术[J]. 中外葡萄与葡萄酒, 2009(09): 38-39.

[72] Anderson S H, Hopmans J W, Aylmore L A G. Application of computer assisted tomography to

soil-plant-water studies: An overview[C]. Tomography of Soil-Water-Root Processes,1994.

[73] Arsenault J.L, Poulcur S, Messier C, et al. WinRHlZO™, a root-measuring system with a unique

overlap correction method. HortScience, 1995, 30:906-906.

[74] Bálint A F, Attila V, Alexandra S, et al. Different approaches involving testing methods, gene

mapping and transformation reveal new insights into cereal cold tolerance[J]. Acta Agronomica

Hungarica, 2015, 60(02): 167-182.

[75] Burton G W, Jackson J E. A method for measuring sod reserves[J]. Agronomy Journal, 1962, 54.

[76] Bucksch A, Burridge J, York L M, et al. [J]. Plant Physiology, 2014, 166(02): 470-86.

[77] Bucio J L, Cruz-Ramirez A, Herrera-Estrella L. The role of nutrient availability in regulating root

architecture[J]. Current Opinion in Plant Biology, 2003, 6(3): 280-287.

[78] Chen Y L, Dunbabin V M, Diggle A J, et al. Development of a novel semi-hydroponic phenotyping

system for studying root architecture[J]. Functional Plant Biology, 2011, 38(05): 355-363.

[79] Chun L, Mi G, Li J, et al. Genetic analysis of maize root characteristics in response to low nitrogen

stress[J]. Plant and Soil, 2005, 276(1-2): 369-382.

[80] Cox S, Nabukalu P, Paterson A H, et al. Development of perennial grain sorghum[J]. Sustainability, 2018, 10(1): 172. [81] Crews T E, Cattani D J. Sustainability strategies, advances, and challenges in breeding perennial

grain crops[J], Plant Science, 2018, 10(7): 2192-2192.

[82] Cui L, Ren Y, Murray T D, et al. Development of perennial wheat through hybridization between

wheat and wheatgrasses: A review[J]. Engineering, 2018, 4(4): 507-513.

[83] Fitter A H, Stickland T R. Architectural analysis of plant root systems 2. Influence of nutrient

supply on architecture in contrasting plant species[J]. New Physiologist (United Kingdom) , 1991.

[84] Fonteyne S, Muylle H, Swaef T D, et al. How low can you go?—Rhizome and shoot cold tolerance

in miscanthus germplasm[J]. Industrial Crops and Products, 2016, 89: 323-331.

[85] Frank H, June P W, Michaela S, et al. From weeds to crops: genetic analysis of root development

in cereals[J]. Trends in Plant Science, 2004, 9(1): 42-48.

[86] Frank H, Roman Z. Conserved and diverse mechanisms in root development[J]. Current Opinion in

Plant Biology, 2008, 11(1): 70-74.

[87] Francia E, Barabaschi D, Tondelli A, et al. Fine mapping of a HvCBF gene cluster at the cold

resistance locus Fr-H2 in barley[J]. TAG Theoretical Applied Genetics, 2007, 115(8): .1083-1091.

[88] Fitter A H, Stickland T R. Architectural analysis of plant root systems : III. Studies on plants under

field conditions[J]. New Phytologist, 1992, 10: 1469-8137.

[89] Ho M D, McCannon Lynch J P. Optimization modeling of plant root architecture for water and

phosphorus acquisition[J]. Journal of Theoretical Biology, 2004, 226(3): 331-340.

[90] Heeraman D A, Hopmans J W, Clausnitzer V. Three dimensional imaging of plant roots in situ

with X-ray Computed Tomography[J]. Plant and Soil, 1997, 189: 167-179.

[91] Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage by biomass

allocation[J]? Trends in Plant Science, 2006, 11(12): 610-612. [92] Hermans C, Hammond J P, White P J, et al. How do plants respond to nutrient shortage by biomass

allocation[J]? Trends in Plant Science, 2006, 11(12): 610-617. [93] Hodge A. The plastic plant: Root responses to heterogeneous supplies of nutrients[J]. New

Phytologist. 2004, 162(1): 9-24.

[94] Hu F Y, Tao D Y, Sacks E, et al. Convergent evolution of perenniality in rice and sorghum[J]. Proceedings of The National Academy of Sciences, 2003, 100(7): 4050-4054.

[95] Hughes M, Dunn M. The molecular biology of plant acclimation to low temperature[J]. Oxford

University Press, 1996, 47(3): 291-305.

[96] Kachelriess M, Ulzheimer S, Kalender W A. ECG-correlated image reconstruction from subsecond

multi-slice spiral CT scans of the heart.[J]. Medical Physics, 2000, 27(8): 1881-1902.

[97] Ketcham R A, Carlson W D. Acquisition, optimization and interpretation of X-ray computed

tomographic imagery: applications to the geosciences[J]. Computers & Geosciences, 2001, 27(4):

381-400.

[98] Larson S, Dehaan L, Poland J, et al. Genome mapping of quantitative trait loci (QTL) controlling

domestication traits of intermediate wheatgrass (Thinopyrum intermedium)[J]. Theoretical and

Applied Genetics, 2019, 132(8): 2325-2351.

[99] Melinda L R, Pierre D, Prasher S O, et al. Computed tomography scanning for three-dimensional

imaging and complexity analysis of developing root systems[J]. Canadian Journal of Botany, 2005, 83: 1434-1442.

[100] Macfall J S, Johnson G A. The architecture of plant Vasculature and transport as seen with

magnetic resonance microscopy[J]. Canadian Journal of Botany, 1994, 72: 1561-1573.

[101] Matthew R, Fernanda D, Richard T. Drought-adaptive traits derived from wheat wild relatives and

landraces[J]. Journal of Experimental Botany, 2007, 58(2): 177-186.

[102] Mano Y, Omori F, Muraki M, et al. QTL mapping of adventitious root formation under flooding

conditions in tropical maize(Zea mays L.) seedlings[J]. Breeding Science, 2005, 55(3): 343-347.

[103] Nagel K, Putz A, Gilmer F, et al. GROWSCREEN-Rhizo is a novel phenotyping robot enabling

simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons[J]. Functional Plant Biology. 2012, 39(10-11): 891-904.

[104] Piper J K, Kulakow P A. Seed yield and biomass allocation inSorghum bicolorand F1 and

backcross generations of S.bicolor & times; S.halepensehybrids[J]. Canadian Journal of Botany, 1994, 72(4): 468-474.

[105] Rizza F, Stanca M, Pagani D, et al. Use of chlorophyll fluorescence to evaluate the cold

acclimation and freezing tolerance of winter and spring oats[J]. Plant Breeding, 2001, 120(5): 389- 396.

[106] Schapendonk A H C M, Dolstra O, Kooten O. The use of chlorophyll fluorescence as a screening

method for cold tolerance in maize[J]. Photosynthesis Research, 1989, 20: 235-247.

[107] Sharp R E Valeriy P, Hejlek L G, et al. Root growth maintenance during water deficits:

physiology to functional genomics[J]. Journal of Experimental Botany, 2004, 55(407): 2343-2351.

[108] Sthapit B R, Witcombe J R, Wilson J M. Methods of selection for chilling tolerance in nepalese

rice by chlorophyll fluorescence analysis[J]. Crop Science, 1995, 35: 90-94.

[109] Tatsumi J, Kono Y, Yamauchii A. Fractal analysis of plant root systems[J]. Annals of Botany, 1989, 64.

[110] Tracy S R, Black C R, Roberts J A, et al. Quantifying the impact of soil compaction on root

system architecture in tomato (Solanum lycopersicum) by X-ray micro-computed tomography[J]. Annals of Botany, 2012, 110(2): 511-519.

[111] Treurnicht M, Pagel J, Esler K J. GROWSCREEN-Rhizo is a novel phenotyping robot enabling

simultaneous measurements of root and shoot growth for plants grown in soil-filled rhizotrons[J]. Functional Plant Biology, 2015, 39: 891-904.

[112] Thorsten K, Wieland F. Water uptake by seminal and adventitious roots in relation to whole-plant

water flow in barley (Hordeum vulgare L. )[J]. Journal of Experimental Botany, 2011, 62(2): 717- 733.

[113] Tracy S R, Black C R, Roberts J A, et al. Quantifying the effect of soil compaction on three

varieties of wheat (Triticum aestivum L.) using X-ray Micro Computed Tomography (CT)[J]. Plant

and Soil, 2012, 353: 195-208.

[114] Vagujfalvi A, Nagy V A, Soltesz A, et al. A simplified method to test cereal cold tolerance[J]. Acta Agronomica Hungarica, 2010, 58(2): 143-149.

[115] Washburn J D, Whitmire D K, Murray S C, et al. Estimation of rhizome composition and

overwintering ability in perennial sorghum spp. Using near-infrared spectroscopy (NIRS)[J]. BioEnergy Research, 2013, 6: 822-829.

[116] Xue W T, Yan J, Jiang Y, et al. Genetic dissection of winter barley seedling response to salt and

osmotic stress[J], 2019, 39(9): 1-19

[117] Ytting N K, Andersen S B, Thorup-Kristensen k. Using tube rhizotrons to measure variation in

depth penetration rate among modern North-European winter wheat (Triticum aestivum L.)

cultivars[J]. Euphytica, 2014, 199(1-2): 233-245.

[118] Zhang J, Gao W Y, Wang J, et al. Improvement of growth and periplocin yield of periploca

sepium adventitious root cultures by altering nitrogen source supply[J]. Research Papers, 2011, 10(3): 1674-6384.

中图分类号:

 S54    

开放日期:

 2024-06-08    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式