中文题名: | 不结球白菜耐寒组合的鉴定及多点比较试验 |
姓名: | |
学号: | 2022804140 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095131 |
学科名称: | 农学 - 农业 - 农艺与种业 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 蔬菜组合比较试验 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2024-05-16 |
答辩日期: | 2024-05-26 |
外文题名: | Identification and Multipoint Comparison Test of Cold-tolerant Combinations of Non-heading Chinese Cabbage |
中文关键词: | |
外文关键词: | Non-heading cabbage ; Multi-point test ; Cold hardiness ; Breed comparison |
中文摘要: |
不结球白菜(Brassica campestris ssp. chinensis)又称小白菜、青菜、油菜等,为一、二年生草本植物,为十字花科芸薹属不结球白菜亚种,是白菜类作物的重要组成部分,也是我国全国各地周年栽培的重要绿叶蔬菜。由于近年来气候异常,冬季气温多变,低温冻害、转黄期高温已成为不结球白菜‘黄玫瑰’品系生产上的一个严重问题,成了不结球白菜在江苏地区越冬栽培的主要制约因素,直接影响着冬季不结球白菜的产量和品质,因此,筛选耐寒性强的不结球白菜杂交组合是解决不结球白菜越冬栽培的关键举措。 本试验对12份供试不结球杂交组合进行耐寒性综合分析与鉴定,在江苏省南京市、江苏省连云港市和江苏省如皋市开展多点比较试验,系统比较不同不结球白菜杂交组合在江苏省不同生态区的产量与生理生化指标,并以产量为首要因素综合其他指标对其进行初步推广适宜性评价。试验材料为16份不结球白菜材料,其中包含12份不结球白菜杂交新组合,4份为对照组合,分别为黑塌菜、香青菜、NHCC-010及‘黄玫瑰’。在南京农业大学白马科研基地进行统一露地与保护地越冬栽培,于成熟期测定田间植物学性状、受冻害情况、营养品质指标、抗逆性指标及产量,旨在对不结球白菜耐寒新组合进行鉴定与评价。通过测定在南京地区和如皋、连云港地区试点低温胁迫后16份不结球白菜材料的营养品质指标、丙二醛含量、抗氧化酶活性及产量,进行不结球白菜材料的不同地区横向差异性比较,旨在筛选出进入低温期后适宜当地栽培的耐寒性强、优质高产的不结球白菜新组合。本试验利用科学合理的评价体系对不结球白菜新组合的耐寒能力进行鉴定,为不结球白菜耐寒适应性提供依据。 主要研究结果如下: 1.对16份参试不结球白菜材料进行耐寒性鉴定,不同材料在农艺性状、整齐度、低温受冻害情况、营养品质指标、抗逆性生理生化指标及产量上均有显著的差异,对这些指标进行相关性分析和隶属函数分析,发现不结球白菜农艺性状能初步反映其对低温胁迫的耐受能力,长势越好、单株重与产量越高,不结球白菜材料的对低温胁迫耐受能力越强;Vc含量与丙二醛含量呈显著负相关,光合色素之间呈极显著正相关,抗超氧阴离子自由基与可溶性蛋白含量呈极显著负相关,MDA与株高、开展度、叶片数和叶长均呈负相关,与冻害指数呈正相关。不结球白菜产量与CAT含量、可溶性蛋白含量、光合色素含量呈正相关,而与SOD、POD、可溶性糖和维生素C含量呈负相关,这说明不结球白菜产量越高,可溶蛋白、光合色素含量就越多,而可溶性糖和维生素C含量相对较低。利用主成分分析将各单项指标化简为7个综合指标,采用隶属函数法分析计算各组合的综合评价值(D值),按耐寒性强弱进行排序,由高到低依次为:012(NHCC-002×084)、015(黑塌菜)、016(NHCC-010)、008、006、009、013、005、002、004、010、001、011、007、014(黄玫瑰)、003 2.不同地区同一材料的各项指标均有显著性差异,如皋栽培005、007和012和连云港栽培003、009和014可溶性蛋白含量高于南京,001、010、011和016两地均高于南京。所有组合可溶性糖含量在如皋试点地区栽培均高于南京地区栽培,除002、009和013外,其余品种适宜在连云港地区推广。如皋栽培002、003、010、014和015,连云港栽培001、00维生素C含量高于南京,009两地均高于南京。脯氨酸含量仅连云港栽培的016高于南京栽培。通过对丙二醛含量测定发现,003、004、014和016在如皋和连云港栽培耐寒情况均次于南京。从抗超氧阴离子能力出发,002、004、006、008、012和013两地均适宜栽培,005和012适宜连云港栽培,003、009和014适合如皋栽培。所有组合在连云港产量均高于南京地区和如皋地区,其中012产量均最高,显著高于其他组合,004在如皋地区试点和连云港地区试点产量均较低,分别为次低和最低,016在南京和连云港地区较其他组合产量较高,在如皋地区产量却较低,008、010在如皋地区较其他组合产量较高,在连云港地区却较低,015在南京地区产量较其他组合产量较低,而在如皋地区和连云港地区排名较高,007在如皋地区排名中等,在南京和连云港地区排名较低,013在如皋地区排名最低,在南京和连云港地区排名较高。015在连云港地区增产最多,增产145.17%,其次为014,112.88%,第三为006,106.19%,第四为002,103.04%,第五为016,102.8%,这五个组合产量都增加了超过一倍,007、009、004、013、005、003、010、011和001增产超过50%。012增产最少,为41.46%。除014增产6.2%外,其余组合如皋栽培产量均减少,012减产最少,为2.1%。综合分析,所有组合均适宜在连云港地区推广,筛选出014(黄玫瑰)、015(黑塌菜)、005、002、008、006、007适宜在如皋地区栽培推广。 |
外文摘要: |
Brassica campestris ssp. chinensis, also known as little cabbage, green cabbage, rape, etc., is a biennial herb, is the brassica Brassicae non-tuberculous subspecies of cabbage, is an important part of the cabbage crop, is also an important green leafy vegetable cultivated all over the country. In recent years, due to the abnormal climate and the changeable winter temperature, low temperature freezing damage and high temperature in the yellowing period have become a serious problem in the production of the "yellow rose" strain of non-pelleting cabbage, which has become the main restricting factors for the winter cultivation of non-pelleting cabbage in Jiangsu, and directly affects the yield and quality of non-pelleting cabbage in winter. The key measure to solve the problem of overwinter cultivation of non-heading cabbage is to select the hybrid combination of non-heading cabbage with strong cold resistance. In this experiment, the cold tolerance of 12 non-nodular hybrid combinations was comprehensively analyzed and identified, and the yield and physiological and biochemical indexes of different non-nodular hybrid combinations of Chinese cabbage in different ecological regions of Jiangsu were systematically compared in Nanjing, Lianyungang and Rugao. With yield as the primary factor and other indexes, the suitability of its initial promotion was evaluated. The experimental materials were 16 non-forming Chinese cabbage materials, including 12 new hybrid combinations of non-forming Chinese cabbage and 4 control combinations, which were black cabbage, vanilla, NHCC-010 and yellow rose. In order to identify and evaluate a new combination of cold tolerance of non-forming Chinese cabbage, the field botanical characters, freezing damage, nutritional quality, stress resistance and yield were measured at maturity. By measuring the nutritional quality index, malondialdehyde content, antioxidant enzyme activity and yield of 16 non-heading Chinese cabbage materials after low temperature stress in Nanjing area, Rugao area and Lianyungang area, the horizontal difference of non-heading Chinese cabbage materials in different regions was compared, in order to select a new combination of non-heading Chinese cabbage with strong cold resistance, high quality and high yield suitable for local cultivation after entering the low temperature period. In this experiment, a scientific and reasonable evaluation system was used to identify the cold tolerance of the new combination of non-forming Chinese cabbage, which provided a basis for the cold tolerance adaptability of non-forming Chinese cabbage.The main findings are as follows: 1. The cold tolerance of 16 samples of non-pelleting Chinese cabbage materials was evaluated, and there were significant differences among different materials in agronomic traits, uniformity, low temperature freezing damage, nutritional quality indexes, physiological and biochemical indexes of stress resistance and yield. Correlation analysis and membership function analysis were conducted for these indexes. It was found that the agronomic traits of non-heading cabbage could initially reflect its tolerance to low temperature stress. The better the growth, the higher the plant weight and yield, the stronger the resistance to low temperature stress of non-heading cabbage. Vc content was negatively correlated with malondialdehyde content, photosynthetic pigments were positively correlated with each other, superoxide free radical resistance was negatively correlated with soluble protein content, and MDA was negatively correlated with plant height, development degree, leaf number and leaf length, and positively correlated with freezing damage index. The yield of non-heading cabbage was positively correlated with CAT content, soluble protein content and photosynthetic pigment content, but negatively correlated with SOD, POD, soluble sugar and vitamin C. The higher the yield of non-heading cabbage was, the more soluble protein and photosynthetic pigment contents were, while the soluble sugar and vitamin C contents were relatively low. Principal component analysis was used to simplify each single index into 7 comprehensive indexes, and membership function method was used to analyze and calculate the comprehensive evaluation value (D value) of each combination, which was sorted according to the strength of cold tolerance, from high to low as follows: 012 (NHCC002×084), 015 (Black cabbage), 016 (NHCC-010), 008, 006, 009, 013, 005, 002, 004, 010, 001, 011, 007, 014 (Yellow Rose), 003 2. The soluble protein content of 005, 007 and 012 cultivated in Rugao and 003, 009 and 014 cultivated in Lianyungang was higher than that in Nanjing, and that of 001, 010, 011 and 016 cultivated in Nanjing was higher than that in Nanjing. The soluble sugar content of all combinations cultivated in Rugao was higher than that cultivated in Nanjing. Except 002, 009 and 013, the other varieties were suitable for promotion in Lianyungang. The content of vitamin C cultivated in 002, 003, 010, 014 and 015 in Rugao, 001 and 00 in Lianyungang was higher than that in Nanjing, and 009 in both places was higher than that in Nanjing. The proline content of 016 cultivated in Lianyungang was higher than that in Nanjing. The cold tolerance of 003, 004, 014 and 016 cultivated in Rugao and Lianyungang was lower than that in Nanjing. In terms of superoxide anion resistance, 002, 004, 006, 008, 012 and 013 are suitable for cultivation, 005 and 012 are suitable for cultivation in Lianyungang, 003, 009 and 014 are suitable for cultivation in Rugao. The output of all combinations in Lianyungang is higher than that in Nanjing and Rugao, and the output of 012 is the highest, significantly higher than that of other combinations. The output of 004 is lower in Rugao and Lianyungang, which are the second lowest and the lowest respectively. 008 and 010 have a higher yield in Rugao region than other combinations, but a lower yield in Lianyungang region; 015 has a lower yield in Nanjing region than other combinations, but a higher ranking in Rugao and Lianyungang region; 007 has a medium ranking in Rugao region, but a lower ranking in Nanjing and Lianyungang region; 013 has the lowest ranking in Rugao region. It ranks higher in Nanjing and Lianyungang. In Lianyungang area, the output of 015 increased by the most, 145.17%, followed by 014,112.88%, 006,106.19%, 002,103.04% and 016,102.8%. The output of these five combinations has more than doubled. 007, 009, 004, 013, 005, 003, 010, 011 and 001 increased production by more than 50%. The increase of 012 was the least, 41.46%. With the exception of 014, the cultivation yield of Rugao decreased by 6.2%, and 012 had the least reduction of 2.1%. After comprehensive analysis, all combinations were suitable for promotion in Lianyungang area, and 014 (yellow rose), 015 (black cabbage), 005, 002, 008, 006, 007 were suitable for cultivation and promotion in Rugao area. |
参考文献: |
[1]曹寿椿, 李式军. 白菜地方组合的初步研究: III. 不结球白菜组合的园艺学分类[J]. 南京农业大学学报, 1982, 5(2): 30-37. DOI: 10. 7685/j. issn. 1000-2030. 1982. 02. 004. [2]侯喜林, 李英, 刘同坤. 不结球白菜遗传育种与分子生物学研究进展[J]. 南京农业大学学报, 2022, 45(05): 864-873. [3]侯喜林, 宋小明. 不结球白菜种质资源的研究与利用[J]. 南京农业大学学报, 2012, 35(05): 35-42. [4]曾国平, 曹寿椿. 不结球白菜主要品质性状遗传效应分析[C]//中国园艺学会. 中国园艺学会成立70周年纪念优秀论文选编. 中国科学技术出版社, 1999: 5. [5]蔬菜种植新风口——黄玫瑰白菜[J]. 农村新技术, 2022(03): 55-56. [6]维生素含量高新品白菜形似黄玫瑰[J]. 食品安全导刊, 2019(27): 7. [7]侯喜林, 李英. 黄玫瑰白菜栽培要点[J]. 农家致富, 2020(24): 29-30. [8]戎茸, 刘静波, 黄忠阳, 等. 南京地区设施蔬菜发展特点、问题及可持续发展对策[J]. 长江蔬菜, 2019(10): 80-83. [9]宋廷宇, 侯喜林, 何启伟, 等. 薹菜、大白菜与白菜营养成分评价[J]. 山东农业科学, 2007, 39(5):21⁃22. [10]刘吉振, 罗云米, 张洪成, 等. 不同施肥处理对高山小青菜产量和效益影响初报[J]. 西南农业学报,2010, 23(6): 1955⁃1958. [11]郝煜丽, 梁文文, 侯喜林, 等. 施用不同pH营养液对不结球白菜品质和花青素积累的影响[J]. 西北农业学报, 2023, 32(07): 1024-1031. [12]葛小艺, 高明夫, 徐慧. 维C工业废母液对不结球白菜氮素利用及品质的影响[J]. 生态学杂志: 1-10[2024-03-04]. [13]陈卓, 覃丫丫, 马超, 等. 尾菜来源酵素液对不结球白菜生长及品质的影响[J]. 中国瓜菜, 2023, 36(02): 66-69. DOI: 10. 16861/j. cnki. zggc. 2023. 0023. [14]宋莹, 张咪, 张昌伟, 等. 高产、抗病同源四倍体不结球白菜黄心乌新材料的创制[J]. 核农学报, 2022, 36(07): 1285-1292. [15]罗元凯, 王荣辕, 李染秋, 等. 粘虫板和防虫网组合方式对不结球白菜害虫的诱集效应[J]. 中国植保导刊, 2023, 43(03): 46-52. [16]刘素莎, 丁小涛, 李晓锋, 等. 不结球白菜侵染霜霉病后的生理生化响应[J]. 分子植物育种: 1-7[2024-03-04]. [17]蒋莉莉. 低温胁迫对西瓜种子萌发的影响[D]. 兰州: 甘肃农业大学, 2016. [18]张振超. 耐寒、晚抽薹四倍体不结球白菜的创制及生物学特性研究[D]. 南京: 南京农业大学, 2007, 8-9. [19]王雅美. 抗寒四倍体不结球白菜的创制及生物学特性研究[D]. 南京: 南京农业大学, 2016. [20]李仁杰, 袁凌云, 陈国户, 等. 耐低温抽薹不结球白菜新组合‘皖绿1号’[J]. 园艺学报, 2023, 50(S1): 41-42. DOI: 10. 16420/j. issn. 0513-353x. 2023-0007. [21]黄菲艺, 唐君, 侯喜林, 等. 不结球白菜响应ABA和低温基因WRKY18的克隆及表达分析[J]. 南京农业大学学报, 2015, 38(02): 189-196. [22]杨萍, 鲜孟筑, 胡立勇, 等. 低温胁迫对油菜种子萌发及幼苗生长的影响[J]. 华中农业大学学报, 2015, 34(06): 7-13. DOI: 10. 13300/j. cnki. hnlkxb. 20150723. 006. [23]Yan-xiuW, YaH, Bai-hongC, etal. Physiological mechanisms of resistance to cold stress as sociatedwith 10 elite appleroot stocks[J]. JournalofIntegrativeAgriculture, 2018, 17(04): 857-866. [24]丛日征, 张吉利, 王思瑶, 等. 植物抗寒性鉴定及其生理生态机制研究进展[J]. 温带林业研究, 2020, 3(01): 27-33. [25]许敏. 甘蓝早期耐寒性鉴定方法的研究[D]. 重庆: 西南大学, 2015. [26]LyonsssuesJ. M. andJ. K. Raison. Oxidative Activity of Mitochondria Isolated from Plant Ti-Sensltive and Resistantto Chilling Injury[J], PlanPhysiol. 1970, (45): 386-389. [27]Kidokoro S, Yoneda K, Takasaki H, etal. Different coldsignaling pathways function in the responses to rapid and gradual decreases in temperature[J]. The Plant Cell, 2017, 29(4): 760-774. [28]李建明, 黄志, 王忠红. 低温锻炼对冷胁迫下甜瓜幼苗抗氧化酶活性与质膜透性的影响[J]. 西北农业学报, 2007, 01: 168-171. [29]敖光明, 刘瑞凝细胞生物学北京: 北京农业大学出版社, 1987. [30]Dhindsa R S, Matowe W. Droughttoleranceintwq, mosser: Correlatedwithenzymaticdefenceagainstlipidperoxidation[J]JExpBot, 1981, 32: 79-91. [31]刘玉凤, 王珍琪, 鹿嘉智, 等. 叶绿体NAD(P)H脱氢酶复合体调控光合作用的研究进展[J]. 植物生理学报, 2019, 55(7): 932-940. [32]薛爽, 饶丽莎, 左丹丹, 等. 植物低温胁迫响应机理的研究进展[J]. 安徽农业科学, 2016, 44(33): 17-19, 48. DOI: 10. 3969/j. issn. 0517-6611. 2016. 33. 006. [33]JUDYCKIJ, JASKULAP, DOLZYXKIB, etal. Investigation of low-tem-perature racking in newly constructed high-modulusasphalt concrete base course of amotorwy pavement[J]. Roadmaterials and pavemented-sign, 2015, 16(51): 362-388. [34]邵怡若, 许建新, 薛立, 等. 低温胁迫时间对4种幼苗生理生化及光合特性的影响[J]. 生态学报, 2013,33(14): 4237-4247. [35]蒋安, 郭彦军, 范彦, 等. 低温胁迫对墨西哥玉米幼苗抗寒性的影响[J]. 草业科学, 2010, 27(3): 89-92. [36]田廷亮, 蔡梓林, 季明芳. 油菜超氧物岐化物酶活性及其同工酶的研究[J]. 中国油料作物学报, 1998, (1): 31-35. [37]邱乾栋, 吕晓贞, 臧德奎, 等. 植物耐寒生理研究进展[J]. 山东农业科学报, 2009, 8: 57-59 [38]郁万文, 曹福亮, 汪贵斌. 低温胁迫下银杏活性氧代谢与膜伤害的关系[J]. 东北林业大学学报, 2010, 38(7): 46-48. [39]相昆, 徐颖, 王新亮, 等. 低温胁迫对核桃枝条活性氧代谢的影响[J]. 江西农业学报, 2014, 26(1): 35-37. [40]张静, 李园园, 黄盈盈, 等. 低温胁迫下活性氧代谢与烟草花芽分化的研究[J]. 作物杂志, 2015(4): 74-80. [41]W. H. Hu. Chill-induced in hibition of photosyn thesis wasal leviated by 24-epibrassinol idepretreatment in cucumber during chilling and subsequent recovery[J]. Photosynthetica, 2010, 48(4): 537-544. [42]李云玲. 低温弱光对黄瓜幼苗光合作用的影响[J]. 南方农业, 2021, 15(21): 6-7+10 [43]刘胜男. 越冬甘蓝组合比较试验及其耐寒性研究[D]. 合肥: 安徽农业大学, 2017. [44]Kratsch HA, Wise RR. The ultra structure of chilling stress[J]. Plant, Cell&Environment, 2000, 23(4): 337-350. [45]朱为民, 朱龙英, 陆世钧, 等. 光合特性作为番茄设施专用组合选育指标的效应[J]. 上海农业学报, 2001, 17(4): 45-48. [46]鲁福成, 王明启, 张仲国, 等. 弱光对番茄苗期生长发育影响的研究[J]. 天津农学院学报, 2001, 8(3): 24-27. [47]黄伟, 任华中, 张福墁. 低温弱光对番茄苗期生长和光合作用的影响[J]. 中国蔬菜, 2002, (4): 15-17. [48]杨碧云, 叶丽萍, 钟凤林, 等. 低温处理对紫色小白菜品质及光合特性的影响[J]. 安徽农业大学学报, 2019, 46(01): 173-180. [49]李州, 彭燕, 苏星源. 不同叶型白三叶抗氧化保护及渗透调节生理对干旱胁迫的响应[J]. 草业学报, 2013, 02: 257-263 [50]曾正兵, 梅旭荣, 钟秀丽, 等. 磷脂酶Dα在拟南芥低温驯化过程中的作用途径分析[J]. 基因组学与应用生物学, 2009(04): 703-708. [51]SASAKIH, ICHIMURAK, ODAM. Change sin Sugar Content during Cold Acclimation and Deacclimation of Cabbage Seedlings[J]. AnnalsofBotany, 1996, 78(3): 365–369. [52]朱惠霞, 孙万仓, 邓斌, 等. 白菜型冬油菜组合的抗寒性及其生理生化特性[J]. 西北农业学报, 2007, 16(4): 34-38. [53]孟凡珍, 张振贤, 于贤昌, 等. 田间低温胁迫对大白菜某些理化特性的影响研究[J]. 中国生态农业学报, 2005, 13: 84-86. [54]权威, 薛文通, 赵天瑶, 等. 植物对低温胁迫的响应机制研究进展[J]. 中国农业大学学报, 2023, 28(2): 14-22. [55]林善枝, 张志毅. 低温锻炼与CaCl2处理对毛白杨幼苗可溶性总蛋白、CaM及抗冻性的影响(英文)[J]. ForestryStudiesinChina, 2002, 01: 5-12. [56]闫洪奎, 刘样, 王会广, 等. 低钾胁迫下耐低钾玉米可溶性蛋白\可溶性糖和钾含量的变化及其关系[J],玉米科学. 201206: 81-84. [57]KHB, DZ. S. Differential expression of manganese super oxide dismutase sequence variant sinnearisogeniclines of wheat during cold acclimation[J]. PlantCellReports, 2006, 25(3): 223-230. [58]CLG, RLH, D. H. Induction of Freezing Tolerance in Spinach during Cold Acclimation[J]. PlantPhysiology, 1987, 84(3): 868-871. [59]SSM, RJP, RSD. Changesin Protein Patterns and Translatable Messenger RNA Populations duringCold Acclimation of Alfalfa[J]. PlantPhysiology, 1987, 84(4): 1172-1176. [60]王淑杰, 王家民. 可溶性全蛋白, 可溶性糖含量与葡萄抗寒性关系的研究[J]. 北方园艺, 1996, (2): w013-w014. [61]王磊, 李建勇, 张振贤, 等. 冻害低温下越冬甘蓝渗透调节物质的变化和作用[J]. 山东农业大学学报:自然科学版, 2001, 32(4): 487-490. [62]周碧燕, 陈杰忠, 季作梁, 等. 香蕉越冬期间SOD活性和可溶性蛋白质含量的变化[J]. 果树学报, 1999, 16(3): 192-196. [63]郭爱华, 陈钰, 姚月俊, 等. 自然降温对不同杏组合1年生枝条抗寒性的影响[J]. 山西林业科技, 2007, (1): 33-34. [64]Delauney AJ, Verma DPS. Prolinebiosynthesisandosmoregulationinplants[J]. PlantJournal, 1993, 4(2): 215–223. [65]KhedrM, KarmouchA. ExploitingagentsandSIPforsmartcontextlevelagreements[C]. IEEEPacificRimConferenceonCommunications, Computers&SignalProcessing. IEEE, 2003: 522-525. [66]吴峻岩. 甘蓝叶片对低温的生理生化响应及分子生理学初探[D]. 重庆: 西南农业大学, 2004. [67]吴能表, 吴峻岩, 朱利泉, 等. 低温对甘蓝逆境生理指标和蛋白质磷酸化的影响[J]. 园艺学报, 2003, 30(5): 530-534 [68]BornmanCH, JanssonE. Nicotianatabacumcallusstudies. X. ABAincreasesresistancetocolddamage[J]. PhysiologiaPlantarum, 1980, 48(4): 491–493. [69]郭绍川, 刘玲玉. 脯氨酸含量在作物低温锻炼中的变化及同抗寒性的关系[J]. 西北植物学报, 1984, (1): 40-45. [70]宋立晓, 高兵, 张边江, 等. 甘蓝耐寒性生理生化指标研究[J]. 江苏农业学报, 2009, 25(6): 1341-1346. [71]胡胜武, 于澄宇, 等. 甘蓝型油菜耐寒性的鉴定及其相关性状的研究[J]. 中国油料作物学报, 1999, 21(2): 33-37 [72]Foyer C H, Noctor G. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria[J]. Physiologia Plantarum, 2003, 119(3): 355-364. [73]郭确, 潘睿识. ABA对水稻抗冷性的影响[J]. 植物生理学报, 1984, 10(4)295-303. [74]张志刚, 董春娟, 尚庆茂. 蔬菜幼苗化学调控技术研究进展[J]. 中国蔬菜, 2017(09): 22-25. DOI: 10. 19928/j. cnki. 1000-6346. 2017. 09. 005. [75]吕跃强, 温度对温室番茄生长产量和品质的影响[D]. 泰安: 山东农业大学, 2021. [76]杨碧云, 叶丽萍, 钟凤林, 等. 低温处理对紫色小白菜品质及光合特性的影响[J]. 安徽农业大学学报, 2019, 46(01): 173-180. [77]朱丽云. 花期低温寡照对设施番茄产量及果实品质的影响[D]. 南京: 南京信息工程大学, 2018. [78]李建明, 王平, 李江. 灌溉量对亚低温下温室番茄生理生化与品质的影响[J]. 农业工程学报, 2010(2): 129-134. [79]周长久.现代蔬菜育种学[M].北京: 科学技术文献出版社1996∙ [80]陈磊, 向华丰, 曾志红, 等. 茄果类蔬菜低温耐受性鉴定及研究进展[J]. 江西农业学报, 2023, 35(10): 4650+86. DOI: 10. 19386/j. cnki. jxnyxb. 2023. 10. 008. [81]殷昭平, 陈运起, 刘世琦, 等. 蔬菜抗热、耐寒性鉴定方法与评价指标研究进展[J]. 山东农业科学, 2008(04): 26-28. [82]刘胜男. 越冬甘蓝组合比较试验及其耐寒性研究[D]. 合肥: 安徽农业大学, 2017. [83]Waalen WW, Tanino KK, Olsen JE, etal. Freezing tolerance of winter canola cultivars is best revealed by a prolonged freeze test[J]. Crop Science, 2011, 51(5): 1988-1996. [84]Yadav S K. Cold stress tolerance mechanisms in plants: A review[J]. Agronomy for Sustainable Development, 2010, 30(3): 515-527. [85]尚庆茂, 王光耀. 蔬菜抗热性的鉴定方法[J]. 中国蔬菜1996, 5: 49-51 [86]许敏. 甘蓝早期耐寒性鉴定方法的研究[D]. 重庆: 西南大学, 2012, 13-15. [87]袁淑培. 油菜种质资源耐寒性鉴定与全基因组关联分析[D]. 北京: 中国农业科学院, 2019, 9 [88]杜鑫宇. 低温胁迫下不同烟草组合花芽分化进程及耐寒性生理生化指标的变化[D]. 吉林: 延边大学, 2020, 8 [89]李君亮, 王士博, 李亚军, 等. CO2浓度升高对干旱胁迫下谷子细胞结构和抗逆生理的影响[J]. 应用生态学报, 2023, 34(05): 1281-1289. DOI: 10. 13287/j. 1001-9332. 202305. 015. [90]韩笑冰, 利容千, 王建波. 热胁迫下萝卜不同耐热组合细胞组织结构比较[J]. 武汉植物学研究1997, 15(2): 173-178∙ [91]陈涛. 高温胁迫对辣椒花粉生理生化的影响[D]. 山西农业大学, 2022. DOI: 10. 27285/d. cnki. gsxnu. 2022. 000828. [92]李浩东. 甘蓝型油菜花期低温生理响应及候选基因分析[D]. 西北农林科技大学, 2023. DOI: 10. 27409/d. cnki. gxbnu. 2022. 001704. [93]丁宇晖. 高温和湿度对设施番茄幼果发育的影响机理[D]. 南京: 南京信息工程大学, 2022. DOI: 10. 27248/d. cnki. gnjqc. 2021. 000284. [94]王少先, 刘宝国, 潘涛, 等. 短时高温对6种蔬菜花粉生活力影响[J]. 洛阳农业高等专科学校学报199919(3): 1-2∙ [95]耿亚林, 李瑶, 潘攀, 等. 叶菜型甘薯资源耐寒性评价体系研究[J]. 西南农业学报, 2023(03): 1-12 [96]韩永亮, 张清华, 罗河月, 等. 基于主成分和系统聚类分析法对高粱杂交组合的综合评价[J]. 贵州农业科学, 2022, 50(11): 13-19 [97]马文广, 崔华威, 李永平, 等. 20个烟草组合低温逆境下发芽和苗期生理生化特性的变化及耐寒性评价[J]. 浙江农业学报, 2011, 23(02): 232-238. [98]高山, 许端祥, 林碧英, 等. 低温弱光胁迫下11份瓠瓜种质幼苗的耐寒性[J]. 福建农业学报, 2009, 24(01): 60-63. DOI: 10. 19303/j. issn. 1008-0384. 2009. 01. 013. [99]张茹, 魏兵强, 陈灵芝, 等. 低温胁迫对辣椒种子发芽及苗期6个生理指标的影响[J]. 甘肃农业科技, 2017(12): 26-30. [100]姚明华, 徐跃进, 李晓丽, 等. 茄子耐冷性生理生化指标的研究[J]. 园艺学报, 2001, 28(6): 527-531. [101]孙玉宏, 徐跃进, 彭金光, 等. 甜瓜耐冷性鉴定指标的筛选[J]. 中国蔬菜, 2004(04): 9-12. [102]许桂芳, 张朝阳, 向佐湘. 利用隶属函数法对4种珍珠菜属植物的抗寒性综合评价[J]. 西北林学院学报, 2009, 24(03): 24-26. [103]耿广东, 程智慧, 张素勤. 低温发芽鉴定茄子耐冷性的研究[J]. 种子, 2006, 25(6): 43-46. [104]高青海, 徐坤, 高辉远, 等. 不同茄子砧木幼苗抗冷性的筛选[J]. 中国农业科学, 2005, 38(5): 1005-1010. [105]张小贝, 朱国鹏, 南文卓, 等. 隶属函数法对5种菜用甘薯耐寒性的评价[J]. 热带生物学报, 2016, 7(04): 450-456 [106]朱月林, 曹寿椿, 刘祖祺. 致死低温确定法的改进及其在不结球白菜上的验证[J]. 园艺学报, 1988(01): 51-56. [107]张宪政, 苏正淑. 作物生理研究法[M]. 农业出版社. 1992, (10): 145-148. [108]梁昕景, 夏玲, 王学林, 等. 基于隶属函数法对34份黄皮厚皮甜瓜种质资源的综合评价[J]. 热带农业科学, 2022, 42(03): 39-44. |
中图分类号: | S63 |
开放日期: | 2024-06-12 |