- 无标题文档
查看论文信息

中文题名:

 番茄PLATZ基因家族鉴定及SlPLATZ22耐盐功能研究    

姓名:

 李欣    

学号:

 2021104069    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090202    

学科名称:

 农学 - 园艺学 - 蔬菜学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 蔬菜学    

研究方向:

 蔬菜生理与分子生物学    

第一导师姓名:

 吴震    

第一导师单位:

 南京农业大学    

完成日期:

 2024-05-29    

答辩日期:

 2024-05-29    

外文题名:

 Identification of PLATZ Gene Family and Salt-Tolerant Function of SlPLATZ22 in Tomato    

中文关键词:

 番茄 ; 盐胁迫 ; PLATZ基因家族 ; PLATZ22 ; 功能验证    

外文关键词:

 Tomato ; Salt stress ; PLATZ gene family ; PLATZ22 ; Functional verification    

中文摘要:

番茄(Solanum lycopersicum L.)是世界上消费量最多的蔬菜之一,具有很高的营养作用和重要的经济价值。然而,作为中度盐敏感型作物,普通番茄对盐分的耐受能力不强,无论是自然盐碱土壤,还是因设施栽培等因素导致的次生盐渍化土壤,均严重影响了番茄的生长发育和产量形成,限制了番茄产业的发展。挖掘和利用盐胁迫响应关键基因,解析番茄耐盐分子调控机制进而培育耐盐品种是提高番茄耐盐能力的有效途径。PLATZ转录因子是植物中特有的一类新型转录因子,已被前人证实在谷子、拟南芥的耐盐性调控中发挥重要作用。但番茄PLATZ基因的生物信息学特征、调控番茄耐盐性的功能和分子机制还鲜有报道。

为明确番茄PLATZ基因家族的特征,并进一步探究其在盐胁迫响应中所发挥的功能,进行以下研究:(1)对9个基因型番茄苗期耐盐性进行综合评价及分类,筛选耐盐与盐敏感种质,为研究盐胁迫下番茄PLATZ基因家族成员在不同耐盐性番茄中的表达特征提供试验材料;(2)从番茄基因组中鉴定PLATZ基因家族成员并进行生物信息学分析,利用qRT-PCR分析PLATZ基因家族成员在盐胁迫下不同耐盐性番茄中的表达特点,筛选响应盐胁迫的关键PLATZ基因;(3)利用遗传转化技术分别过表达和敲除SlPLATZ22,探究其在盐胁迫中的功能及可能的调控机制。主要研究结果如下:

对9个基因型番茄苗期耐盐性进行综合评价和聚类,按照耐盐性的差异将其分为耐盐、中度耐盐和盐敏感3组。其中,耐盐组包括‘LA1598’和‘LA1926’,中度耐盐组包括‘LA1627’、‘LA2093’、‘Big white pink’和‘Ace’,盐敏感组包括‘科丰’、‘Tomato Cherry Red & Yellow Pear Blend’和‘LA1569’。选择耐盐番茄‘LA1598’和盐敏感番茄‘科丰’作为后续研究的试验材料。

在栽培番茄基因组中共鉴定到23个PLATZ基因,其蛋白的氨基酸数在102-279之间,分子质量在12.06-32.03 kDa之间。亚细胞定位预测结果显示,22个PLATZ蛋白定位于细胞核上,只有PLATZ1定位在叶绿体上。PLATZ家族蛋白高度保守,具有相近的保守结构域。番茄PLATZ基因家族成员含1-4个内含子,2-4个外显子,在启动子区域含有大量与植物生长发育、非生物胁迫、激素响应和光响应相关的作用元件。盐胁迫下,PLATZ基因家族成员响应盐胁迫诱导表达量发生变化。其中PLATZ1、PLATZ5、PLATZ11、PLATZ16、PLATZ18、PLATZ20和PLATZ22在盐敏感番茄‘科丰’中的表达量显著高于在耐盐番茄‘LA1598’中的表达量,以PLATZ22表达量最高。选择PLATZ22为响应番茄盐胁迫的关键调控因子进一步探究其功能。

PLATZ22在番茄的根、茎、叶、花、绿熟果和红熟果中均有表达,盐胁迫后在盐敏感番茄‘科丰’和耐盐番茄‘LA1598’的根、叶、花和红熟果中的表达量较高。敲除PLATZ22降低了盐胁迫对番茄生长的影响。盐胁迫6 d后,PLATZ22敲除株系的相对电导率、活性氧水平和丙二醛含量显著低于野生型株系(WT)和PLATZ22过表达株系;株高、鲜重、干重、叶绿素含量、光合参数、抗氧化酶活性和渗透调节物质含量显著高于WT和PLATZ22过表达株系。过表达PLATZ22加重了盐胁迫对番茄的危害。盐胁迫6 d后,PLATZ22过表达株系植株矮小,叶片黄化脱落严重,相对电导率、活性氧水平和丙二醛含量显著高于PLATZ22敲除株系,株高、干鲜重、叶绿素含量、光合参数、抗氧化酶活性和渗透调节物质含量显著低于PLATZ22敲除株系。盐胁迫后,PLATZ22过表达株系中的离子转运相关基因(SOS1、SOS2、NHX1),抗氧化酶相关基因(SOD、CAT1、CAT2)和渗透调节相关基因(P5CS)的表达量显著低于PLATZ22敲除株系,在PLATZ22敲除株系中的表达量显著高于在WT株系和PLATZ22过表达株系中的表达量。上述结果表明,PLATZ22负调控番茄耐盐性。

综上所述,本研究明确了9个基因型番茄苗期耐盐性,明晰了番茄PLATZ基因家族成员的生物信息学特征和在不同耐盐性番茄中的表达特征,验证了SlPLATZ22在调控番茄耐盐性中的功能,丰富了PLATZ基因家族在调控植物耐盐方面的知识,为深入研究PLATZ基因家族的耐盐调控机制奠定了基础,为番茄耐盐育种和栽培提供了依据。

外文摘要:

The tomato (Solanum lycopersicum L.) is one of the most consumed vegeTable s in the world, with a high nutritional role and important economic value. However, as a moderately salt-sensitive crop, common tomato is not strong in salt tolerance. Both natural saline-alkali soil and secondary salinization soil caused by facilities cultivation have seriously affected the growth and yield formation of tomato, and limited the development of tomato industry. It is an effective way to improve the salt-tolerant capacity of tomato by mining and utilizing the key genes in response to salt stress and analyzing the molecular regulation mechanism of salt-tolerant tomato. PLATZ transcription factor is a novel transcription factor unique to plants, which has been proved to play an important role in the regulation of salt tolerance in millet and Arabidopsis. However, the bioinformatic characteristics of tomato PLATZ, the function and molecular mechanism of regulating tomato salt tolerance have not been reported.

In order to clarify the characteristics of tomato PLATZ gene family and further explore its functions in response to salt stress, the following studies were conducted: (1) Salt tolerance of 9 genotypes at seedling stage was evaluated and classified, and salt tolerance and salt sensitive germplasm were screened to provide experimental materials for studying the expression characteristics of PLATZ gene family members in different salt-tolerant tomatoes under salt stress. (2) The PLATZ gene family members were identified from the tomato genome and bioinformatics analysis was performed. qRT-PCR was used to analyze the expression characteristics of PLATZ gene family members in different salt-tolerant tomatoes under salt stress, and key PLATZ genes in response to salt stress were screened. (3) SlPLATZ22 was overexpressed and knocked out by genetic transformation technology to explore its function and possible regulatory mechanism in salt stress. The main findings are as follows:

1. The salt tolerance of 9 tomato genotypes at seedling stage was comprehensively evaluated and clustered, and they were divided into 3 groups of salt tolerance, moderate salt tolerance and salt sensitivity according to the differences in salt tolerance. Among them, the salt-tolerant group includes' LA1598 'and' LA1926 ', and the moderate salt-tolerant group includes' LA1627 ', 'LA2093', 'Big white pink' and 'Ace'. Salt-sensitive groups include 'Kefeng', ' Tomato Cherry Red & Yellow Pear Blend' and 'LA1569'. Salt-tolerant tomato 'LA1598' and salt-sensitive tomato 'Kefeng' were selected as experimental materials for the follow-up study.

2. A total of 23 PLATZ genes were identified in the cultivated tomato genome, with amino acid number ranging from 102 to 279 and molecular weight ranging from 12.06 to 32.03 kDa. Subcellular localization prediction showed that 22 PLATZ proteins were located on the nucleus and only PLATZ1 was located on the chloroplast. PLATZ family proteins are highly conserved and have similar conserved domains and Motif structures. Tomato PLATZ gene family members contain 1-4 introns and 2-4 exons, and contain a large number of active elements related to plant growth and development, abiotic stress, hormone response and light response in the promoter region. The expression levels of PLATZ gene family members changed in response to salt stress. The expression levels of PLATZ1, PLATZ5, PLATZ11, PLATZ16, PLATZ18, PLATZ20 and PLATZ22 in salt-sensitive tomato 'Kefeng' were significantly higher than those in salt-tolerant tomato 'LA1598', and PLATZ22 was the highest. PLATZ22 was selected as a key regulatory factor in response to tomato salt stress to further explore its function.

3.PLATZ22 was expressed in the roots, stems, leaves, flowers, green ripe fruits and red ripe fruits of tomato, and the expression level was higher in the roots, leaves, flowers and red ripe fruits of salt-sensitive tomato 'Kefeng' and salt-tolerant tomato 'LA1598' after salt stress. Elimination of PLATZ22 reduced the effect of salt stress on tomato growth. After 6 days of salt stress, the relative electrical conductivity, reactive oxygen species and malondialdehyde content of PLATZ22-knocked out strain were significantly lower than those of wild-type strain (WT) and PLATZ22-overexpressed strain. Plant height, fresh weight, dry weight, chlorophyll content, photosynthetic parameters, antioxidant enzyme activity and osmoregulatory substance content were significantly higher than those of WT and PLATZ22 overexpressed lines. Overexpression of PLATZ22 increased the harm of salt stress on tomato. After 6 days of salt stress, the PLATZ22-overexpressed strain had short plants and severe leaf yellows. The levels of relative electrical conductivity, reactive oxygen species and malondialdehyde contents were significantly higher than those of PLATZ22-knocked out strain, while the plant height, fresh weight, dry weight, chlorophyll contents, photosynthetic parameters, antioxidant enzyme activities and osmoregulatory substances contents were significantly lower than those of PLATZ22-knocked out strain. After salt stress, the expression levels of ion transport-related genes (SOS1, SOS2, NHX1), antioxidase-related genes (SOD, CAT1, CAT2) and osmoregulation genes (P5CS) in PLATZ22-overexpressed strains were significantly lower than those in PLATZ22-knocked out strains. The expression level in PLATZ22 knockout lines was significantly higher than that in WT lines and PLATZ22 overexpression lines. The results indicated that PLATZ22 negatively regulated tomato salt tolerance.

In summary, this study identified 9 genotypes of tomato salt tolerance at seedling stage, clarified the bioinformatics characteristics of tomato PLATZ gene family members and their expression characteristics in different salt-tolerant tomatoes, verified the function of SlPLATZ22 in regulating tomato salt tolerance, and enriched the knowledge of PLATZ gene family in regulating plant salt tolerance. This study laid a foundation for further study of salt tolerance regulation mechanism of PLATZ gene family, and provided a basis for salt-tolerant breeding and cultivation of tomato.

参考文献:

[1] Ahmad P, Jaleel C A, Salem M A, et al. Roles of enzymatic and nonenzymatic antioxidants in plants during abiotic stress[J]. Critical Reviews in Biotechnology, 2010, 30(3):161-175.

[2] Arif Y, Singh P, Siddiqui H, et al. Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance[J]. Plant Physiology And Biochemistry, 2020, 156:64-77.

[3] Aslam M, Maqbool M A, Zaman Q U, et al. Comparison of different tolerance indices and PCA biplot analysis for assessment of salinity tolerance in lentil (Lens culinaris) genotypes[J]. International Journal of Agriculture and Biology, 2017, 19(3):470-478.

[4] Bajji M, Bertin P, Lutts S, et al. Evaluation of drought resistance-related traits in durum wheat somaclonal lines selected[J]. Australian Journal of Experimental Agriculture, 2004, 44(1):27-35.

[5] Behera T K, Krishna R, Ansari W A, et al. Approaches involved in the vegeTable crops salt stress tolerance improvement: present status and way ahead[J]. Frontiers in Plant Science, 2022, 12:20.

[6] Chakrabarty D, Datta S K. Micropropagation of gerbera: lipid peroxidation and antioxidant enzyme activities during acclimatization process[J]. Acta Physiologiae Plantarum, 2008, 30(3):325-331.

[7] De Freitas P A F, De Carvalho H H, Costa J H, et al. Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism[J]. Plant Cell Reports, 2019, 38(3):403-416.

[8] Dileo M V, Pye M F, Roubtsova T V, et al. Abscisic acid in salt stress predisposition to phytophthora root and crown rot in tomato and chrysanthemum[J]. Phytopathology, 2010, 100(9):871-879.

[9] FAO. Crop queries of production volume of data [EB/OL]. http://www.fao.org/faostat /zh/#compare

[10] Gálvez F J, Baghour M, Hao G P, et al. Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species[J]. Plant Physiology and Biochemistry, 2012, 51:109-115.

[11] González-Morales S I, Chávez-Montes R A, Hayano-Kanashiro C, et al. Regulatory network analysis reveals novel regulators of seed desiccation tolerance in[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(35):E5232-E5241.

[12] Gorai M., El Aloui W., Yang X. et al. Toward understanding the ecological role of mucilage in seed germination of a desert shrub henophyton deserti: interactive effects of temperature, salinity and osmotic stress[J]. Plant and Soil, 2014, 374, 727–738.

[13] Guo X J, Fu Y X, Lee Y R J, et al. The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals[J]. Plant Biotechnology Journal, 2022, 20(7):1311-1326.

[14] Han X, Rong H, Tian Y T, et al. Genome-wide Identification of PLATZ transcription factors in Ginkgo biloba L. and their expression characteristics during seed development[J]. Frontiers in Plant Science, 2022, 13.

[15] Hande A S, Katageri I S, Jadhav M P, et al. Transcript profiling of genes expressed during fibre development in diploid cotton (Gossypium arboreum L.)[J]. BMC Genomics, 2017, 18(1):675.

[16] Hasanuzzaman M, Bhuyan M H M B, Anee T I, et al. Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress[J]. Antioxidants-Basel, 2019, 8(9):384-434.

[17] Hasanuzzaman M, Bhuyan M, Zulfiqar F, et al. Reactive oxygen species and antioxidant defense in plants under abiotic stress: revisiting the crucial role of a universal defense regulator[J]. Antioxidants (Basel), 2020, 9(8):681.

[18] Hasanuzzaman M, Fujita M. Plant responses and tolerance to salt stress: physiological and molecular interventions[J]. International Journal of Molecular Sciences, 2022, 23(9):4810.

[19] Hasanuzzaman M, Nahar K, Alam M M, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5):9643-9684.

[20] He X H, Liu M J, Fang Z W, et al. Genome-wide analysis of a plant AT-rich sequence and zinc-binding protein (PLATZ) in Triticum Aestivum[J]. Phyton-International Journal of Experimental Botany, 2021, 90(3):971-986.

[21] Ho L C, Adams P. The physiological-basis for high fruit yield and susceptibility to calcium deficiency in tomato and cucumber[J]. Journal of Horticultural Science, 1994, 69(2):367-376.

[22] Hou M M, Lin Z Y, Chen J N, et al. Optimization on the buried depth of subsurface drainage under greenhouse condition based on entropy evaluation method[J]. Entropy-Switz, 2018, 20(11):859.

[23] Hu L, Lu H, Liu Q L, et al. Overexpression of mtlD gene in transgenic populus tomentosa improves salt tolerance through accumulation of mannitol[J]. Tree Physiology, 2005, 25(10):1273-1281.

[24] Huang D Q, Wu W R, Abrams S R, et al. The relationship of drought-related gene expression in Arabidopsis thaliana to hormonal and environmental factors[J]. Journal of Experimental Botany, 2008, 59(11):2991-3007.

[25] Iocco-Corena P, Chaïb J, Torregrosa L, et al. VviPLATZ1 is a major factor that controls female flower morphology determination in grapevine[J]. Nature Communications, 2021, 12(1):6995.

[26] Ismail A M, Horie T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance[J]. Annual Review of Plant Biology, 2017, 68:405-434.

[27] Jun S E, Kim J H, Hwang J Y, et al. ORESARA15 acts synergistically with ANGUSTIFOLIA3 and separately from AINTEGUMENTA to promote cell proliferation during leaf growth[J]. International Journal of Molecular Sciences, 2020, 21(1):241.

[28] Kamran M, Xie K, Sun J, et al. Modulation of growth performance and coordinated induction of ascorbate-glutathione and methylglyoxal detoxification systems by salicylic acid mitigates salt toxicity in choysum (Brassica parachinensis L.)[J]. Ecotoxicology and Environmental Safety, 2020, 188:109877.

[29] Kerchev P, Van Der Meer T, Sujeeth N, et al. Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants[J]. Biotechnology Advances, 2020, 40:107503.

[30] Kim H S, Lee J H, Kim J J, et al. Molecular and functional characterization of CaLEA6, the gene for a hydrophobic LEA protein from capsicum annuum[J]. Gene, 2005, 344:115-123.

[31] Kumar G N M, Knowles N R. Changes in lipid-peroxidation and lipolytic and free-radical scavenging enzyme-activities during aging and sprouting of potato (Solanum-Tuberosum) seed-tubers[J]. Plant Physiology, 1993, 102(1):115-124.

[32] Kumar V, Khare T. Differential growth and yield responses of salt-tolerant and susceptible rice cultivars to individual[J]. Acta Physiologiae Plantarum, 2016, 38(7):170.

[33] Leshem Y, Melamed-Book N, Cagnac O, et al. Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(47):18008-18013.

[34] Li H, Wang Y Y, Xiao Q L, et al. Transcription factor ZmPLATZ2 positively regulate the starch synthesis in maize[J]. Plant Growth Regulation, 2021, 93(3):291-302.

[35] Li J, Feng S, Zhang Y C, et al. Genome-wide identification and expression analysis of the plant-specific PLATZ gene family in Tartary buckwheat (Fagopyrum tataricum)[J]. Bmc Plant Biology, 2022, 22(1):1-15.

[36] Li Q, Wang J C, Ye J W, et al. The maize imprinted gene Floury3 encodes a PLATZ protein required for tRNA and 5S rRNA transcription through interaction with RNA polymerase III[J]. Plant Cell, 2017, 29(10):2661-2675.

[37] Liu C J, Gong X W, Wang H L, et al. Low-nitrogen tolerance comprehensive evaluation and physiological response to nitrogen stress in broomcorn millet (Panicum miliaceum L.) seedling[J]. Plant Physiology and Biochemistry, 2020, 151:233-242.

[38] Liu S S, Yang R, Liu M, et al. PLATZ2 negatively regulates salt tolerance in Arabidopsis seedlings by directly suppressing the expression of the and genes[J]. Journal of Experimental Botany, 2020, 71(18):5589-5602.

[39] Ma Q, Wu C Y, Liang S H, et al. The alkali tolerance of Broomcorn Millet (Panicum miliaceum L.) at the germination and seedling stage: the case of 296 broomcorn millet Genotypes[J]. Frontiers in Plant Science, 2021, 12:1750.

[40] Miller G, Suzuki N, Ciftci-Yilmaz S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell and Environment, 2010, 33(4):453-467.

[41] Nagano Y, Furuhashi H, Inaba T, et al. A novel class of plant-specific zinc-dependent DNA-binding protein that binds to A/T-rich DNA sequences[J]. Nucleic Acids Research, 2001, 29(20):4097-4105.

[42] Nutan K K, Kumar G, Singla-Pareek S L, et al. A salt overly sensitive pathway member from Brassica juncea BjSOS3 can functionally complement ΔAtsos3 in Arabidopsis[J]. Current Genomics, 2018, 19(1):60-69.

[43] Poór P, Szopkó D, Tari I. Ionic homeostasis disturbance is involved in tomato cell death induced by NaCl and salicylic acid[J]. In Vitro Cellular & Developmental Biology-plant, 2012, 48(3):377-382.

[44] Qian Q , Lijia Q , Ming Y ,et al. Research advances on plant science in China in 2012[J].Chinese Bulletin of Botany, 2013, 45(3):265-306.

[45] Qiu N W, Liu Q, Li J J, et al. Physiological and transcriptomic responses of Chinese cabbage (Brassica rapa L. ssp Pekinensis) to salt stress[J]. International Journal of Molecular Sciences, 2017, 18(9):1953.

[46] Rennie E A, Ebert B, Miles G P, et al. Identification of a sphingolipid α-glucuronosyltransferase that is essential for pollen function in Arabidopsis.[J]. Plant Cell, 2014, 26(8):3314-3325.

[47] Rodriguez-Rosales M P, Galvez F J, Huertas R, et al. Plant NHX cation/proton antiporters[J]. Plant Signaling & Behavior, 2009, 4(4):265-276.

[48] Singh U M, Sareen P, Sengar R S, et al. Plant ionomics: a newer approach to study mineral transport and its regulation[J]. Acta Physiologiae Plantarum, 2013, 35(9):2641-2653.

[49] Song N, Lin J C, Liu X B, et al. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat[J]. New Phytologist, 2022, 236(2):590-607.

[50] Su Q F, Zheng X D, Tian Y K, et al. Exogenous brassinolide alleviates salt stress in Malus hupehensis rehd. By regulating the transcription of NHX-Type Na+(K+)/H+ antiporters[J]. Frontiers in Plant Science, 2020, 11.

[51] Sun Y, Liu Y, Liang J, et al. Identification of PLATZ genes in Malus and expression characteristics of MdPLATZs in response to drought and ABA stresses[J]. Frontiers in Plant Science, 2022, 13:1109784.

[52] Tang R J, Luan M D, Wang C, et al. Plant membrane transport research in the post-genomic era[J]. Plant Communications, 2020, 1(1):001.

[53] Timilsina R, Kim Y, Park S, et al. ORESARA 15, a PLATZ transcription factor, controls root meristem size through auxin and cytokinin signalling-related pathways[J]. Journal of Experimental Botany, 2022, 73(8):2511-2524.

[54] Wang J C, Ji C, Li Q, et al. Genome-wide analysis of the plant-specific PLATZ proteins in maize and identification of their general role in interaction with RNA polymerase III complex[J]. BMC Plant Biology, 2018, 18(1):221.

[55] Wang Z, Hong Y C, Zhu G T, et al. Loss of salt tolerance during tomato domestication conferred by variation in a Na+/K+ transporter[J]. Embo Journal, 2020, 39(10):e103256.

[56] Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling[J]. Annual Review of Plant Biology, Vol 69, 2018, 69:209-236.

[57] Xie T, Ren R, Zhang Y Y, et al. Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2.6, by protein phosphatase ABI1[J]. Journal of Biological Chemistry, 2012, 287(1):794-802.

[58] Xu J P, Li Z M, Shen W J, et al. Multi-attribute comprehensive evaluation of individual research output based on published research papers[J]. Knowledge-based Systems, 2013, 43:135-142.

[59] Yamada M, Han X W, Benfey P N. RGF1 controls root meristem size through ROS signalling[J]. Nature, 2020, 577(7788):85-88.

[60] Zenda T, Liu S T, Wang X, et al. Key maize drought-responsive genes and pathways revealed by comparative transcriptome and physiological analyses of contrasting inbred lines[J]. International Journal of Molecular Sciences , 2019, 20(6):1268.

[61] Zhang J L, Shi H Z. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynth Research, 2013, 115(1):1-22.

[62] Zhang K M, Lan Y G, Shi Y A, et al. Systematic analysis and functional characterization of the PLATZ transcription factors in moso bamboo (Phyllostachys edulis)[J]. Journal of Plant Growth Regulation, 2023, 42(1):218-236.

[63] Zhang L, Zhang Z J, Fang S Z, et al. Integrative analysis of metabolome and transcriptome reveals molecular regulatory mechanism of flavonoid biosynthesis in Cyclocarya paliurus under salt stress[J]. Industrial Crops and Products, 2021, 170:170.

[64] Zhang M, Cao Y B, Wang Z P, et al. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na+ exclusion and salt tolerance in maize[J]. New Phytologist, 2018, 217(3):1161-1176.

[65] Zhang R, Hussain S, Wang Y, et al. Comprehensive evaluation of salt tolerance in rice (Oryza sativa L.) germplasm at the germination stage[J]. Agronomy-Basel, 2021, 11(8):1569.

[66] Zhang S C, Yang R, Huo Y Q, et al. Expression of cotton PLATZ1 in transgenic reduces sensitivity to osmotic and salt stress for germination and seedling establishment associated with modification of the abscisic acid, gibberellin, and ethylene signalling pathways[J]. BMC Plant Biology, 2018, 18:218.

[67] Zhou S R, Xue H W. The rice PLATZ protein SHORT GRAIN6 determines grain size by regulating spikelet hull cell division[J]. Journal of Integrative Plant Biology, 2020, 62(6):847-864.

[68] Zhou Z Y, Kizil M, Chen Z W, et al. A new approach for selecting best development face ventilation mode based on G1-coefficient of variation method[J]. Journal of Central South University, 2018, 25(10):2462-2471.

[69] Zhu Y X, Tian D Z, Yan F. Effectiveness of entropy weight method in decision-making[J]. Mathematical Problems In Engineering, 2020.

[70] 岑本建.外源褪黑素缓解番茄盐胁迫的机理[D].南京:南京农业大学硕士学位论文,2017:13-34.

[71] 曾杰,曾凡江.NaC1对骆驼刺幼苗生长、生理和离子分布特性的影响[J].科学通报,2008(S2):151-158.

[72] 曾小飚,许光德,周福稳,等.锰胁迫下小白菜幼苗渗透调节物质的动态变化[J].安徽农学通报,2023,29(04):65-67.

[73] 陈军,关欣,范翠枝,等.盐胁迫对番茄种子萌发中多胺形态变化和抗氧化的影响[J].土壤学报,2021,58(06):1598-1609.

[74] 陈文翰,蔡恒江,赵玥茹,等.盐胁迫对翅碱蓬种子萌发及幼苗渗透调节物质的影响[J].安徽农业科学,2018,46(16):65-67.

[75] 杜运领,陈玉珍,钱爱国,等.4种典型滨海植物的耐盐能力[J].应用海洋学学报,2022,41(01):15-24.

[76] 冯盼盼.番茄SlMYB71基因在干旱和盐胁迫响应中的功能研究[D].重庆:重庆大学,2022.

[77] 高山,孙伟峰,李莹,等.水杨酸(SA)和脱落酸(ABA)对盐胁迫玉米幼苗生长的影响[J].分子植物育种,2017,15(10):4159-4164.

[78] 高英,同延安,赵营,等.盐胁迫对玉米发芽和苗期生长的影响[J].中国土壤与肥料,2007(02):30-34.

[79] 胡生荣,高永,武飞,等.盐胁迫对两种无芒雀麦种子萌发的影响[J].植物生态学报,2007(03):513-520.

[80] 胡涛,张鸽香,郑福超,等.植物盐胁迫响应的研究进展[J].分子植物育种,2018,16(9):3006-3015.

[81] 黄嘉慧.番茄SOS基因家族的鉴定与表达模式分析及SOS3-3基因功能验证[D].南京:南京农业大学,2023:15-37.

[82] 李浩龙,周蓉,蒋芳玲,等.醋栗番茄LA2093渐渗系群体苗期耐盐性评价[J].江苏农业学报,2022,38(06):1620-1626.

[83] 李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:119-120、123-124、184-185.

[84] 李闻娟,王利民,齐燕妮,等.亚麻LuWRI1a在旱盐胁迫响应中的功能分析[J/OL].作物学报:1-14.

[85] 李心,武敬也,陈菲儿,等.MsWRKY33转录调控MsACS2影响紫花苜蓿耐盐性的研究[J].草地学报,2024,32(01):54-65.

[86] 李烨,姜景彬,刘洪兰,等.番茄苗期耐盐性相关指标的筛选研究[J].北方园艺,2009(10):84-86.

[87] 李泽琴,李锦涛,邴杰,等.拟南芥APX家族基因在植物生长发育与非生物逆境胁迫响应中的作用分析[J].遗传,2019,41(06):534-549.

[88] 李正丽,张丽,文林宏,等.盐胁迫对两个基因型辣椒生理特性的影响[J].分子植物育种,2022,20(05):1658-1663.

[89] 廉彭彭.盐胁迫对白滨藜和疣苞滨藜种子萌发及早期幼苗生长的影响[D].乌鲁木齐:新疆农业大学,2008.

[90] 梁宝萍,段莹,姜俊,等.高温胁迫对辣椒果实活性氧代谢的影响[J].陕西农业科学,2022,68(8):93-96.

[91] 廖扭.不同番茄种质材料综合性状及耐盐性评价[D].石河子:石河子大学,2022.

[92] 刘丽娥,余国秀,李嘉欣,等.拟南芥PLATZ转录因子基因家族鉴定及生物信息学分析[J/OL].分子植物育种:1-26.

[93] 刘翔,许明,李志文.番茄苗期耐盐性鉴定指标初探[J].北方园艺,2007(03):4-7.

[94] 刘云芬,王薇薇,祖艳侠,等.过氧化氢酶在植物抗逆中的研究进展[J].大麦与谷类科学,2019,36(01):5-8.

[95] 南楠.盐胁迫对水稻粮食安全影响的研究进展[J].粮食问题研究,2022(05):9-11+43.

[96] 钮福祥,华希新,郭小丁,等.甘薯品种抗旱性生理指标及其综合评价初探[J].作物学报,1996(04):392-398.

[97] 彭玉梅,石国亮,崔辉梅.加工番茄幼苗期耐盐生理指标筛选及耐盐性综合评价[J].干旱地区农业研究,2014,32(05):61-66.

[98] 彭玉梅.盐旱对加工番茄芽苗生理特性的影响及耐盐旱指标筛选研究[D].石河子:石河子大学,2015.

[99] 石磊,林雄健,唐滨泉,等.甘薯PLATZ基因家族鉴定及表达分析[J/OL].分子植物育种:1-14.

[100] 孙蓉,杨宇琭,李亚军,等.谷子PLATZ转录因子基因家族的鉴定和分析[J].植物学报,2023,58(04):548-559.

[101] 佟倩.果实发育期盐胁迫对番茄生长发育的影响[J].辽宁农业科学,2024(01):83-85.

[102] 王永娟,周妍,徐明,等.盐胁迫对大豆种子萌发及矿质元素变化的影响[J].生态学杂志,2015,34(06):1565-1571.

[103] 魏嘉,蔡勤安,李源,等.植物对盐碱胁迫响应机制的研究进展[J].山东农业科学,2022,54(04):156-164.

[104] 魏婧,徐畅,李可欣,等.超氧化物歧化酶的研究进展与植物抗逆性[J].植物生理学报,2020,56(12):2571-2584.

[105] 向锐,孙艺萌,梁晨,等.葡萄PLATZ基因家族鉴定及其在种子发育过程中的表达分析[J].果树学报,2023,40(01):13-24.

[106] 肖圣慧.SiPLATZ12调控谷子生长发育和耐盐性的分子机理研究[D].泰安:山东农业大学,2024.

[107] 熊韬,闫淼,王江涛,等.盐碱胁迫对甜瓜幼苗渗透调节物质的影响[J].浙江农业科学,2021,62(12):2430-2434.

[108] 徐世英,王宁,程皓,等.玉米杂交种及其亲本苗期性状对低氮胁迫的动态响应[J].作物杂志,2022(04):90-98.

[109] 薛洋,赵胜杰,何玉敏,等.瓜菜作物耐盐性研究进展[J].中国瓜菜,2023,36(12):1-8.

[110] 杨瑞.拟南芥锌指转录因子PLATZ5在盐胁迫响应中的功能研究[D].泰安:山东农业大学,2018:37-42.

[111] 杨莎,侯林琳,郭峰,等.盐胁迫下外源Ca2+对花生生长发育、生理及产量的影响[J].应用生态学报,2017,28(03):894-900.

[112] 杨小环,马金虎,郭数进,等.种子引发对盐胁迫下高粱种子萌发及幼苗生长的影响[J].中国生态农业学报,2011,19(01):103-109.

[113] 杨洋,王亚娟,阴法庭,等.盐碱胁迫对油菜苗期生理及光合特性的影响[J].北方园艺,2020(15):1-8.

[114] 杨艺杰,聂永心.油橄榄PLATZ基因家族的鉴定及表达模式[J/OL].分子植物育种:1-10.

[115] 姚玉荣,李林,霍建飞,等.交枝顶孢发酵液对根结线虫胁迫下番茄防御酶活性的影响[J].中国瓜菜,2020,33(10):59-63.

[116] 宰学明,张焕仕,王春彦.NaCl胁迫对滨梅Na+、K+含量及其分布的影响[J].金陵科技学院学报,2018,34(01):79-83.

[117] 张飞,梁燕.番茄对盐胁迫的反应及其耐盐性鉴定的研究进展[J].长江蔬菜,2011(04):1-4.

[118] 张建华,刘风荣,陈火英.野生番茄和栽培番茄的耐盐差异性比较研究[J].上海交通大学学报(农业科学版),2006(06):533-536+540.

[119] 张金林,李惠茹,郭姝媛,等.高等植物适应盐逆境研究进展[J].草业学报,2015,24(12):220-236.

[120] 张明菊,张鑫钰,夏启中.番茄对盐和病原菌组合胁迫反应的研究进展[J].黄冈师范学院学报,2022,42(03):71-79.

[121] 张宇涵,李星霖,刘丽君,等.玉米转录因子ZmNAC59调控植物抗盐性[J].西北植物学报,2024,44(03):381-395.

[122] 章华婷.盐胁迫对夏蜡梅幼苗生长的影响及机理研究[D].上海:上海师范大学,2018.

[123] 赵育鹏.盐胁迫条件下竹柳光合作用日变化特征研究[J].安徽农业科学,2024,52(04):87-89.

[124] 周广生,梅方竹,周竹青,等.小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学,2003(11):1378-1382.

中图分类号:

 S6    

开放日期:

 2024-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式