- 无标题文档
查看论文信息

中文题名:

 不同果茶间作类型对茶园土壤特性和茶叶品质成分的影响    

姓名:

 王梦荷    

学号:

 2020804147    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095131    

学科名称:

 农学 - 农业 - 农艺与种业    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 茶叶生产原理与良种繁育    

第一导师姓名:

 房婉萍    

第一导师单位:

 南京农业大学    

第二导师姓名:

 缪惠民    

完成日期:

 2022-04-30    

答辩日期:

 2022-06-01    

外文题名:

 Effect Of Fruit and Tea Intercropping On Soil Properties and Tea Chemical Constiuents In Tea Gardens    

中文关键词:

 茶园 ; 果茶间作 ; 土壤特性 ; 茶叶品质成分    

外文关键词:

 Tea garden ; Fruit-tea intercropping ; Soil nutrient ; Tea chemical constiuents    

中文摘要:

  茶园生态环境对茶树生长发育起到非常重要的作用,在我国茶产业发展的过程中,由于规模化标准化茶园建设的需要,在一定时期内,茶园普遍采用了单一的种植模式。然而,单作茶园往往存在生物多样性低、土壤肥力不足等问题,既制约了茶叶产量和质量的提高,又影响茶园生产潜力的发挥。相较单作茶园,合理的果茶间作能够保护茶园生态多功能性,减少化学肥料的施用,同时达到提高茶叶产量和品质的效果。苏州洞庭山是我国典型的果茶间作茶区,间作面积占该地区茶园总面积的90%左右。本论文试验以江苏省苏州吴中区东山镇茶树育种基地的四种果茶间作类型茶园(枇杷-茶树间作茶园、杨梅-茶树间作茶园、柑橘-茶树间作茶园、板栗-茶树间作茶园)和单作茶园为研究对象。通过测定茶园土壤特性和茶叶品质成分等指标,探究不同间作类型茶园土壤肥力特性、团聚体特性及茶叶品质成分的变化,旨在为果茶间作类型的合理选择提供理论依据。本试验主要研究内容及结果如下:

  1. 通过采集不同时节(春季和秋季)土壤样本,分析不同类型茶园土壤肥力特性发现:春季枇杷-茶树间作茶园土壤pH值最低,秋季柑橘-茶树间作茶园土壤pH值最低,间作茶园土壤的pH值可能与所间作茶树的果树成熟期有关。果茶间作后,土壤养分含量得到了改善,春季间作茶园土壤铵态氮、全碳、全氮含量均显著高于单作茶园,除板栗-茶树间作茶园外,间作茶园土壤的全磷、速效磷含量均显著增高;秋季间作茶园土壤铵态氮含量均显著高于单作茶园,除板栗-茶树间作茶园外,间作茶园土壤的全磷、速效磷含量均显著提高。间作茶园土壤胞外酶活性在春、秋两季也得到不同程度的改善,春季枇杷-茶树间作茶园碳、氮、磷循环相关胞外酶活性均显著高于其它茶园,秋季柑橘-茶树间作茶园碳、氮、磷循环相关胞外酶活性均显著高于其它茶园,间作果树落果可能提高了土壤胞外酶活性。通过主成分分析发现,枇杷-茶树间作茶园土壤肥力最佳,柑橘-茶树间作茶园次之。
  2. 通过采集不同时节(春季和秋季)土壤样本,分析不同类型茶园土壤的团聚体分布特征及各粒级团聚体速效养分含量、胞外酶活性特征,发现果茶间作均改善了土壤团聚体分布特征,提高了土壤的稳定性,其中,枇杷、杨梅与茶树间作对茶园土壤结构的改善最为明显。同时,速效养分含量在各团聚体中分布存在一定规律性,如铵态氮、速效磷均在小团聚体中含量最高。此外,除秋季板栗-茶树间作茶园<0.25 mm团聚体中碳循环相关酶活性较单作茶园没有显著差异外,果茶间作后,土壤中碳、氮、磷循环相关胞外酶的活性均在<0.25 mm团聚体中高于单作茶园。
  3. 通过采集不同时节(春季和秋季)茶叶样本,分析不同类型茶园的茶叶内含物质特征,发现果茶间作后能够增加春、秋季绿茶的适制性。果茶间作后,春季茶叶氨基酸含量均显著增高,儿茶素含量、酚氨比均显著降低,除杨梅-茶树间作茶园茶多酚含量提升外,其它三种间作茶园茶多酚含量均显著降低;秋季间作茶园茶叶基酸含量增加,酚氨比值降低。

  本论文研究结果表明,果茶间作可以不同程度的改善土壤物理、化学和生物学特征,提高茶叶的品质成分,促进茶园的可持续发展。

外文摘要:

  The ecological environment of tea gardens plays a very important role in the growth and development of tea trees. In the process of the development of my country's tea industry, due to the need for the construction of large-scale and standardized tea gardens, a single planting model is generally adopted in tea gardens within a certain period of time. However, monoculture tea gardens often have problems such as low biodiversity and insufficient soil fertility, which not only restrict the improvement of tea yield and quality, but also affect the production potential of tea gardens. Compared with single-cropping tea gardens, reasonable fruit-tea intercropping can protect the ecological versatility of tea gardens, reduce the application of chemical fertilizers, and at the same time achieve the effect of improving tea yield and quality. Suzhou Dongting Mountain is a typical fruit tea intercropping area in my country, and the intercropping area accounts for about 90% of the total area of tea gardens in this area. In this paper, four types of fruit-tea intercropping tea gardens (loquat-tea tree intercropping tea garden, bayberry-tea tree intercropping tea garden, citrus-tea tree intercropping tea garden, chestnut-tea tree intercropping tea garden) and single tea tree intercropping tea gardens in Dongshan Town, Wuzhong District, Suzhou, Jiangsu Province were tested. The tea garden is the research object. By measuring the soil properties of tea gardens and the constituents of tea leaves, the soil fertility properties, aggregate properties and tea constituents of different intercropping types of tea gardens were explored, in order to provide a theoretical basis for the rational selection of fruit-tea intercropping modes. The main research contents and results of this experiment are as follows:

(1) By collecting soil samples in different seasons (spring and autumn), and analyzing the soil chemical and biological characteristics of different types of tea gardens, it was found that the soil pH value of tea gardens with loquat-tea intercropping in spring was the lowest, that of citrus-tea tree intercropping tea gardens in autumn was the lowest, and the intercropping tea gardens had the lowest pH value. The pH value of the tea garden soil may be related to the maturity period of the fruit trees of the intercropped tea trees. After fruit-tea intercropping, soil nutrient content was improved. The contents of ammonium nitrogen, total carbon and total nitrogen in the soil of intercropping tea gardens in spring were significantly higher than those of single-cropping tea gardens. Except for chestnut-tea tree intercropping tea gardens, the total phosphorus, quick-acting soils of intercropping tea gardens were significantly higher than those of single-cropping tea gardens. Phosphorus content was significantly increased; the content of ammonium nitrogen in the soil of intercropping tea gardens in autumn was significantly higher than that of single-cropping tea gardens. Except for the chestnut-tea intercropping tea gardens, the total phosphorus and available phosphorus contents of the intercropping tea garden soils were significantly increased. The activities of soil extracellular enzymes in intercropping tea gardens were also improved to different degrees in spring and autumn. The activities of carbon, nitrogen and phosphorus cycle-related extracellular enzymes in loquat-tea intercropping tea gardens in spring were significantly higher than those in other tea gardens. In autumn, citrus-tea tree intercropping tea gardens The activities of extracellular enzymes related to carbon, nitrogen and phosphorus cycles were significantly higher than those of other tea gardens. Fruit drop from intercropping fruit trees may increase the activities of extracellular enzymes in soil. Through principal component analysis, it was found that the soil fertility of the loquat-tea intercropping tea garden was the best, followed by the citrus-tea intercropping tea garden.

(2) By collecting soil samples in different seasons (spring and autumn), the aggregate distribution characteristics of different types of tea garden soils, the content of available nutrients and extracellular enzyme activities in aggregates of each particle size were analyzed, and it was found that both fruit and tea intercropping improved soil aggregation. The soil structure of tea garden was improved most obviously by intercropping of loquat, bayberry and tea trees. At the same time, there is a certain regularity in the distribution of available nutrients in the aggregates, such as ammonium nitrogen and available phosphorus, which are the highest in the small aggregates. In addition, the activities of carbon cycle-related enzymes in the aggregates of less than 0.25 mm in the chestnut-tea intercropping tea garden in autumn were not significantly different from those in the single-cropping tea garden. Less than 0.25 mm agglomerates were higher than those in single-cropped tea gardens.

(3)By collecting tea samples in different seasons (spring and autumn), and analyzing the characteristics of the substances contained in tea leaves of different types of tea gardens, it was found that fruit tea intercropping can increase the suitability of green tea in spring and autumn. After fruit-tea intercropping, the amino acid content of tea leaves in spring was significantly increased, and the catechin content and phenol-to-ammonia ratio were significantly decreased. Except for the increase of the polyphenol content of the bayberry-tea tree intercropping tea garden, the tea polyphenol content of the other three intercropping tea gardens was significantly reduced. The content of base acid in tea leaves increased and the ratio of phenol to ammonia decreased in autumn intercropping tea garden.

  The results of this paper show that the fruit-tea intercropping mode can improve soil physical, chemical and biological characteristics to different degrees, and increase the content of tea, and promote the sustainable development of tea gardens.

参考文献:

[1]乔冰洁, 杨小华, 吴静, 等. 马铃薯-玉米间作模式研究进展[J]. 中国马铃薯, 2021,35(05):463-468.

[2]刘振洋, 柏文恋, 黄少欣, 等. 间作对不同氮水平下小麦产量优势形成的影响[J]. 华北农学报, 2020,35(05):185-194.

[3]刘蕊. 西北地区豆科绿肥间作小麦、玉米时的生物固氮及氮素转移特征[D]. 青海:青海大学, 2021.

[4]王晓维, 杨文亭, 缪建群, 等. 玉米-大豆间作和施氮对玉米产量及农艺性状的影响[J]. 生态学报, 2014,34(18):5275-5282.

[5]范祎玮, 信秀丽, 钟新月, 等. 玉米豆科覆盖作物间作对潮土酶活性和真菌群落特征的影响[J]. 土壤, 2021, 53(06): 1236-1243.

[6]谢岷, 罗军, 张永平, 等. 基于中、高分辨率遥感影像的县域尺度马铃薯和向日葵种植面积监测[J]. 内蒙古农业大学学报(自然科学版), 2019, 40(05): 19-25.

[7]吴家庆, 马琳娜, 张贺, 等. 大蒜黄瓜轮作控制黄瓜疫病[J]. 农业知识, 2022, 73(02): 29-30.

[8]欧善生, 苏桂花, 谢恩倍, 等. 广西金银花主要病虫及天敌昆虫消长规律研究[J]. 安徽农业科学, 2011, (15): 8995-8997.

[9]杨丰. 贵州不同土地利用方式对土壤性质的影响[D]. 贵州:贵州大学, 2016.

[10]吴志丹, 江福英, 陈玉真, 等. 安溪铁观音茶园化肥减施增效技术模式研究[J]. 茶叶学报, 2021, 62(04): 179-184.

[11]沈亚骏. 茶林间作与茶园生态维护研究[J]. 福建茶叶, 2018, 40(01): 20-21.

[12]王正刚, 邱茂慈. 桑茶间作套种试验简报[J]. 北方蚕业, 2017, 38(01): 12-14.

[13]杨清平, 毛清黎. 猕猴桃与茶间作对茶园生态环境及夏秋茶产量和品质的影响[J]. 湖北农业科学, 2013, 52(11): 2566-2568.

[14]侯剑, 刘波, 尚晓阳, 等. 日照茶区‘黄金芽’幼苗松茶间作的效应研究Ⅱ. ‘黄金芽’茶苗生长状况及新梢叶片生化成分[J]. 山东农业科学, 2020, 52(04): 38-47.

[15]张怡, 杨静, 李海燕. 乔木林间种茶的生态与经济效益分析[J]. 农业开发与装备, 2019, 28(06): 159-160.

[16]王峰, 孙琴, 曹枝玉, 等. 浅析梅茶间作景观的生态价值及文化内涵-以南京梅花山为例[J]. 中国园林, 2020, 36(S1): 93-95.

[17]方丽, 王涛, 柏德林, 等 .适宜茶园种植的生态绿肥-鼠茅草[J]. 中国茶叶, 2021, 43(04): 59-61.

[18]田永辉, 梁远发, 王国华, 等. 人工生态茶园生态效应研究[J]. 茶叶科学,2021,38(02): 170-174.

[19]丁立孝, 梁青, 侯可雷, 等.林茶间作对山林防火及生物多样性的影响[J]. 山东林业科技, 2011, 41(04): 70-71.

[20]韦持章, 农玉琴, 陈远权, 等.茶树/大豆间作对根际土壤微生物群落及酶活性的影响[J]. 西北农业学报, 2018, 27(04): 537-544.

[21]郝海平, 白红彤, 夏菲, 等 .茶-山苍子间作对茶园土壤微生物群落结构的影响[J]. 中国农业科学, 2021, 54(18): 3959-3969.

[22]许燕, 孙云南, 肖星, 等. 不同间作物对茶树新梢营养元素的影响[J]. 南方农业学报, 2012, 43(08): 1189-1192.

[23]陆泰良, 万保雄, 林朝赐, 等. 茶园间作桃树对夏茶绿茶品质的影响[J]. 南方园艺, 2021, 32(04): 75-79.

[24]巩雪峰, 余有本, 肖斌, 等. 不同栽培模式对茶园生态环境及茶叶品质的影响[J]. 西北植物学报, 2008, 28(12): 2485-2491.

[25]叶火香, 韩善捷, 韩宝瑜. 茶园间作柑桔杨梅和吊瓜对害虫和天敌个体数的影响[J]. 安徽农业大学学报, 2016, 43(01): 6-10.

[26]叶火香, 穆丹, 韩宝瑜. 茶园间作柑桔杨梅吊瓜对茶蚜种群数空特征影响和差异[J]. 茶叶科学技术, 2010, 51(02): 7-12.

[27]Zhang Z, Luo Z, Gao Y, et al. Volatiles from non‐host aromatic plants repel tea green leafhopper Empoasca vitis[J]. Entomologia Experimentalis Et Applicata, 2015, 153(2):156-169.

[28]张正群, 孙晓玲, 罗宗秀, 等. 芳香植物气味及提取液对茶尺蠖行为的影响[J]. 植物保护学报, 2012, 39(06): 541-548.

[29]董明辉, 顾俊荣, 刘腾飞, 等. 苏州洞庭山不同茶果间作茶园土壤养分的比较分析[J]. 中国茶叶, 2015, 37(05): 19-20.

[30]何青元, 罗琼仙, 王平盛. 无性系良种有机生态茶园建立研究[J]. 现代农业科技, 2010, 39(01): 36-37+41.

[31]王广铭. 信阳茶区栗茶间作模式对生态环境的影响[J]. 湖北农业科学, 2012, 51(11): 2207-2211.

[32]陈强, 黄碧玉. 生态茶园建设与茶叶绿色食品开发[J]. 福建茶叶, 2001, 23(01):33-34.

[33]章铁, 刘秀清, 孙晓莉. 栗茶间作模式对土壤酶活性和土壤养分的影响[J]. 中国农学通报, 2008,(04): 265-268.

[34]刘秀清. 栗茶间作模式对土壤酶活性和土壤养分含量的影响[D]. 安徽:安徽农业大学, 2008.

[35]万云, 刘桂华, 周敏. 栗茶间作茶园主要生态因子特性的研究[J]. 经济林研究, 2009, 27(03): 57-60.

[36]魏国雄. 果茶人工群落的生态效应及经济效益评价[J]. 生态学杂志, 1994, 13(01): 13-16.

[37]张国芹, 孙灵湘, 顾俊荣, 等. 肥料运筹对不同茶果间作模式碧螺春茶叶产量与品质的影响[J]. 中国农学通报, 2018, 34(18): 59-64.

[38]姜海燕. 大兴安岭兴安落叶松林土壤微生物与土壤酶活性研究[D]. 内蒙古:内蒙古农业大学, 2010.

[39]田亚玲, 曹福亮. 银杏-茶间作模式对土壤养分和酶活性的影响[J]. 林业科技开发, 2012, 26(05): 41-45.

[40]Lal R, Lal L, Lal S. Physical management of soils of the tropics: Priorities for the 21st century[J]. Soil Science, 2000, 165(3): 191-207.

[41]Bissonnais YL. Aggregate stability and assessment of soil crustability and erodibility: II. Application to humic loamy soils with various organic carbon contents[J]. European Journal of Soil Science, 1997, 48(1): 39-48.

[42]张晓磊. 果茶间作模式下茶园环境、茶树生长及茶叶品质的特征研究[D]. 南京:南京农业大学, 2019.

[43]赵哲萱, 冉成, 孟祥宇, 等.秸秆还田对苏打盐碱稻区土壤团聚体分布及有机碳含量的影响[J]. 吉林农业大学学报, 2020, 20(02): 1-14.

[44]姜灿烂, 何园球, 刘晓利, 等. 长期施用有机肥对旱地红壤团聚体结构与稳定性的影响[J]. 土壤学报, 2010, 47(04): 715-722.

[45]郑学博, 樊剑波, 周静. 沼液还田对旱地红壤有机质及团聚体特征的影响[J]. 中国农业科学, 2015, 48(16): 3201-3210.

[46]梁玉衡. 论土壤团粒结构与土壤肥力的关系[J]. 土壤通报, 1983, 27(01): 30-32.

[47]崔芯蕊, 张嘉良, 王云琦, 等 .甘肃小陇山林区不同林分对土壤团聚体稳定性的影响[J]. 水土保持学报, 2021, 35(04): 275-281.

[48]王婷, 王强学, 李永梅, 等. 玉米大豆间作对作物根系及土壤团聚体稳定性的影响[J]. 云南农业大学学报(自然科学), 2021, 36(03): 507-515.

[49]Monreal CM, Schulten HR, Kodama H. Age, turnover and molecular diversity of soil organic matter in aggregates of a Gleysol[J]. Canadian Journal of Soil Science, 1997, 77(03): 379-388.

[50]Bossuyt H, Six J, Hendrix P.Aggregate-Protected Carbon in No-tillage and Conventional Tillage Agroecosystems Using Carbon-14 Labeled Plant Residue[J]. Soil Science Society of America Journal, 2002, 66(06): 1965.

[51]冉隆俊, 王红艳, 耿广东, 等 .平菇与蔬菜间作对土壤营养、微生物数量和酶活性的影响[J]. 农技服务, 2021, 38(12): 14-17.

[52]李金婷, 韦锦坚, 韦持章, 等. 茶树/大豆间作体系氮素对茶叶品质成分及其土壤养分的影响[J]. 华北农学报, 2021, 36(S1): 282-288.

[53]李艳春, 林忠宁, 陆烝, 等. 茶园间作灵芝对土壤细菌多样性和群落结构的影响[J]. 福建农业学报, 2019, 34(06): 690-696.

[54]王婷, 李永梅, 王自林, 等. 间作对玉米根系分泌物及团聚体稳定性的影响[J]. 水土保持学报, 2018, 32(03): 185-190.

[55]杨丰. 贵州不同土地利用方式对土壤性质的影响[D]. 贵州:贵州大学, 2016.

[56]李孝梅, 李永梅, 乌达木, 等. 玉米间作大豆、萝卜对红壤不同粒径水稳性团聚体碳氮分布的影响[J]. 中国土壤与肥料, 2022, 59(01): 104-111.

[57]王家明, 刘桂华, 周敏. 栗茶混交林地水分涵蓄潜力的研究[J]. 安徽农业大学学报, 2009, 36(01): 96-99.

[58]童启庆. 茶树栽培学(第三版) [M]. 北京:中国农业出版社, 1996.75-79.

[59]陈昌辉, 王媛, 唐茜, 等. 梨茶间作茶园生态效应及效益分析[J]. 西南农业学报, 2011, 24(04): 1446-1449.

[60]顾俊荣, 张丽, 刘腾飞, 等. 不同茶果间作下洞庭碧螺春茶叶中矿质元素与茶多酚等有效成分的分析[J]. 江苏农业科学, 2015, 43(12): 325-328.

[61]杨洁, 周毅, 刘乃辉, 等. 栗茶间作对茶园生态环境及茶叶品质的影响[J]. 信阳师范学院学报(自然科学版), 2012, 25(01): 67-71.

[62]刘相东, 毕彩虹, 谭建平, 等. 栗茶间作与覆草对茶树生长环境和茶叶品质的影响[J]. 安徽农业科学, 2016, 44(34): 26-27.

[63]朱海燕, 刘忠德, 王长荣, 等. 茶柿间作系统中茶树根际微环境的研究[J]. 西南师范大学学报(自然科学版), 2005, 49(04): 715-718.

[64]申加升, 杨吉华, 王均密, 等. 银杏与茶树间作技术[J]. 山东林业科技, 2002, 32(05): 30-31.

[65]刘瑜, 疏再发, 邵静娜, 等. 茶园间作对病虫害防控效应与作用机制研究进展[J]. 茶叶通讯, 2021, 48(01): 7-14.

[66]韩宝瑜, 董文霞, 崔林. 间作对茶园害虫的控制效果[C]. 中国茶叶学会成立四十周年庆祝大会暨2004年学术年会论文集, 2004: 131-139.

[67]王福楷,张孟婷,翟杨,青游,李晨芹,康晓慧,张洪.不同间作模式对高山茶园主要病虫害防控[A].陈万全.植物健康与病虫害防控[C].:中国植物保护学会,2020:192.

[68]张小琴, 赵华富, 姜艳艳, 等. 不同植茶年限茶园土壤有效营养元素分析[J]. 热带作物学报, 2017, 38(12): 2226-2231.

[69]于子涵, 郑子成, 王永东, 等. 川西低山丘陵区植茶土壤团聚体矿质氮分布特征[J]. 水土保持学报, 2022, 36(01): 263-267.

[70]鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社出, 2000: 85-100.

[71]王巧环, 任玉芬, 孟龄, 等. 元素分析仪同时测定土壤中全氮和有机碳[J]. 分析试验室, 2013, 32(10): 41-45.

[72]姚宏佳, 王宝荣, 安韶山, 等. 黄土高原生物结皮形成过程中土壤胞外酶活性及其化学计量变化特征[J]. 干旱区研究, 2022, 39(02): 456-468.

[73]Haggar J, Tanner E, Beer J, et al. Nitrogen dynamics of tropical agroforestry and annual cropping systems[J]. Soil Biology and Biochemistry, 1993, 25(10): 1363-1378.

[74]田永辉. 人工生态茶园有机质和氮磷钾动态变化研究[J]. 茶叶, 2001, 29(03): 27-30.

[75]周文发. 茶桐间作改善沿江丘陵茶园生态环境[J]. 茶业通报, 2001, 45(02): 33.

[76]肖润林, 彭晚霞, 宋同清, 等. 稻草覆盖对红壤丘陵茶园的生态调控效应[J]. 生态学杂志, 2006, 25(05): 507-511.

[77]Aber, JD, Melillo, et al. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems[J]. Canadian journal of botany-revue canadienne de botanique, 1990, 68(4): 2201-2208.

[78]王丽娟, 朱兴正, 毛加梅, 等. 不同遮荫树种对茶园土壤和茶叶品质的影响[J]. 中南林业科技大学学报, 2011, 31(08): 66-73.

[79]Scott NA, Dan B. Foliage litter quality and annual net N mineralization: comparison across North American forest sites[J]. Oecologia, 1997, 111(02): 151-159.

[80]Mcmahon S, Williams MA , Bottomley P, et al. Dynamics of microbial communities during decomposition of carbon‐13 labeled ryegrass fractions in soil[J]. Soil Science Society of America Journal, 2005, 69(04): 1238-1247.

[81]陈法霖, 郑华, 欧阳志云, 等. 土壤微生物群落结构对凋落物组成变化的响应[J]. 土壤学报, 2011, 48(03): 603-611.

[82]Dinakaran J, Krishnayya N. Variations in soil organic carbon and litter decomposition across different tropical vegetal covers[J]. Current Science, 2010, 99(08):1051.

[83]戚德才. 凋落物分解过程中土壤微生物群落的变化[J]. 河南农业, 2016, 27(11): 147.

[84]Ding Z, Jia S, Wang Y Xiao J, et al. Phosphate stresses affect ionome and metabolome in tea plants[J]. Plant Physiology and Biochemistry, 2017, 120(01): 30-39.

[85]Xiang F, Li W, Liu H Y, et al. Characteristics of photosynthetic and chlorophyll fluorescence of tea varieties under different nitrogen application levels[J]. Acta Botanica Boreali-Occidentalia Sinica, 2018, 38(06): 1138-1145.

[86]Chen R, Senbayram M, Blagodatsky S, et al. Soil C and N availability determine the priming effect: microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology, 2014, 20(07): 2356-2367.

[87]Elliott E T. Aggregate structure and carbon nitrogen and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50(03): 627-633.

[88]Shi S, Richardson A E, Maureen O, et al. Effects of selected root exudate components on soil bacterial communities[J]. Fems Microbiology Ecology, 2011,77(03): 600-610.

[89]杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 44(20):1896-1899.

[90]窦森, 李凯, 关松. 土壤团聚体中有机质研究进展[J]. 土壤学报, 2011, 48(02): 412-418.

[91]Six J, Elliott E T, Paustian K, et al. Aggregation and Soil Organic Matter Accumulation in Cultivated and Native Grassland Soils[J]. Soil Science Society of America Journal, 1998, 62(05): 1153-1182.

[92]Gould I J, Quinton J N, Weigelt A, et al. Plant diversity and root traits benefit physical properties key to soil function in grasslands[J]. Ecology Letters, 2016, 19(09): 1140-1149.

[93]赵富王, 王宁, 苏雪萌, 等. 黄土丘陵区主要植物根系对土壤有机质和团聚体的影响[J]. 水土保持学报, 2019, 33(05): 105-113.

[94]宋日, 刘利, 马丽艳, 等. 作物根系分泌物对土壤团聚体大小及其稳定性的影响[J]. 南京农业大学学报, 2009, 32(03): 93-97.

[95]MD Bongiovanni, Lobartini JC . Particulate organic matter, carbohydrate, humic acid contents in soil macro- and microaggregates as affected by cultivation[J]. Geoderma, 2006, 136(3-4): 660-665.

[96]关连珠, 张伯泉, 颜丽. 不同肥力黑土、棕壤微团聚体组成及其胶结物质的研究[J]. 土壤学报, 1991, 44(03): 260-267.

[97]夏梓泰, 程伟威, 赵吉霞, 等. 不同种植模式对玉米根系及土壤团聚体稳定性的影响[J]. 生态环境学报, 2021, 30(12): 2331-2338.

[98]Norby RJ, Ledford J, Reilly CD, et al. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment[J]. Proceedings of the National Academy of Sciences, 2004, 101(26): 9689-9693.

[99]郑子成, 何淑勤, 王永东, 等. 不同土地利用方式下土壤团聚体中养分的分布特征[J]. 水土保持学报, 2010, 24(03): 170-174.

[100]Besnard E, Chenu CB, Alesdent J, et al. Fate of particulate organic matter in soil aggregates during cultivation[J]. European Journal of Soil Science, 1996, 47(04): 495-503.

[101]王晟强, 郑子成, 李廷轩. 植茶年限对土壤团聚体氮、磷、钾含量变化的影响[J]. 植物营养与肥料学报, 2013, 19(06): 1393-1402.

[102]李新悦, 李冰, 莫太相, 等. 长期秸秆还田对水稻土团聚体及氮磷钾分配的影响[J]. 应用生态学报, 2021, 32(09): 3257-3266.

[103]徐阳春, 沈其荣. 长期施用不同有机肥对土壤各粒级复合体中C、N、P含量与分配的影响[J]. 中国农业科学, 2000, 41(05): 65-71.

[104]胡宁, 马志敏, 蓝家程, 等. 石漠化山地植被恢复过程土壤团聚体氮分布及与氮素矿化关系研究[J]. 环境科学, 2015, 36(09): 3411-3421.

[105]于子涵, 郑子成, 王永东, 等. 川西低山丘陵区植茶土壤团聚体矿质氮分布特征[J]. 水土保持学报, 2022, 36(01): 263-267.

[106]Jiang X, Bol R , Willbold S , et al. Speciation and distribution of P associated with Fe and Al oxides in aggregate-sized fraction of an arable soil[J]. Biogeosciences Discussions, 2015, 12(13): 9879-9903.

[107egates in coastal saline-alkaline paddy soil with organic fertilizer application[J]. Journal of Soils and Sediments, 2021(01): 28-31.

[108]吴雯, 郑子成, 李廷轩. 退耕植茶地土壤团聚体中有机磷组分分布特征[J]. 山地学报, 2017, 35(04):459-468.

[109]宋莉群, 王义东, 李冬初, 等. 长期退耕对红壤团聚体碳氮磷生态化学计量特征的影响[J]. 生态学杂志, 2019, 38(06): 1707-1715.

[110]Hinds A, Lowe LE. Distribution of carbon, nitrogen, sulphur and phosphorus in particle-size separates from gleysolic soils[J]. Canadian Journal of Soil Science, 1980, 60(04): 783-786.

[111]周颖, 李朝桢, 郑听, 等. 贵州野生白及土壤物理性质与酶活性及相关性特征[J]. 西南农业学报, 2022, 35(02): 336-342.

[112]隋夕然, 吴丽芳, 王妍, 等. 滇中岩溶高原不同石漠化程度土壤团聚体养分及酶活性特征[J]. 浙江农林大学学报, 2022, 39(01):115-126.

[113]王锐. 贺兰山东麓土壤特征及其与酿酒葡萄生长品质关系研究[D]. 西安:西北农林科技大学, 2016.

[114]纪鹏彬, 李新生, 燕飞, 等.茶叶适制性研究进展[J]. 食品研究与开发, 2021, 42(13):219-224.

[115]施兆鹏. 茶叶审评与检验[M]. 第四版. 北京: 中国农业出版社, 2010:72-92

[116]陆锦时, 魏芳华, 李春华. 茶树品种主要化学成份与品质关系的研究[J]. 西南农业学报, 1994, 13(S1): 1-5.

[117]杨春, 罗军武, 陈涛林, 等. 高咖啡碱含量的特异茶树种质资源的筛选[J]. 湖南农业科学, 2013, 43(17): 9-12.

[118]Bo W , Shuang R A , Yz C, et al. Effects of geographic locations and topographical factors on secondary metabolites distribution in green tea at a regional scale[J]. Food Control, 2020, 110(01): 95–104.

[119]Wan Y, Liu G, Zhou M. Study on major ecological factors of chestnut-tea intercrop garden[J]. Nonwood Forest Res, 2009, 27(03): 57-60.

[120]Wu T,Zou R ,Pu D , et al. Non-targeted and targeted metabolomics profiling of tea plants (Camellia sinensis) in response to its intercropping with Chinese chestnut[J]. BMC Plant Biology, 2021, 21(01): 55-72.

[121]石怀绶. 栗茶混交栽培模式研究[J]. 林业实用技术, 2004, 3(11): 6-7.

[122]王慧敏. 间作芳香植物对茶园土壤肥力状况的影响[D]. 山东:山东农业大学, 2016.

[123]刘腾飞, 董明辉, 张丽, 等. 不同间作模式对茶园土壤和茶叶营养品质的影响[J]. 食品科学技术学报, 2017, 26(06): 67-76.

[124]Sedaghathoor S, Janatpoor G.Study on effect of soybean and tea intercropping on yield and components of soybean and tea[J]. Journal of Agricultural and Biological Science, 2012, 7(09): 664-671.

[125]谢克孝, 薛志慧, 陈志丹. 茶园间作不同植物对茶叶产量和品质及茶园土壤的影响[J].茶叶通讯, 2021, 48(03): 422-429.

[126]李金婷,韦锦坚,韦持章, 等. 茶树/大豆间作体系氮素对茶叶品质成分及其土壤养分的影响[J]. 华北农学报, 2021, 36(S1):282-288.

[127]田甜,韦锦坚,赵德恩, 等. 氮磷钾配施对茶叶品质的影响[J]. 热带农业科学, 2018,38(04):36-45.

[128]李相楹, 张珍明, 张清海, 等. 茶园土壤氮磷钾与茶叶品质关系研究进展[J]. 广东农业科学, 2014,41(23):56-60.

中图分类号:

 S571.1    

开放日期:

 2022-06-16    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式