- 无标题文档
查看论文信息

中文题名:

 蔗糖在黄瓜/南瓜嫁接亲和性反应中的作用    

姓名:

 徐雅各    

学号:

 2019804186    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095114    

学科名称:

 设施农业    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 农艺与种业(专业学位)    

研究方向:

 设施作物生理生态    

第一导师姓名:

 孙锦    

第一导师单位:

 南京农业大学    

完成日期:

 2021-04-14    

答辩日期:

 2021-05-30    

外文题名:

 Effect of Sucrose on Affinity Reaction of Cucumber/Pumpkin Grafting    

中文关键词:

 黄瓜 ; 南瓜 ; 嫁接亲和性 ; 可溶性糖 ; 蔗糖    

外文关键词:

 Cucumber ; Pumpkin ; Grafting affinity ; Soluble sugar ; Sucrose    

中文摘要:

黄瓜(Cucumis sativus L.)是我国设施栽培的主要蔬菜作物之一,其根系弱,耐盐性较弱,抗寒性差,生产中多依靠嫁接技术来完成黄瓜的优质栽培。黄瓜嫁接目标实现的前提是砧木与接穗的亲和性,嫁接不亲和或亲和性弱,嫁接苗会出现无法成活或成活率极低的现象,即使成活,也会表现出生长不良或者无法生长的现象,给生产造成极大损失。目前,国内外对于嫁接亲和性的研究多集中于果树,在蔬菜上的研究报道较少。本研究以2个亲和性差异较大的南瓜(Cucurbita moschata Duch)品种‘黑籽南瓜(亲和砧木)’和 ‘东洋神力(不亲和砧木)’为砧木,以3个生长势不同的黄瓜品种‘神鲁春四(长势强)’、‘翠绿黄瓜(长势弱)’和‘亮优绿箭102(长势中等)’为接穗,分析砧木/接穗嫁接组合的亲和性,通过测定砧木和接穗茎切断面渗出液中可溶性糖、蔗糖含量和嫁接愈合面电阻值、嫁接成活率及蔗糖合成关键酶活性,研究砧木和接穗茎切断面渗出液化学成分与嫁接亲和性的关系,进一步探讨外源蔗糖对嫁接亲和性的影响,试图寻求一种提高黄瓜/南瓜嫁接亲和性的方法。主要研究结果如下:

1. 砧木品种是黄瓜/南瓜嫁接亲和性的决定性因素。以2个亲和性差异较大的南瓜品种‘黑籽南瓜(亲和砧木)’和‘东洋神力(不亲和砧木)’为砧木,以3个生长势不同的黄瓜品种‘神鲁春四(长势强)’、‘翠绿黄瓜(长势弱)’和‘亮优绿箭102(长势中等)’为接穗,组成6种嫁接组合,通过分析嫁接苗成活率、愈合面电阻变化,发现砧/穗组合对嫁接亲和性的影响主要取决于砧木品种,而与接穗品种关系较小。

2. 砧穗间茎切断面渗出液中蔗糖含量差值与亲和性呈负相关关系。砧穗间可溶性糖含量差值对嫁接亲和性的影响最为重要,嫁接亲和性与砧穗间茎切断面渗出液中可溶性糖含量差值绝对值呈显著负相关关系,当砧穗间茎切断面渗出液中蔗糖含量越接近时,嫁接成活率越高,亲和性越强,反之则不然;而砧穗间pH值、EC值、游离氨基酸含量、可溶性蛋白含量、有机酸含量差值绝对值与嫁接成活率并无显著相关关系。

3. 南瓜砧木茎部蔗糖合成能力通过影响渗出液中蔗糖含量进而决定嫁接苗亲和性。为探讨造成2个南瓜砧木品种茎切断面渗出液中蔗糖含量差异显著的原因,对南瓜砧木茎部蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)、酸性转化酶(AI)和中性转化酶(NI)4种蔗糖代谢关键酶活性及其编码基因表达水平进行分析。结果表明:不亲和砧木‘东洋神力’的SPS、SS及NI活性均极显著高于亲和砧木‘黑籽南瓜’,而AI活性极显著低于后者;同样,SPS编码基因Cp4.1LG04g09100、SS编码基因Cp4.1LG04g11350及NI编码基因Cp4.1LG04g05130在砧木‘东洋神力’中的相对转录水平也极显著高于砧木‘黑籽南瓜’,而SS编码基因Cp4.1LG18g02810在砧木‘东洋神力’中的相对转录水平极显著低于砧木‘黑籽南瓜’。这些结果表明,由于不亲和砧木‘东洋神力’蔗糖合成能力极显著高于亲和砧木‘黑籽南瓜’,导致茎部蔗糖含量积累,进一步引起砧木和接穗茎切断面渗出液中的蔗糖含量差值较大,最终引起嫁接不亲和。

4. 外源蔗糖处理可明显提高黄瓜/南瓜嫁接亲和性。为了证实砧木与接穗茎切断面渗出液中蔗糖含量差值与亲和性呈负相关关系的结论,通过外源蔗糖喷施接穗植株,发现接穗茎切断面渗出液中蔗糖含量显著升高,砧木和接穗的蔗糖含量差值减小,嫁接成活率明显提高。通过嫁接苗愈合面电阻的连续测定发现,5 ‰和10 ‰浓度蔗糖外源喷施处理后,嫁接愈合面电阻变化情况与嫁接亲和植株相同。这些结果表明,通过外源蔗糖处理接穗植株,缩小砧木和接穗的茎切断面渗出液中蔗糖含量差值,是一种提高黄瓜/南瓜嫁接苗亲和性的有效方法。

综上所述,本研究发现砧/穗组合对嫁接亲和性的影响主要取决于砧木品种,而与接穗品种关系较小;揭示了蔗糖在黄瓜/南瓜嫁接亲和性反应中的作用,即砧穗间茎切断面渗出液中蔗糖含量越接近,嫁接成活率越高,亲和性越强;接穗喷施5 ‰和10 ‰浓度的蔗糖溶液,可以显著提高接穗茎切断面渗出液中蔗糖含量,减小砧穗间的蔗糖含量差值,显著提高嫁接成活率和亲和性。本研究为提高黄瓜/南瓜嫁接亲和性提供了一种行之有效的方法。

外文摘要:

Cucumber (Cucumis sativus L.) is one of the most important vegetable crops cultivated in China. Its root system is weak, salt tolerance is weak, cold resistance is poor, and grafting technique is often used to achieve high quality cucumber cultivation. The premise of realizing the goal of cucumber grafting is the affinity between stock and scion. If the grafting is not compatible or weak, the grafted seedling will fail to survive or the survival rate is very low. Even if the grafting survives, it will show the phenomenon of poor growth or failure to grow, which will cause great losses to production. At present, the studies on grafting affinity at home and abroad are mostly focused on fruit trees, and there are few reports on vegetables. Differences in this study two affinity of pumpkin (Cucurbita moschata Duch) varieties ‘Heizi Pumpkin (affinity)’ and ‘Dongyangshenli (no affinity)’, in three different growth of cucumber varieties ‘Shenluschunsi (growing)’, ‘Cuilv Cucumber (weak)’ and ‘Liangyoulvjian 102 (medium)’ as a scion, analysis the root stock/scion grafting affinity, By measuring the root stock and scion stem cut surface exudates soluble sugar, sucrose content and the grafting healing surface resistance, graft survival rate and key enzyme activity, sucrose synthesis research rootstock and scion stem cut surface oozy liquefaction learn composition and the relationship between the grafting affinity, further explore the effects of exogenous sugar on grafting affinity, trying to seek a method to improve cucumber/pumpkin grafting affinity. The main research results are as follows:

1. Rootstock variety is the decisive factor of grafting affinity of cucumber/pumpkin. With two affinity of pumpkin varieties ‘Heizi Pumpkin (affinity)’ and ‘Dongyangshenli (no affinity)’, in three different growth of cucumber varieties ‘Shenluschunsi (growing)’, ‘Cuilv Cucumber (weak)’ and ‘Liangyoulvjian 102 (medium)’ as a scion, composed of six kinds of grafting combination, by analyzing the survival rate of grafting, healing the surface resistivity, It was found that the effect of stock/scion combination on grafting affinity mainly depended on stock variety, but had little relationship with scion variety.

2. There was a negative correlation between sucrose content difference and affinity in the exudate of cut surface between anvil and ear. Anvil correlation between soluble sugar content is the most important the influence of difference of grafting affinity, grafting affinity between the anvil spike and stem cut surface exudates soluble sugar content in the difference between absolute value was significantly negative relationship, when the anvil correlation between the closer the sucrose content in the stem cut surface exudate, the grafting survival rate is higher, the stronger the affinity, or conversely; However, there was no significant correlation between pH value, EC value, free amino acid content, soluble protein content, organic acid content and grafting survival rate.

3. Sucrose synthesis ability of pumpkin rootstock stems determines grafting compatibility by influencing sucrose content in exudate. To explore causes two pumpkin root stock varieties of sucrose content in the stem cut surface exudate significant difference, the pumpkin root stock stem of sucrose phosphate synthase (SPS), sucrose synthase (SS), acid invertase (AI) and neutral invertase (NI) four key sucrose metabolism enzyme activity and its coding gene expression level were analyzed. The results showed that the activities of SPS, SS and NI of the incompatible rootstock ‘Dongyangshenli’ were significantly higher than those of the compatible rootstock ‘Heizi Pumpkin’, but the activities of AI were significantly lower than the latter. Similarly, the relative transcription level of SPS encoding gene CP4.1LG04G09100, SS encoding gene CP4.1LG04G11350 and NI encoding gene CP4.1LG04G05130 in rootstock ‘Dongyangshenli’ was also significantly higher than that in rootstock ‘Heizi Pumpkin’, while the relative transcription level of SS encoding gene CP4.1LG18G02810 in rootstock ‘Dongyangshenli’ was significantly lower than that in rootstock ‘Heizi Pumpkin’. These results indicated that the sucrose synthesis ability of the incompatible rootstock ‘Dongyangshenli’ was significantly higher than that of the compatible rootstock ‘Heizi Pumpkin’, leading to the accumulation of sucrose content in the stem, which further resulted in a large difference in sucrose content between the rootstock and the scion in the exudate on the cut surface of the stem, and finally resulted in grafting incompatibility.

4. Exogenous sucrose treatment could significantly improve the grafting affinity of cucumber/pumpkin. In order to confirm the conclusion that the difference of sucrose content in the exudate between rootstock and scion stem cut surface was negatively correlated with the affinity, the sucrose content in the exudate between rootstock and scion stem cut surface was significantly increased, the difference of sucrose content between rootstock and scion was decreased, and the grafting survival rate was significantly increased by spraying scion plants with exogenous sucrose. Through continuous measurement of the resistance of grafted grafts healing surface, it was found that the resistance changes of grafted healing surface after exogenous spraying of sucrose at 5 ‰ and 10 ‰ concentrations were the same as those of grafted affinity plants. These results indicate that treating scion plants with exogenous sucrose to reduce the difference of sucrose content between rootstock and scion in the exuviate is an effective method to improve the affinity of cucumber/pumpkin grafted seedlings.

In conclusion, this study found that the effect of stock/scion combination on grafting affinity mainly depended on stock variety, but had little relationship with scion variety. The results revealed the role of sucrose in the grafting affinity reaction of cucumber/pumpkin, that is, the closer the sucrose content in the exude of the cut surface between the anvil and ear, the higher the grafting survival rate and the stronger the grafting affinity. The application of 5 ‰ and 10 ‰ sucrose solution on scion could significantly increase the sucrose content in the exuvial solution on the cut surface of scion stem, reduce the sucrose content difference between the anvil and ear, and significantly improve the survival rate and compatibility of grafting. This study provided an effective method to improve the grafting affinity of cucumber/pumpkin.

参考文献:

1. 鲍士旦. 土壤农化分析[M]. 北京:中国农业出版社, 2000:74-76, 352-353.

2. 陈贵林, 乜兰春, 赵丽丽. 嫁接西瓜生长动态及伤流液营养元素含量的研究[J]. 河北农业大学学报, 1999, 22(3):28-31.

3. 陈贵林, 孙天亮, 孙会军. 茄子四种嫁接方法简介[J]. 蔬菜, 2000(2):30-31.

4. 陈哲. ‘井岗红糯’ 荔枝嫁接亲和性及其机理研究[D]. 华南农业大学, 2016.

5. 成明昊, 李喜森, 李恩生, 等. 果树抗寒力的鉴定-枝条电阻法的研究[J]. 辽宁果树, 1980(04):15-22.

6. 成明昊, 李恩生, 温树英, 等. 苹果矮化砧木选育预选方法-枝条电阻法的探讨[J]. 园艺学报, 1980(03):17-21.

7. 丁平海, 郗荣庭. 核桃枝接愈合过程的解剖学观察[J]. 林业科学, 1991(04):457 -461+489.

8. 丁平海, 等. 核桃苗木枝接愈合过程观察[J]. 河北农业大学学报, 1986, 9(4):6-10.

9. 董栓泉, 许凤, 王春幸, 等. 不同糖处理对离体青花菜抗氧化酶以及品质的影响[J]. 现代食品科技, 2016(5): 199-204.

10. 杜宏彬, 徐伶, 刘振华. 2010. 植物嫁接技术变迁及相关理论研究: 中国农业科学技术出版社.

11. 代思梦, 胡玉玲, 姜佳艳, 等. 基质?透光度和植物生长调节剂对芽苗砧嫁接茶花与油茶育苗的影响[J]. 安徽农业科学, 2020, 48(23):161-164.

12. 冯金玲, 杨志坚, 陈辉, 等. 油茶芽苗砧嫁接体的亲和性[J]. 福建农林大学学报, 2011, 40(1):24-30.

13. 高俊杰. 低温胁迫和盐胁迫下嫁接黄瓜(Cucumis sativus L.)抗氧化的分子机制[D]. 山东农业大学, 2008.

14. 韩素芹, 王秀峰, 魏珉, 等. 甜椒穴盘苗壮苗指数及其与苗期性状的相关性研究[J]. 山东农业大学学报(自然科学版), 2004(02):187-190+195.

15. 胡艳青, 苏媛, 韩风叶, 等. 嫁接黄瓜在愈合过程中的解剖观察和抗氧化酶活性的变化研究[J]. 内蒙古农业大学学报(自然科学版), 2007(03):224-230.

16. 黄翠英. 不同砧木嫁接对西瓜生理生化特性和品质影响的研究[D]. 四川:四川农业大学, 2009.

17. 黄坚钦, 方伟, 丁雨龙, 等. 植物生长调节物质对山核桃嫁接的效用[J]. 南京林业大学学报, 2002, 26(4):78-80.

18. 贾晓琳. 外源糖在心里美萝卜幼苗花青素代谢中作用初探[D]. 新乡:河南师范大学, 2013.

19. 蒋苏, 马鸿翔, 魏芳, 等. 2012. NAA 或赤霉素对小麦成熟胚愈伤组织分化的影响[J]. 分子植物育种, 10(1):35-41.

20. 卢善发. 番茄/番茄嫁接体发育过程中的过氧化物酶同工酶. 园艺学报, 2000, 27(5): 340-34.

21. 卢善发. 离体茎段嫁接体内IAA的免疫组织化学定位[J]. 科学通报, 2000, 45(8):856-860.

22. 卢善发, 邵小明, 杨世杰. 嫁接植株形成过程中结合部组织学和生长素含量的变化. 植物学通报, 1995. 12(4):38 -41.

23. 卢善发, 唐定台, 宋经元, 等. 利用植物激素调控嫁接形成的初步研究[J]. 植物学报, 1996(04):307-311+341.

24. 李改玲. 外源糖调控盐胁迫下小黑麦糖代谢及光合特性的研究[D]. 哈尔滨:东北农业大学, 2016.

25. 李合生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2000:182-184, 246-248.

26. 李锋. 植物嫁接不亲和性的问题讨论[J]. 惠州人学学报(自然科学版), 1997. 14(4), 170-172.

27. 刘天英. 黄瓜嫁接育苗技术. 中国园艺文摘, 2013, 29:166-166.

28. 刘芬, 向长萍. 瓜类嫁接亲和性研究[J]. 黑龙江农业科学, 2014(11):85-88.

29. 刘芬. 黄瓜嫁接砧木的筛选及亲和性机理研究. 华中农业大学硕士毕业论文, 2009.

30. 刘传荷. 山核桃嫁接愈合过程的解剖学研究及IAA免疫金定位[D]. 浙江林学院, 2008.

31. 刘卫群, 张新要, 李天福, 等. 饼肥对烤烟碳水化合物代谢及酶活性的影响[J]. 烟草科技, 2003, (11):37-40.

32. 刘丽杰. 低温下ABA调控冬小麦糖代谢及抗寒基因表达的研究[D]. 东北农业大学, 2013.

33. 刘凌霄, 沈法富, 卢合全, 等. 蔗糖代谢中蔗糖磷酸合成酶(SPS)的研究进展[J]. 分子植物育种, 2005, 3(2):275-281.

34. 刘美琴, 王幼群, 杨世杰. 植物激素对蚕豆离体茎段自体嫁接的影响. 园艺学报, 1996, 23(3):264-268.

35. 凌亚杰, 莫琴, 莫凡, 等. 外源糖处理对草莓果实品质和主要生物活性物质的影响[J]. 四川农业大学学报, 2018, 36(01):67-71.

36. 李欣, 申书兴, 高彦魁, 等. 不同基因型砧木嫁接黄瓜结瓜盛期光合特性的比较. 植物遗传资源学报, 2007, 8:200-204.

37. 马攀. 不同砧木嫁接甜柿亲和性生理机制研究[D]. 中国林业科学研究院, 2015.

38. 马光恕, 杨瑾, 廉华, 等. 盐胁迫下海藻糖对番茄渗透调节物及酶活性的影响[J]. 北方园艺, 2010(6):59-61.

39. 马庆, 赵瑞, 陈俊琴, 等. 不同浓度NAA溶液对嫁接黄瓜苗期形态及生理指标的影响[J]. 中国蔬菜, 2013(6):50-53.

40. 莫豪葵, 秦东, 刘春长, 等. 番茄不同砧木嫁接亲和性与共生性研究[J]. 现代农业科技, 2013(22):65-66+68.

41. 欧智涛. 几种柑橘实生苗的矮化性、抗旱性和嫁接亲和性评价研究[D]. 广西大学, 2014.

42. 裴景娟. 黄瓜嫁接育苗管理技术[J]. 现代农村科技, 2018, 3:22.

43. 秦子禹, 刘孟军, 王娜, 等. 培养环境对枣组培微嫁接的影响[J]. 安徽农业科学, 2008, 36(20):8480-8481.

44. 齐红岩, 李天来, 刘轶飞, 等. 嫁接对薄皮甜瓜光合特性、产量与含糖量的影响. 沈阳农业大学学报, 2006, 37:155-158.

45. 齐红岩, 李天来, 张洁, 等. 番茄果实发育过程中糖的变化与相关酶活性的关系[J]. 园艺学报, 2006, 33(2):294-299.

46. 宋红苗. 影响美国黑核桃嫁接成活率的生理生化特性分析及初步选优. 山西农业大学硕士学位论文, 2006.

47. 石雪晖, 王淑英, 吴艳纯, 等. 葡萄叶片中生理生化物质含量与嫁接亲和力关系的研究. 果树学报, 2001, 18(1):24-27.

48. 束胜, 康云艳, 王玉, 等. 2018. 世界设施园艺发展概况、特点及趋势分析. 中国蔬菜[J], 7:1-13.

49. 施宇. 辣椒不同砧穗嫁接亲和性研究[D]. 安徽农业大学, 2018.

50. 孙艳伟. 糖液、石蜡处理梨枣接穗在枣树嫁接上的应用[J]. 北方果树, 2004(06):43.

51. 陶金刚. ‘富有’ 甜柿砧穗组合嫁接亲和力及生态适宜性研究. 四川农业大学硕士学位论文, 2004.

52. 唐辉, 韦霄, 梁惠凌, 等. 外源激素对银杏高位嫁接及其枝梢生长的影响[J]. 中南林业科技大学学报, 2007, 27(1):85-87.

53. 田国忠, 张锡金, 罗飞, 等抗病和感病泡桐无性系组培苗对嫁接传染植原体的不同反应[J]. 林业科学, 1999, 35(4):31-39.

54. 王幼群. 植物嫁接系统及其在植物生命科学研究中的应用[J]. 科学通报, 2011, 56(30): 2478-2485.

55. 王胜永, 李曼. 中间砧对甜柿嫁接亲和性的影响[J]. 甘肃农业大学学报, 2019, 54(05):106-111.

56. 王玉彦, 贾卫国, 申斯乐, 等. 1995. 不同砧木对嫁接黄瓜生理影响的研究. 中国蔬菜, 31-36, 231-234.

57. 王白坡, 程晓建, 喻卫武. 山核桃嫁接育苗成活率探讨[J]. 浙江林学院学报, 2002, 19 (3): 231-234.

58. 王丽燕, 薄存娇, 徐琳娜, 等. 外源葡萄糖对番茄盐胁迫耐受性的影响[J]. 北方园艺, 2018(07):9-14.

59. 王丽华, 李改玲, 李晶, 等. 外源糖对盐胁迫下小黑麦幼苗糖代谢的影响[J]. 麦类作物学报, 2017, 37(04):548-553.

60. 王晓鹏. 外源性可溶性糖对长春花响应盐胁迫的影响[D]. 东北林业大学, 2009.

61. 武季玲. 葡萄品种嫁接亲和力的研究[D]. 甘肃农业大学, 2001.

62. 翁祖信, 李宝栋. 嫁接黄瓜防病与增产效果的研究. 中国蔬菜, 1993, (3):11-15.

63. 翁祖信. 嫁接对茄子黄萎病的抗性及早期产量的影响. 中国蔬菜, 1997, (2):34-35.

64. 肖艳, 黄建昌, 高平飞, 等. 龙眼砧穗过氧化物酶同工酶及嫁接亲合力初探. 西南农业大学学报, 2001, 23(1):70-72.

65. 肖桂山, 杨世杰. 黄瓜同种异体嫁接组合形成过程中特异蛋白质的产生[J]. 农业生物技术学报, 1995, 3(2):32-37.

66. 许小江, 刘静, 丁兰, 等. 南瓜种质对白粉病的田间抗性评价[J]. 长江蔬菜, 2018 (20):50-52.

67. 许庆. 基于蛋白质组学与转录组学解析黄瓜/南瓜嫁接亲和性机理[D]. 南京农业大学, 2016.

68. 徐淼. 大庆地区观光农业中茄子、番茄嫁接共生栽培效果及多样性研究[J]. 科技与企业, 2012(08):301.

69. 向国胜, 邵小明. 番茄/番茄加觅菜/番茄嫁接组合形成过程的细胞学观察[J]. 北京农业大学学报, 1992, 18(3):267-273.

70. 刑卫兵, 孟昭清. 果树嫁接技术. 北京:农业出版社, 1988. 15.

71. 杨世杰, 卢善发. 植物嫁接基础理论研究(上). 生物学通报, 1995, 30(9):4-6, 10-12.

72. 杨瑞. 葡萄砧穗组合筛选及嫁接早期亲和力鉴定. 兰州:甘肃农业大学, 2007.

73. 杨冬冬, 黄丹枫. 西瓜嫁接体发育中木质素合成及代谢相关酶活性的变化. 西北植物学报, 2006, 26(2):0290-0294.

74. 杨邵, 束庆龙, 姚小华, 等. 油茶不同芽苗砧嫁接组合的亲和性生理[J]. 东北林业大学学报, 2015, 43(07):19-22+46.

75. 于广建, 齐红岩, 李敏, 等. 1995. 茄子嫁接技术研究. 北方园艺, (3):16-17.

76. 袁婷婷, 钟秋平, 丁少净, 等. 植物生长调节剂对油茶芽苗砧嫁接愈合的影响[J]. 林业科学研究, 2015, 28(04):457-463.

77. 岳鑫, 段园园, 陈贵林. 锁阳愈伤组织诱导和增殖及不定根分化[J]. 植物生理学报, 2013, 49(12):1421-1426.

78. 尹立荣, 管长志, 陶雷. 植物生长调节剂对黄瓜嫁接苗成活及生长的影响[J]. 天津农业科学, 1999(02):3-5.

79. 袁亭亭, 宋小艺, 王忠宾, 等. 嫁接与施肥对番茄产量及氮、磷、钾吸收利用效率的影响[J]. 植物营养与肥料学报, 2011, 17: 131-136.

80. 赵锋亮. 长期夜间亚低温和长期昼间亚高温对茄子生长发育的影响[D]. 河南农业大学, 2008.

81. 张蜀秋, 杨世杰, 马龙彪. 嫁接组合形成过程中两种酶活性的动态变化[J]. 北京农业大学学报, 1990, 16(2):149-152.

82. 张丽之, 张昕, 左希亚, 等. 外源葡萄糖对 ‘长富2号’ 苹果花芽生理分化期可溶性糖和相关基因表达的影响[J]. 园艺学报, 2019, 460 (1):11-24.

83. 张淑华. 黄瓜嫁接过程中激素的应用[J]. 黑龙江农业科学, 2008(05):173.

84. 张健, 叶天文, 陈雅, 等. 外源激素处理接穗对海南油茶高接换冠的影响[J]. 经济林研究, 2020, 38(02):53-59.

85. 郑炳松, 刘力, 黄坚钦, 等. 山核桃嫁接成活的生理生化特性分析[J]. 福建林学院学报, 2002, 22(4):320-324.

86. 郑鑫, 李首正, 王燕, 张志晓, 江文, 曾丽蓉, 骆建霞. 绿宝苹果与不同砧木嫁接亲和性初探[J]. 河南农业科学, 2016, 45(11):96-99.

87. 郑紫燕, 郑国琦, 罗霄, 等. 宁夏枸杞叶片、果柄、果实糖积累与蔗糖代谢相关酶活性研究[J]. 西北农业学报, 2009, 18(4):17-18.

88. 赵仕光, 朱玮, 岳红艳. 杨树溃疡病菌毒素对杨树愈伤组织超微结构的影响[J]. 林业科学研究, 1998, 11(3):253-259.

89. Assun??o M, Canas S, Cruz S, Braz?o J, Zanol GC, Eiras-Dias JE. Graft compatibility of Vitis spp.: the role of phenolic acids and flavanols. Sci. Hort, 2016, 207:140-145.

90. Aloni B, Karni L, Deventurero G, Levin Z, Cohen R, Katzir N, Lotan-Pompan M, Edelstein M, Aktas H, Turhan E. Physiological and biochemical changes at the rootstock-scion interface in graft combinations between Cucurbita rootstocks and a melon scion[J]. Journal of Pomology and Horticultural Science, 2008, 83(6):777-783.

91. Aloni R, Raviv A, Peterson C . The role of auxin in the removal of dormancy callose and resumption of phloem activity in Vitis vinifera[J]. Canadian Journal of Botany, 1991, 69(8):1825-1832.

92. Breen. Effect of peach/plum graft incompatibility on seasonal carbonhydrate changes. J. Am. Soc. Hort. Sci. 1975,100:253-259.

93. Breen. P. J. and T. Muraoka. Seasonal nutrient levels and peach/plum incompatibility. J. Am. Soc. Hort. Sci. 1975, 100:339-342.

94. Bletsos F, Thanassoulopoulos C, RoupakiasD Effect of Grafting on Growth, Yield, and Verticillium Wilt of Eggplant. Hortscience, 2003, 38:183-186.

95. Baena-Gonza'Lez E, Sheen J. Convergent energy and stress signaling[J]. Plant Cell, 2008, 12(9):1360-1385.

96. Brouillard, O. Dangles, J. Harborne. 1994. The flavonoids: advances in research since 1986. by Harborne JB, Chapman & Hall, London, 565-588.

97. Cooman L, Everaert E, Curir P. The Possible Role of Phenolics in Incompatibility Expression in Eucalyptus gunniiMicrografts[J]. Phytochemical Analysis, 1996, 7(2):92-96.

98. Douglas C D, Tsung M K, Frederick C F. Enzymes of sucrose and hexose metabolism in developing kernels of two inbreds of maize[J].Plant Physiol, 1988, 86: 1013-1019.

99. D. Cooman, E. Everaert, P. Curir, M. Dolci. 1996. The possible role of phenolics in incompatibility.

100. Errea P, Gutmann M, Feucht W.Physiological impli-cations of flavan-3-ols in apricot-rootstock combinations[J]. Adv Hort Sci, 2000, 14 (3) :126-134.

101. Errea. 1998. Implications of phenolic compounds in graft incompatibility in fruit tree species. Scientia horticulturae, 74(3):195-205.

102. Errea P, Felipe A. Compatibilidad de injerto en albaricoquero (Prunus armeniaca L.) [J]. Invest Agrar Ser Prod Veg, 1993, 8:67-77.

103. Eveland A L, Jackson D P. Sugars, signaling, and plant development[J]. Journal of Experimental Botany, 2012, 63:3367-3377.

104. Fisher D B , Wang N. Sucrose Concentration Gradients al ong the Post-Phloem Transport Pathw ay in the Mat ernal Tissues of Developing Wheat G rains[J] . Plan t Physiol, 1995, 109:587 - 592.

105. Hartmann, D. E. Kester. 1968. Plant propagation:priciples and practices. Plant propagation: principles and practices., (Edn 2).

106. Hartmann H T, Kester D E, Davies JR F T, et al. Plant propagation:principles and practices[M]. 7th Edition. Upper Saddle River, NJ: Prentice-Hall, 2002. 199-220.

107. Hartmann H T, Kester D E, Davies JR F T, et al. Plant propagation: Principles and practices [M] 6th edition. Upper Saddle River, N: Prentice-Hall, 1997.

108. Heo. 1991. Effects of rootstocks on exudation and mineral elements in different parts of Oriental melon and cucumber. Seoul, Korea: MS thesis, Kyung Hee University.

109. Haslam. 1989. Plant polyphenols: vegetable tannins revisited: Cambridge University Press.

110. Jeffree, M. Yeoman. 1983. Development of intercellular connections between opposing cells in a graft union. New Phytologist, 93(4):491-509.

111. Jang J C , Sh een J. Sugar sen sing in hi gher plants[J] . Plant Cell, 1994 , 6:1665-1679.

112. Kato, H. Lou. 1989. Effects of rootstock on the yield, mineral nutrition and hormone level in xylem sap in eggplant [Solanum melongena]. Journal of the Japanese Society for Horticultural Science.

113. Keunen E, Peshev D, Vangronsveld J, et al. Plant sugars are crucial players in the oxidative challenge during abiotic stress: Extending the traditional concept[J]. Plant Cell and Environment, 2013, 36:1242-1255.

114. Kollmann, S. Yang, C. GLOCKMANN. 1985. Studies on graft unions. Ⅱ: Continuous and half plasmodesmata in different regions of the graft interface[J]. Protoplasma, 126(1-2):19-29.

115. Kumutha D, Sairam R K, Ezhilmathi K, et al.Effect of waterlogging on carbohydrate metabolism in pigeon pea (Cajanus cajan L.): Upregulation of sucrose synthase and alcohol dehydrogenase[J].Plant Science, 2008, 175(5): 706-716.

116. Livak K J, Schmittgen T D 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods [J], 25(4):402.

117. Lee JM. Cultivation of grafted vegetables. I Current status. Grafting methods and benefits [J]. Hortscience, 1994, 29(4):235-239.

118. Li Z W. Evaluation of germplasm resources of tomato stock and proof by grafting experiment [D]. Nanning:Guangxi University, 2012.

119. Liu F. Study on the screen of rootstocks and graft affinity mechanism for cucumber [D]. Wuhan:Huazhong Agricultural University, 2009.

120. Lu S, Song Y. Relation between phytohormone level and vascular bridge differentiation in graft union of explanted internode autografting [J]. Chinese Science Bulletin, 1999, 44(20):1874-1878.

121. Lu S, Tang D, Song J, et al. Preliminary studies on controlling graft union through plant hormones[J]. Acta Botanica Sinica, 1996, 38: 307-311.

122. Moore. 1984. A model for graft compatibility-incompatibility in higher plants. American Journal of Botany, 752-758.

123. Matsuzoe N. Resistance of tomato grafted on solanum rootstocks to bacterial wilt [J]. J JPn Soc Hort Sci, 1991, 60(1-2):176-177.

124. Masudam, Mineral concentration in xylem exudates of tomato and cucumber Plants atmidday and midnight [J]. J JPn Soc Hort Sci, 1989, 58(3):293-298.

125. Mar?i? KN, Osvald J. The Influence of Grafting on Yield of Two Tomato Cultivars (Lycopersicon Esculentum Mill.) Grown in a Plastichouse. Acta agric. Slov, 2004, 83: 243-249.

126. Mo HK, Qin D, Liu CC, et al. Study of graft compatibility and symbiosis for tomato stock varieties[J]. Modern Agricultural Science and Technology, 2013(22):65-68.

127. Moore R, Walker D B. Studies on vegetative compatibility-incompatibility in higher plants.Ⅰ. A structural study of a compatible autogragh in Sedum telephoides(Crassulaceae) [J]. Am J Bot, 1981, 68:820-830.

128. Musacchi S, Pagliuca G, Kindt M, et al. Flavonoids as markers for pear-quince graft incompatibility[J]. Appllied Botany, 2000, 74(5/6):206-211.

129. Mngomba, E. S. du Toit, F. K. Akinnifesi. 2008. The relationship between graft incompatibility and phenols in Uapaca kirkiana Müell Arg. Scientia horticulturae, 117(3):212-218.

130. Navarro L, Roistacher CN, Murashige T. Improvement of shoot tip grafting in vitro for virus-free citrus[J]. Journal of the American Society for Horticultural Science, 1975, 100:471-479.

131. Nocito FF, Espen L, Fedeli C, Lancilli C, Musacchi S, Serra S, Sansavini S, Cocucci M, Sacchi GA. Oxidative stress and senescence-like status of pear calli co-cultured on suspensions of incompatible quince microcalli. Tree Physiol, 2010, 30: 450-458.

132. Papadaki AM, Bletsos F. A, Eleftherohorinos IG. Effectiveness of seven commercial rootstocks against Verticillium wilt and their effects on growth, yield, and fruit quality of tomato[J]. Crop Protection, 2017, 102:25-31.

133. Pina A, Errea P, Martens HJ. Graft Union Formation and Cell-to-Cell Communication Via Plasmodesmata in Compatible and Incompatible Stem Unions of Prunus Spp. Scientia Horticulturae, 2012, 143:144-150.

134. Pina A, Errea P. Differential induction of phenylalanine ammonia-lyase gene expression in response to in vitro callus unions of Prunus spp. J. Plant Physiol, 2008a, 165:705-714.

135. Pina A, Errea P. Influence of graft incompatibility on gene expression and enzymatic activity of UDP glucose pyrophosphorylase. Plant Sci, 2008b, 174:502-509.

136. Pina A, Errea P. A review of new advances in mechanism of graft compatibility-incompatibility[J]. Scientia Horticulturae, 2005, 106(1):1-11.

137. Pirie A, Mullins M G. Changes in Anthocyanin and Phenolics Content of Grapevine Leaf and Fruit Tissues Treated with Su-crose,Nitrate,and Abscisic Acid[J]. Plant Physiology, 1976, 58(4):468-472.

138. Quiroga M, Guerrero C, Botella MA, Barcelo A, Amaya I, Medina MI, Alonso FJ, de Forchetti SM, Tigier H, Valpuesta V. A Tomato Peroxidase Involved in the Synthesis of Lignin and Suberin. Plant Physiology, 2000, 122:1119-1127.

139. Ren J, Wang J, Guo S R, et al. 2019. Finite element analysis of the static properties and stability of a large-span plastic greenhouse. Computers and Electronics in Agriculture [J], 165.

140. Rogers, W. S., and A. B. Beakbane. Stock and scion relations. Plant Physiol. 1957, 8:217-236.

141. Rolland F, Baenagonzalez E, Sheen J. Sugar sensing and signaling in plants: Conserved and novel mechanisms[J]. Annual Review of Plant Biology, 2006, 57(1):675-709.

142. Rufty T W, Huber S C. Changes in starch formation and activities of sucrose phosphate synthase and cytoplasmic fructose-1,6-bisphosphatase in response to source-sink alteration[J]. Plant Physio1, 1983, 72:474-480.

143. Ranwal P A, Iwanami S S, Masuda H. Acid and neutral invertases in the mesocarp of developing muskmelon(Cucumis melo L. cv prince) fruit[J]. Plant Physiology, 1991, 96:881-886.

144. Renner R K, Schuler, Sonnewald U. Soluble acid invertase determines the hexose-to-sucrose ratio in cold-stored potato tubers[J]. Planta, 1996, 198:246-252.

145. Stuart J, Harrison, Kenneth C, et al. An antimierobial peptide from the Australia native hardenbergia violacea provides the first funetionally characterized member of asubfamily of defensins. Plant Physiology, 1997, 24:571-578.

146. Schlitzberge A, Beiderbeck R. Transformation by Agrobacterium tumefaciens changes graft compatibility of Nicotinana tabacum L[J]. Phytoparthology, 1990, 128:257-262.

147. Santamour Jr. 1988. Graft incompatibility related to cambial peroxidase isozymes in Chinese chestnut. J. Environ. Hort, 6(2):33-39.

148. Shailendra S, Nese S, Vokkaliga T H, et al. Delineating the structural, functional and evolutionary relationships of sucrose phosphate synthase gene family Ⅱ in wheat and related grasses[J]. BMC Plant Biology, 2010, 10:134.

149. Sturm A.Invertases primary structures,functions,and roles in plant development and sucrose partitioning[J]. Plant Physioloy, 1999, (121):1-7.

150. Schaffer A A, Fogelman E. Sucrose metabolism and accumulation in developing fruitofcucumis[J]. Phyto chemistry, 1987, 26:1883-1887.

151. Su L F, Lin W J, Chen S P, et al. Effects of exogenetic IAA on healing of the nurse seed grafted union of Camelia oleifera[J]. Journal of Fujian Forestry Science and Technology, 2012, 39(3):57-62.

152. Toshio Shibuya, Kaori Itagaki, Yu Wang, Ryosuke Endo. Grafting transiently suppresses development of powdery mildew colonies, probably through a quantitative change in water relations of the host cucumber scions during graft healing[J]. Scientia Horticulturae, 2015, 192.

153. Tachibana S.Effect of root temperature on the rate of water and nutrient absorption in cucumber cultivars and figleaf gound [J]. Journal of the Japanese Society for horticultural Science, 1987:461-467.

154. Wang Q, Men LZ, Gao LH. Effect of grafting and gypsum application on cucumber (Cucumis sativus L.) growth under saline water irrigation[J]. Agricultural Water Management, 2017, 188:79-90.

155. Wang, R. Kollmann. 1996. Vascular Differentiation in the Graft Union of in-vitro Grafts with Different Compatibility. Journal of plant physiology, 147(5):521-533.

156. Wang Y, Guo S R, Wang L, et al. 2018. Identification of microRNAs associated with the exogenous spermidine-mediated improvement of high-temperature tolerance in cucumber seedlings (Cucumis sativus L.). BMC Genomics [J], 19(1):285.

157. Whetten RW, MacKay JJ, Sederoff RR. Recent Advances in Understanding Lignin Biosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1998, 49: 585-609.

158. Weatherhead I. Causes of graft failure in Sitka spruce[D]. Reading:University of Reading, 1986.

159. Warren Wilson P M. The effect of a grafted bud on vascularization of the petiole in Phaseolus, Datura and L ycop ersicon. A nn Bot, 1982. 49: 873-886.

160. Yeoman MM. Kilpatrick DC. Miedzybrodzka MB. Et al. Cellular interaction during graft formation in plants cognition phenomenon[J]. Symposia of the Society for Experimental Biology, 1978.32:139-160.

161. Yetisir H, Sari N. Effect of Different Rootstock on Plant Growth, Yield and Quality of Watermelon. Animal Production Science, 2003, 43:1269-1274.

162. Yetisir H, Kurt S, Sari N, Tok FM. Rootstock Potential of Turkish Lagenaria Siceraria Germplasm for Watermelon:Plant Growth, Graft Compatibility, and Resistance to Fusarium. Turkish Journal of Agriculture and Forestry, 2007, 31:381-388.

163. Yang SJ, Xiang GS, Zhang S. Electrical resistance as a measure of graft union[J]. J Plant Physiol, 1993, 141:98-104.

164. Zeng Y A , Zhu Y L, Huang B J et al. Study on photosynthetic characteris-tics, GA and ABA contents, and soluble proteins inleaves of grafted cucumber[J]. Journal of Nanjing Agricul-tural University ,2005, 28(1) :16-19.

165. Zheng B S, Chu H L, Jin S H, et al. cDNA-AFLP analysis of gene expression in hickory (Carya carthayensis) during graft process. Tree Physiol, 2009: 297-303.

中图分类号:

 S6    

开放日期:

 2021-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式