中文题名: | 无刺长黄瓜纯度SNP标记开发及果实膨大期套袋保鲜效果评价 |
姓名: | |
学号: | 2022804278 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095131 |
学科名称: | 农学 - 农业 - 农艺与种业 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 蔬菜良种繁育与推广 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2024-06-13 |
答辩日期: | 2024-05-28 |
外文题名: | Development of Purity SNP Markers and Evaluation on The Fresh-keeping Effect of Bagging during Fruit Expansion of Stingless Long Cucumber |
中文关键词: | |
外文关键词: | Stingless long cucumber ; Purity ; SNP ; Bagging ; Storage quality |
中文摘要: |
黄瓜(Cucumis sativus L.)是葫芦科甜瓜属一年生攀缘型草本植物,也是具有良好经济及营养价值的全球性蔬菜作物。无刺长黄瓜是一种新型的欧洲温室型黄瓜,瓜条长而顺直,果实表面光滑无刺、适合包装,口感清香,是欧美鲜食黄瓜的主要消费类型,在我国具有广阔的应用前景。纯度是作为种子质量检测的重要评价指标,直接关系到黄瓜田间产量的稳定性和可持续性,特别是在杂交种的种植过程中,自交株的出现往往会对整体产量产生负面影响。随着分子技术的持续进步,KASP(Kompetitive Allele Specific PCR,竞争性等位基因特异性PCR)技术已经逐渐在多个领域展现出其独特的优势,尤其是在种子纯度鉴定方面。除了纯度鉴定外,果实的保鲜技术也是影响黄瓜商品性的关键因素。果实套袋是水果栽培的常用措施,能够有效改善果实的外观品质,同时还可以防止病虫害,减少农药残留,从而提高水果的商品价值。此外,果实膨大期进行套袋有助于降低黄瓜的弯瓜率和畸形瓜率。本研究通过对3份无刺长黄瓜新组合杂交种(NAU108、NAU109、NAU110)及其亲本共7份材料进行全基因组重测序,获取SNP、InDel位点信息,结合杂交种特性及遗传背景分析,筛选出与杂交种纯度紧密相关的SNP、InDel位点,并将部分SNP位点转化为KASP标记,利用开发的KASP标记对NAU108杂交种进行标记验证和纯度鉴定;在果实膨大期对无刺长黄瓜进行套袋,研究采后贮藏期间的果实外观及品质变化。主要研究及结果如下: 1.基因组重测序质控与变异分析。数据质控后得到的高质量有效数据(Clean Reads)GC含量在37 %~38 %。与黄瓜‘9930’参考基因组比对后,结果表明7份材料测序数据质量良好;变异检测共得到1,017,015个SNP位点,244,734个InDel位点,高质量SNP共有6种变异类型,其中A/G和C/T的变异类型最多;注释结果表明,SNP、InDel变异分布最多的是基因间区,分别占比33.51%、33.67%。经过进一步特异性筛选,3份无刺长黄瓜新组合杂交种(NAU108、NAU109、NAU110)共分别获得了26、19、7个高质量SNP位点,这些位点分别可用于这3个杂交种的纯度鉴定;此外,共获得52个InDel位点可用于后续标记开发。 2.KASP-SNP开发与验证。用于鉴定NAU108纯度的26个位点中,24个成功转化KASP标记。其中13个标记表现出多态性:包括4个相同基因型分簇集中的标记;3个相同基因型分簇较分散的标记;6个杂合基因型和纯合基因型较近的标记。不可使用的11个标记的分型可分为2类:4个为相同基因型分簇过于分散的标记;7个为纯合基因型与杂合基因型无法区分的标记。 3.果实膨大期套袋对无刺长黄瓜外在品质的影响。在黄瓜座果后果长为6~10 cm时,对瓜形顺直的瓜胎进行套袋处理,商品期时连同果实一同摘下,观察果实在贮藏期间的变化。试验结果显示,套袋黄瓜在色泽、口感和整体接受度方面均优于未套袋处理黄瓜。套袋处理能够有效减缓黄瓜在贮藏过程中的腐烂和软化现象,从而延长了其货架期。 4.果实膨大期套袋对无刺长黄瓜内在品质的影响。对无刺长黄瓜果实膨大期套袋处理和对照进行贮藏期间的可溶性固形物含量等果实品质指标测定。结果显示,套袋黄瓜果实的可溶性固形物含量先上升后下降,且始终高于对照组,而维生素C含量虽也下降,但下降幅度小于对照组,且贮藏后期丙二醛含量也低于对照组。表明套袋处理能显著影响黄瓜果实的品质和生理变化,有效减缓果实维生素C的流失,保持膜系统的完整性,提高果实的贮藏性能。 |
外文摘要: |
Cucumber (Cucumis sativus L.) is an annual climbing herb of Cucumis in the cucurbitaceae family. It is also a globally grown vegetable crop with essential economic and nutritional value. Stingless long cucumber is a new type of European greenhouse cucumber. Its fruit is long and straight, the surface of the fruit is smooth and stingless, suitable for packaging, and the taste is fragrant. It is also the main consumption type of fresh cucumbers in Europe and America, and has broad application prospects in China. Purity, as an important evaluation index for seed quality, is directly related to the stability and sustainability of cucumber production, especially in the planting process of hybrid varieties, the appearance of self-crossbred strains often has a significant negative impact on the overall yield. With the continuous progress of molecular technology, KASP (Kompetitive Allele Specific PCR) technology has gradually shown its unique advantages in many fields, especially in the identification of seed purity. Apart from purity identification, cucumber preservation technology is also a key factor affecting its commodity. Fruit bagging is a common measure of fruit cultivation, which can effectively improve the appearance quality of the fruit, but also can prevent diseases and pests, reduce pesticide residues, and thus improve the commercial value of the fruit. In addition, bagging during fruit expansion period was helpful to reduce the rate of curved and deformed cucumbers. In this study, whole genome resequencing was performed on 3 new combinations (NAU108, NAU109, NAU110) and their parent lines to obtain SNPs and InDels. The obtained SNPs and InDels were screened with hereditary characteristics. Several SNPs were converted into KASP markers, and the developed KASP markers were used for verification and purity identification of NAU108 hybrid seeds. In addition to that, bagging of stingless long cucumber during fruit expansion period was carried out to study the changes of fruit appearance and quality during postharvest storage. The main research results are as follows: 1. Quality control and variation analysis of genome resequencing. The GC content of Clean Reads after data quality control ranged from 37% to 38%. After comparing with the reference genome of cucumber ‘9930’, the results showed that the sequencing data of all the 7 germplasms were of good quality. A total of 1,017,015 SNPs and 244,734 InDels were identified. There were 6 types of high-quality SNP variation, among which A/G and C/T were the most varied. The annotation results showed that the largest distribution of SNPs and InDels was in the intergenic region, accounting for 33.51% and 33.67% respectively. After further specific screening, 26, 19 and 7 high quality SNPs were retained, which could be used for purity identification of NAU108, NAU109 and NAU110, respectively. 52 InDels were also obtained, which can be used for subsequent marker development. 2. KASP-SNP development and verification. Of the 26 SNPs used to identify the purity of NAU108, 24 were successfully converted into KASP markers. Among them, 13 markers showed polymorphism, including 4 markers in the same genotype cluster, 3 markers in the same genotype cluster, and 6 markers in the heterozygous genotype and homozygous genotype. The rest 11 unusable markers can be divided into two categories: 4 markers that are too dispersed in clusters of the same genotype, and 7 markers that are indistinguishable from homozygous genotypes. 3. Effect of bagging during fruit expansion on external quality of stingless long cucumber. When the cucumber fruits are 6~10 cm in length after fruit set, the straight cucumber fruits were bagged and later harvested when they reach commercial mature. The harvested cucumber fruits were used to compare the storage quality. The results showed that bagged cucumbers were generally better than unbagged cucumbers in color, taste and overall acceptability. Bagging treatment can effectively reduce the rot and softening of cucumber during storage, thus extending its shelf life. 4. Effect of bagging during fruit expansion on the intrinsic quality of stingless long cucumber. Fruit quality indexes such as soluble solids content during storage were determined for the bagging treatment and control of spingless long cucumber fruits at the expansion stage.During storage, the soluble solid content of bagged cucumber fruits first increased and then decreased, and was gernerally higher than control (unbagged cucumber). Although the vitamin C content decreased, the decrease range was siginificantly smaller than control, and the malondialdehyde content was also lower than control at the late storage stage. These results demonstreated that bagging could significantly affect the quality and physiological changes of cucumber fruit during storage, effectively slow down the loss of vitamin C, maintain the integrity of the membrane system and improve the storage performance of the fruit. |
参考文献: |
[1] 白景莲,赵娜,顾晗潇,等.豌豆成分的TaqMan实时荧光PCR检测方法的建立[J].中国口岸科学技术,2023,5(09):70-75. [2] 白静.杂交棉品种SSR核心引物的筛选与真实性和纯度鉴定[D].武汉:华中农业大学,2012. [3] 柏自琴,赵晓珍,李兴忠,等.不同材质套袋处理对火龙果果实品质的影响[J].中国南方果树,2023,52(06):131-134+140. [4] 包雨情,陈云鹏,韩颖颖.黄瓜采后生理变化及贮藏保鲜技术研究进展[J].中国农学通报,2023,39(03):35-41. [5] 北京市农林科学院.一种鉴定黄瓜品种京研玉甜156纯度的特异SNP引物及其方法:CN202310851830.4[P].2023-09-05. [6] 陈赫楠,宋廷宇,张晓明,等.套袋对薄皮甜瓜果皮颜色和亮度的影响[J].中国蔬菜,2015(08):39-42. [7] 陈秋玲,高建明,罗峰,等.分子标记技术在禾本科作物基因定位上的研究进展[J].中国农学通报,2010(09):42-48. [8] 陈思平.基于KASP的水稻基因组SNP标记开发及其育种应用[D].广州:华南农业大学,2017. [9] 陈莹莹.黄瓜新品种‘南水8号’DUS检测及其配套栽培技术[D].南京:南京农业大学,2022. [10] 崔兴华,赵海燕,段骅,等.SSR技术鉴定黄瓜新品种津早28的种子纯度试验[J].农业科技通讯,2023(04):110-113. [11] 董成虎.采前套袋及采后1-MCP、CO2处理对甜瓜品质和生理的影响[D].新疆:新疆农业大学,2013. [12] 范广轩,王洪亮,邢秀梅.SNP标记的研究进展及其应用[J/OL].特产研究:1-9[2024-03-26]. [13] 樊进补,钟思玲,宋贞富,等.不同套袋处理对黔中地区‘锦绣’黄桃果实品质及栽培的影响[J].北方果树,2023(05):7-11. [14] 冯静涵,徐泽帆,许建锋,等.不同果袋对‘翠冠’梨果实品质的影响[J].广东农业科学,2023,50(10):110-119. [15] 冯子珊,吴晓花,李艳伟,等.基于KASP标记快速鉴定瓠瓜杂种F1纯度的方法[J/OL].分子植物育种:1-8. [16] 付梦芸.基于KASP-SNP标记的西瓜种群结构分析和杂交种纯度鉴定[D].杭州:浙江大学,2023. [17] 高明亮.‘南水8号’黄瓜制种技术研究[D].南京:南京农业大学,2020. [18] 郭爱民.日光温室黄瓜套袋保鲜栽培技术研究[J].农业科技与信息,2017,(01):52-53+55. [19] 郭栋.萝卜种质和杂交种纯度鉴定的分子标记筛选[D].泰安:山东农业大学,2020. [20] 郭江怡,辛同旭,张梦卓,等.黄瓜株型性状的QTL定位分析[J].中国蔬菜,2023(08):38-45. [21] 韩海英.水稻种子纯度鉴定分析与研究[J].中国高新科技,2022,(10):124-126. [22] 韩晓伟,冯家兴,靳爱红,等.不同产地柴胡种子的微观及分子鉴定[J].北方园艺,2021(23):121-127. [23] 侯田莹,王福东,郑淑芳.套袋对黄瓜产量和品质的影响及经济效益分析[J].北方园艺,2011(01):32-35. [24] 黄冰,王昆,李锡石,等.山药汁浸涂对黄瓜保鲜效果的影响[J].冷藏技术,2022,45(02):17-19+28. [25] 黄雯,尹德兴,申舒心,等.薄膜包装对迷你黄瓜贮藏品质的影响[J].中国果菜,2022,42(06):1-5+19. [26] 金庆敏,林毓娥,王瑞,等.基于SSR分子标记的‘粤秀3号’黄瓜杂交种子纯度及真实性鉴定[J].广东农业科学,2023,50(09):49-58. [27] 蒋培基.基于SNP-KASP技术对啤酒花品种鉴定与纯度检测的研究[D].成都:四川农业大学,2018. [28] 蒋小玲,杨黎明,黄小玲,等.膨大期果实套袋对黄金柰李着色及品质的影响[J].南方园艺,2023,34(05):18-20. [29] 兰青阔,张桂华,王永等.基于高分辨率熔解曲线技术快速筛选黄瓜SNP[J].分子植物育种,2011,9(05):642-647. [30] 李肯,张伟,武云鹏,等.甜瓜果肉硬度KASP标记的开发与应用[J/OL].园艺学报:1-14. [31] 李秋利,高登涛,魏志峰,等.不同套袋处理对映霜红桃果实品质的影响[J].河南农业科学,2017,46(12):95-102. [32] 李书情.基于全基因组SNP的桂花品种精准鉴定体系的构建及应用[D].郑州:河南农业大学,2023. [33] 李帅阳.棉花SSCP标记的开发及产量和纤维品质性状的QTL定位[D].武汉:华中农业大学,2013. [34] 李小艳.花椰菜种子遗传纯度检测与品种鉴定的分子标记分析[D].南京:南京农业大学,2008. [35] 李玉秋,王超越,夏正俊,等.高分辨率熔解曲线技术在大豆基因分型中的应用[J].分子植物育种,2018,16(18):6046-6054. [36] 李志远.KASP标记用于甘蓝指纹图谱构建及杂种优势群划分[D].中国农业科学院,2018. [37] 林春晶,张春宝,董英山.DNA分子标记在作物杂交种纯度鉴定中的应用[J].分子植物育种,2015,13(03):702-710. [38] 林燕金,林旗华,卢艳清等.套袋时期对黄金蜜柚果实外观和内质的影响[J].中国南方果树,2016,45(06):47-48. [39] 蔺清祥.玉米种子纯度形态及幼苗鉴定方法[J].农业科技通讯,2012(10):82-83. [40] 刘福平,王茜,陈东奎,等.套袋对“桂葡柚1号”果实色泽和品质的影响[J].中国南方果树,2021,50(06):13-16. [41] 刘欣,程瑞,徐兵划,等.基于KASP技术的SNP标记用于西瓜品种指纹图谱构建和种子纯度检测[J].江苏农业学报,2022,38(05):1348-1356. [42] 刘玉洋,卢江杰,王慧中,等.浙麦冬主产区种质资源遗传多样性评价[J].浙江农业科学,2017,58(12):2146-2149. [43] 刘子记,曹振木,杨衍.应用分子标记技术检测作物杂交种纯度研究进展[J].种子,2013,32(06):48-52. [44] 柳小兰,安巧,魏福晓,等.套袋与不套袋对“红露”苹果果实品质的影响[J].北方园艺,2023,(21):23-29. [45] 吕建伟,胡廷会,成良强,等.高油酸花生遗传选育的研究进展[J].贵州农业科学,2019,47(11):10-17. [46] 梅德圣,李云昌,陈玉峰,等.用过氧化物酶同工酶和SSR标记鉴定中油杂12种子纯度[J].农业生物技术学报,2010,18(4):815-821. [47] 孟君仁,曾文芳,邓丽,等.桃若干重要性状的KASP分子标记开发与应用[J].中国农业科学,2021,54(15):3295-3307. [48] 孟淑春,刘立功,宋晓玉,等.黄瓜新品种京研冬美9号的SSR纯度鉴定[J].中国瓜菜,2023,36(06):23-27. [49] 洺宽.黄瓜的营养与保健功效[J].吉林蔬菜,2010(02):42. [50] 穆艳鑫.胡麻脂肪酸相关SNP位点的KASP基因分型及其验证[D].呼和浩特:内蒙古大学,2023. [51] 穆子涵.瓠瓜核心SNP标记集与重要品种指纹图库的构建[D].杭州:浙江农林大学,2023. [52] 彭言劼,柳琳琳,阮华丽,等.不同果袋对‘巨峰’葡萄果实品质的影响[J].中外葡萄与葡萄酒,2023(1):56-59. [53] 乔凯宁,杨太新,刘晓清.祁沙参种子质量检验方法的研究[J].种子,2017,36(02):123-126. [54] 施龙建.玉米杂交种纯度鉴定SNP核心引物筛选及检测体系方案的研究[D].扬州:扬州大学,2020. [55] 史学功,刁学平,李宝忠,等.红富士苹果套袋技术的探讨[J].烟台果树,1998(02):3-5. [56] 唐海燕,严钦泉,严秋平.杂交水稻种子纯度田间种植鉴定的结果与分析[J].杂交水稻,2005,(03):38-42. [57] 田雷,彭瑞迪,王辉,等.应用SSR技术进行白菜品种纯度鉴定的研究[J].北京农业,2010,(12):23-28. [58] 童霞秀,章玉婷,杜瑶瑶,等.套袋对黄瓜生长和品质的影响[J].湖北农业科学,2014,53(17):4079-4081. [59] 王飞.套袋对新疆风沙区葡萄果实品质的影响[D].新疆:石河子大学,2023. [60] 王贵平,翟浩,韩雪平,等.不同时间套袋对富士苹果果实品质和病害的影响[J].落叶果树,2018,50(06):8-10. [61] 王建升,沈钰森,虞慧芳,等.西兰花浙青80的高效制种与纯度鉴定技术[J].浙江农业科学,2023,64(01):75-78. [62] 王娇.“陕油803”油菜种子纯度鉴定及一个芥菜型油菜黄化基因的分子标记[D].杨凌:西北农林科技大学,2014. [63] 王洁,闫米格.蛋白质凝胶电泳法鉴定杂交玉米种子纯度与田间种植鉴定法的相关性研究[J].山西农业科学,2009,37(04):41-43. [64] 王莉,陆鸿英,庞钰洁,等.不同套袋处理对庚村阳桃果实品质的影响[J].浙江农业科学,2023,64(07):1740-1744. [65] 王璐伟,陈利娜,李好先,等.不同类型果袋对天使红石榴果实品质的影响[J].果树学报,2024,41(01):113-121. [66] 王菁.标记密度对QTL定位效果的影响[D].北京:中国农业大学,1998. [67] 王苗,张会玲,蒲靖,等.不同套袋处理对青皮软籽石榴果实品质的影响[J].四川农业科技,2022(11):36-38. [68] 王全辉,李争.中国种业发展现状问题及其政策建议[J].中国农学通报,2012,28(35):148-151. [69] 王日勇,谢玲玲,周火强,等.基于重测序‘墨地龙’冬瓜InDel标记的开发及纯度鉴定[J].分子植物育种,2021,19(20):6760-6766. [70] 王蕊,施龙建,田红丽,等.玉米杂交种纯度鉴定SNP核心引物的确定及高通量检测方案的建立[J].作物学报,2021,47(04):770-779. [71] 王艳艳.套袋对设施厚皮甜瓜果实生长和品质的影响[D].泰安:山东农业大学,2010. [72] 王子盾.不同套袋时间和果袋色泽对‘瑞雪’苹果果实品质的影响[D].杨凌:西北农林科技大学,2023. [73] 武娅歌,赵建华,宋晓飞,等.欧洲温室型黄瓜同源四倍体新种质的创制与鉴定[J].江苏农业科学,2019,47(18):141-145. [74] 肖远辉,雷新南,唐燕玲,等.套袋对脆蜜金柑果实品质的影响[J].南方园艺,2023,34(03):1-4. [75] 徐江横.番茄优良自交系筛选与抗病基因KASP分子标记开发[D].武汉:华中农业大学,2023. [76] 杨贵琴,莫飞旭,高强,等.套袋时间对猕猴桃品质及防御酶活性的影响[J].贵州农业科学,2019,47(08):97-102. [77] 杨梦婷,黄洲,干建平,等.SSR分子标记的研究进展[J].杭州师范大学学报(自然科学版),2019,18(04):429-436. [78] 杨青青,唐家琪,张昌泉,等.KASP标记技术在主要农作物中的应用及展望[J].生物技术通报,2022,38(04):58-71. [79] 姚丹,朱文莹,张微微,等.应用SNP标记高效鉴定黄瓜杂交种纯度[J].西北农业学报,2016,25(04):595-604. [80] 叶令帅,刁松锋,傅建敏.套袋处理对涩柿果实品质性状的影响[J].经济林研究,2023,41(02):282-289. [81] 殷豪,王彩虹,田义轲,等.利用高分辨率熔解曲线(HRM)分析梨微卫星标记[J].园艺学报,2011,38(08):1601-1606. [82] 尹杰文,何晓梅,贾嘉懿,等.基于主成分分析的微孔膜包装对延缓黄瓜冷贮后细胞膜脂过氧化及品质劣变研究[J].食品与发酵工业,2022,48(22):227-234. [83] 尹祥佳,李晶,王雅琳,等.基于SNP分子标记的玉米杂交种基因型分析与纯度鉴定[J].现代农业研究,2021,27(06):102-104+132. [84] 袁凡崇,陈木溪,陈如珠,等.苦瓜杂交一代种子纯度InDel分子标记鉴定技术研究[J].种子,2022,41(05):5-9. [85] 张驰.套袋对红皮梨果实品质的影响及果实着红色差异分析[D].新疆:塔里木大学,2023. [86] 张海英,王永健,许勇,等.黄瓜种质资源遗传亲缘关系的RAPD分析[J].园艺学报,1998,(04):34-38. [87] 张慧,林萍萍,黄潮华,等.甘蔗DNA分子指纹图谱研究进展[J].中国糖料,2022,44(01):25-32. [88] 张立国.白菜抗根肿病KASP分子标记开发与资源材料鉴定[D].新疆:新疆农业大学,2023. [89] 张守润.利用幼苗及籽粒形态鉴定玉米品种真实性和纯度研究[J].甘肃农业科技,2010(04):11-14. [90] 张涛,常立春,郭春贵,等.辣椒高多态性KASP标记的开发[J].中国蔬菜,2023(11):34-46. [91] 张艳珍,李建龙,李卉,等.UV-C结合生物保鲜剂处理对水蜜桃常温保鲜与贮藏效果研究[J].华北农学报,2016,31(06):144-150. [92] 赵久然,王凤格,易红梅,等.我国玉米品种标准DNA指纹库构建研究及应用进展[J].作物杂志,2015(02):1-6+170. [93] 赵磊.大气NO2污染下园林植物的光谱特征及光合特性研究[D].武汉:华中农业大学,2013. [94] 赵威,徐晓美,徐小万,等.基于SSR分子标记的‘汇丰2号’辣椒杂交种子纯度和真实性鉴定[J].广东农业科学,2023,50(11):59-65. [95] 赵维峰,张艳芳,刘胜辉,等.不同套袋时间和果袋对菠萝产量和品质的影响[J].广东农业科学,2019,46(04):27-33. [96] 周子健.基于全基因组重测序技术的燕麦β-葡聚糖SNP位点开发[D].呼和浩特:内蒙古农业大学,2023. [97] 朱岩芳.作物品种分子标记鉴定及指纹图谱构建研究[D].杭州:浙江大学,2013. [98] 刘栓桃,张志刚,王立华,等.牛牌19大白菜杂交种种子纯度快速鉴定方法研究[J].中国蔬菜,2020(03):28-32. [99] Aaron M, Matthew H, Eric B, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data[J]. Genome Research, 2010, 20(9):1297-1303. [100] Avellaneda L, Johnson T, Gutierrez R, et al. Development of a novel five-dye panel for human identification insertion/deletion (INDEL) polymorphisms[J]. Journal of Forensic Sciences, 2024. [101] Baird NA, Etter PD, Atwood TS, et al. Rapid SNP discovery and genetic mapping using se-quenced RAD markers[J]. PLoS One. 2008, 3(10):3376. [102] Chen Z, Wang M, Barkley N, et al. A simple allele-specific PCR assay for detecting FAD, alleles in both A and B genomes of the cultivated peanut for high-oleate trait selectio[J]. Plant Molecular Biology Reporter. 2010, 28(3):542-548. [103] Danecek P, Auton A, Abecasis G, et al. The variant call format and VCFtools[J]. Bioinformatics (Oxford, England), 2011, 27(15):2156-8. [104] Danecek P, Bonfield J, Liddle J, et al. Twelve years of SAMtools and BCFtools[J]. Gigascience. 2021, 10(2):giab08. [105] Delannay I, Staub J. Molecular markers assist in the development of diverse inbred backcross lines in European Long cucumber (Cucumis sativus L.) [J]. Euphytica, 2011, 178, 229-245. [106] Dieringer D. Two distinct modes of microsatellite mutation processes: evidence from the complete genomic sequences of nine species[J]. Genome Research, 2003, 13(10):2242–2251. [107] Durstewitz G, Polley A, Plieske J, et al. SNP discovery by amplicon sequencing and multiplex SNPgenotyping in the allopolyploid species Brassica napus[J]. Genome, 2010, 53(11):948-956. [108] Fei L. A systematic evaluation of copy number alterations detection methods on real SNP array and deep sequencing data[J]. BMC Bioinformatics, 2019, 20(S25):692. [109] Gebretsadik K., Qiu X., Dong S. et al. Molecular research progress and improvement approach of fruit quality traits in cucmber[J]. Theor Appl Genet, 2021, 134(11):1-18 [110] Slifer SH. PLINK:Key Functions for Data Analysis[J]. Current Protocols in Human Genetics, 2018, 97(1):e59. [111] Heng L, Richard D. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics (Oxford, England), 2009, 25(14):1754-60. [112] Huang S, Li R, Zhang Z, et al. The genome of the cucumber, Cucumis sativus L[J]. Nature Genet-ics, 2009, 41(12):1275-1281. [113] Carey S, Becklund L, Fabre P, et al. Optimizing the lysis step in CTAB DNA extraction of silica-dried and herbarium leaf tissues[J]. Applications in Plant Sciences, 2023, 11(3):e11522-e11522. [114] Lander E. The new genomics: global views of biology[J]. Science, 1996, 274(5287):536-539. [115] Li Q, Li H, Huang W, et al. A chromosome-scale genome assembly of cucumber (Cucumis sativus L.)[J]. GigaScience, 2019, 8(6):giz072. [116] Nadeem A , Ahmed Z., Hussain S, et al. On-tree fruit bagging and cold storage maintain the post-harvest quality of mango fruit[J]. Horticulturae, 2022, 8(9), 814. [117] Nei M, Masatoshi Nei, Wen-Hsiung Li. Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases[J]. Proc Natl Acad Sci U S A, 1979, 76(10):5269-5273 [118] Nevame M, Xia L, Yingchun X, et al. Agarose-resolvable InDel markers based on whole genome re-sequencing in cucumber[J]. Scientific Reports, 2021, 11(1):3872-3872. [119] Niu R, Shang H, Wei H, et al. Genetic Analysis of 35 microsatellite loci in 5 lineages of Xishuangbanna miniature pig inbred line[J]. ActaGenetica Sinica, 2001, 28(6):518-526. [120] Pablo C.Variant Annotation and Functional Prediction: SnpEff[J]. Methods in Molecular Biology (Clifton, N.J.), 2022, (2493)289-314. [121] Semagn K, Babu R, Hearne S, et al. Single nucleotide polymorphism genotyping using Kompeti-tive Allele Specific PCR (KASP): Overview of the technology and its application in crop im-provement[J]. Molecular Breeding, 2014, 33(1):1-14. [122] Shakeel M, Ilyas M, Kazi M. Evaluation of synthetic hexaploid wheats (derivative of durum wheats and Aegilops tauschii accessions) for studying genetic diversity using randomly amplified polymorphic DNA (RAPD) markers[J]. Molecular Biology Reports, 2013, 40(1):21-26. |
中图分类号: | S6 |
开放日期: | 2024-06-14 |