中文题名: | 犬鼻腔菌群在抗流感病毒感染过程中的作用及其免疫调控机制研究 |
姓名: | |
学号: | 2020207019 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090602 |
学科名称: | 农学 - 兽医学 - 预防兽医学 |
学生类型: | 博士 |
学位: | 兽医博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 兽医微生物学与免疫学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-05-01 |
答辩日期: | 2025-05-29 |
外文题名: | The Role Of Canine Nasal Microbiota In Anti-Influenza Viral Infection And Its Immunoregulatory Mechanisms |
中文关键词: | |
外文关键词: | Canine ; Nasal microbiota ; Influenza Virus ; Lactobacillus plantarum ; Immune regulation |
中文摘要: |
呼吸道在抵御病原感染方面发挥着关键作用。作为上呼吸道的重要组成部分,鼻腔是许多病原首次接触和入侵的主要靶位。已有研究表明,鼻腔菌群的组成与宿主对病原的易感性密切相关,但其具体机制尚不清楚。犬作为与人类密切接触的伴侣动物,其家庭地位越来越重要,研究犬鼻腔菌群不仅对犬类健康管理至关重要,还可为理解微生物与宿主的复杂关系、防控人兽共患病提供新视角。现阶段关于犬的鼻腔菌群组成特征及特定菌群介导的机体免疫调节机制研究尚未见报道。 近年来,流感病毒已成为影响犬呼吸道健康的重要病原。目前关于流感病毒与呼吸道菌群之间的关系,是医学微生物学关注的重点研究领域之一,但是犬流感病毒(Canine influenza virus,CIV)感染与呼吸道菌群组成及二者之间的关系尚属研究空白。有鉴于此,本研究利用16S rRNA测序表征了健康比格犬呼吸道菌群的组成,在此基础上,结合多组学分析以及细胞水平和机体水平的试验验证,系统地解析了CIV感染后犬鼻腔及肺脏的病毒滴度、宿主基因表达谱与菌群动态变化的潜在联系,并筛选出一株犬源乳酸菌,证实其可通过激活CIV感染细胞的I型干扰素信号通路并调控自噬流进而抑制CIV复制。该研究结果揭示了犬鼻腔菌群在 CIV 感染中的关键作用及其免疫调控机制。 1 犬鼻腔菌群失调对流感病毒感染致病特性的影响及鼻腔菌群组成和功能分析 利用两种广谱抗生素软膏(莫匹罗星和新霉素)处理,构建比格犬鼻腔菌群失调模型,结合16S rRNA测序和功能预测分析了犬鼻腔菌群组成以及菌群动态。同时,探讨了菌群失调对犬流感病毒感染的影响。结果显示,相比正常对照组(Nor),抗生素处理显著改变了鼻腔菌群结构(p < 0.05),并降低了菌群 α 多样性(Chao1 指数和Richness 指数,p < 0.01)。菌群 β 多样性分析表明,Bray-Curtis 相异度指数显著不同(p < 0.01)。鼻腔菌群组成分析显示,抗生素处理后,高峰度菌群(相对丰度 > 0.5%)的数量由原来的 37 个减少至 28 个。进一步分析表明,鼻腔菌群失调伴随变形杆菌门相对丰度的显著增加(p < 0.05)。此外,乳杆菌属(Lactobacillus)、普雷沃菌属(Prevotella)、巨单胞菌属(Prevotella)和 Lachnoclostridium 的相对丰度则显著下降。而在病毒感染后,抗生素处理鼻腔 CIV 感染比格鼻腔菌群中莫拉菌属(Moraxella)相对丰度显著上升(p < 0.05)。 基于菌群功能预测的 KEGG 通路分析结果显示,抗生素处理后共有 161 条菌群功能通路发生显著变化(p < 0.05),其中 8 条与病毒感染相关通路差异极显著(p < 0.0001)。此外,鼻腔菌群失调的犬在感染高剂量(107 PFU/mL)CIV后,表现出更为严重的临床症状,包括体重显著下降和持续性的高烧(最高温度达39.6℃)。采集 CIV 感染后第 1、3、6和 8 天的鼻腔样本及第8天的肺脏样本,利用空斑测定 CIV 滴度,结果表明,抗生素处理后感染 CIV 组(Abx)鼻腔病毒滴度除第1 天外始终高于未经抗生素处理的 CIV 感染组(WT)(p < 0.05)。间接免疫荧光试验结果表明,Abx组第 8 天肺脏组织中 CIV 的 NP 蛋白阳性荧光值也显著高于 WT 组。 鼻腔组织差异转录组学分析结果表明,WT组与 Abx 共有 1031 个差异表达基因(DEGs)。相比 WT 组,Abx 组鼻腔组织中炎症相关基因(Nlrp3、Il1b)显著上调,而先天免疫相关基因(Mx1、Oasl、Oas1、Oas2、Oas3、Isg15、Isg20、Ifih1)则显著下调(p < 0.05)。对鼻腔以及肺脏的病理观察发现,高剂量的 CIV 感染可以导致犬鼻腔以及肺脏出现严重损伤,然而Abx组比格犬在感染 CIV 后其鼻腔及气管黏膜损伤更加严重,并且肺脏出现更加严重的间质性肺炎,包括肺泡壁增生显著,并伴随大量炎性细胞浸润。然而,维持屏障相关基因在转录水平上并没有表现出与之相一致的的表达趋势。间接免疫荧光试验表明,相比于 Abx 组,WT 组鼻腔组织的 ZO-1 在感染 CIV 后出现了代偿性表达。研究表明,由抗生素介导鼻腔菌群异常失调通过影响一系列宿主机制来加重流感病毒感染。这些潜在机制包括调节宿主炎症阈值,影响屏障维持和修复以及 IFN 通路激活。 2 犬鼻腔菌群失调对流感病毒感染犬肺脏菌群及免疫应答的影响 采集 Nor、WT 和 Abx 组肺脏样本,通过 16S rRNA 测序和功能预测分析犬肺脏菌群组成以及菌群动态。结果显示,Nor 组犬肺脏菌群主要由双歧杆菌属(Bifidobacterium)、乳杆菌属、芽孢杆菌属(Bacillus)、莫拉菌属、链球菌属(Streptococcus)、拟杆菌属(Bacteroides)以及硝酸盐还原菌属(Nitratireductor)构成(相对丰度> 0.5% )。WT 组与 Nor 组肺脏菌群结构类似,而 Abx 组在感染 CIV 后肺脏菌群的多样性显著低于 Nor 和 WT 组。3 组肺脏菌群组成差异分析结果表明,相比于 WT 组,Abx 组中莫拉菌属、硝酸盐还原菌属(Nitratireductor)、中根瘤菌属(Mesorhizobium)、马文菌属(Marvinbryantia)和分枝杆菌属(Mycobacterium)的相对丰度显著增加(p < 0.01),而乳杆菌属和臭味杆菌属(Odoribacter)的相对丰度显著减少(p < 0.01)。Abx 组与 Nor 组肺脏菌群中的莫拉菌属和乳杆菌属的相对丰度也存在较大的差异(p < 0.01)。WT 组与 Nor 组在属水平上近乎没有差异菌群。三组之间菌群功能变化趋势与鼻腔菌群变化功能趋势一致,均在感染相关通路出现显著富集。 相比于鼻腔转录组结果,肺脏转录组结果表明,抗生素处理后的 Abx 组在感染流感病毒后,其肺脏组织也表现出比 WT 组更为严重的高水平炎症转录特征,同时伴随较低水平的干扰素刺激基因(ISGs)表达。Abx 组肺脏组织中 Toll样受体(TLRs)基因(Tlr1、Tlr2、Tlr3、Tlr6、Tlr7 和 Tlr8) 的转录水平显著高于 WT 组。此外,Abx 组在炎症因子(Il1b、Il6、Il17b、Il18、Nlrp3、Ccl2、Cxcl8 和 Cxcl14)相比于 WT 组均出现显著上调。此外,荧光定量PCR结果显示,Abx 组血液中 Ifnb1 及抗病毒蛋白基因 Isg15、Mx1及 Oas1 的转录水平显著低于 WT 组,而促炎因子 Il1b、Il6、Tnfa 以及 Casp3 的转录水平则显著高于 WT 组。这些结果表明,鼻腔菌群失调在一定程度上影响了流感病毒感染过程中机体的先天免疫抗病毒反应及炎症反应。 3 犬源乳酸菌介导宿主抗犬流感病毒感染的作用机制 将鼻腔和肺脏差异菌群及其功能通路与病毒滴度、宿主差异表达基因进行关联分析发现,某些菌群相对丰度变化与流感易感性密切相关,其中,乳杆菌属相对丰度与鼻腔及肺脏中的流感病毒滴度呈显著的负相关(p < 0.01)。鼻腔及肺脏菌群中,莫拉菌属和乳杆菌属的相对丰度变化与菌群功能通路的变化存在一定的关联性。具体表现为病毒感染相关通路与乳杆菌属的相对丰度呈显著负相关(p < 0.01),而与莫拉菌属的相对丰度呈显著正相关(p < 0.01)。此外,在肺脏菌群中,乳杆菌属的相对丰度与肺组织中Ifnb1 和Myd88 的转录水平呈显著正相关(p < 0.01),而与 Tnfa 和 Casp3 的转录水平呈显著负相关(p < 0.01)。而莫拉菌属的变化趋势与乳杆菌属则完全相反。这些数据表明,鼻腔菌群中乳杆菌属和莫拉菌属的动态变化与宿主对流感的易感性密切相关。 从比格犬体内分离获得 15 株犬源乳酸菌。其中,有 10 株乳酸菌与细胞共孵育不会影响细胞正常生长的活性。药敏试验表明,复合抗生素(莫匹罗星和新霉素)可以完全抑制 15 株犬源乳酸菌的生长。荧光素酶报告试验评估CIV感染细胞后的 IFNβ 启动子活性及 NF-κB 通路活性结果表明,植物乳杆菌(L.plantarum)C123 可以显著激活 CIV 感染细胞后的 IFNβ 启动子活性但不影响 NF-κB 通路活性。体外抗病毒试验结果表明,植物乳杆菌 C123 具有显著的抗病毒活性。在小鼠模型中,鼻腔接种植物乳杆菌 C123 可在一定程度上抑制流感病毒在鼻腔和肺脏的复制,并减轻 CIV 感染引起的病理损伤。此外,植物乳杆菌 C123 与 CIV 共感染细胞试验结果显示,该菌可通过 IFN-TBK1 信号通路激活 IFN 并影响病毒感染引起的自噬流抑制作用来发挥抗病毒作用。 综上,本研究探究了犬鼻腔菌群组成及其动态变化在流感病毒感染中的潜在作用,研究结果为开发基于益生菌干预的呼吸道病毒感染防控策略提供了新的思路,并为揭示鼻腔菌群调控宿主免疫介导的抗病毒机制奠定了基础。 |
外文摘要: |
The respiratory microbiota plays a crucial role in defending against pathogenic infections. As a key component of the upper respiratory tract, the nasal cavity serves as a primary site for initial contact and invasion by many pathogens. The composition of the nasal microbiota is closely linked to host susceptibility to infection, yet the underlying mechanisms remain unclear. Despite the close contact between dogs and humans, systematic investigations into the composition of the canine nasal microbiota and its potential immunomodulatory roles are still lacking. In recent years, canine influenza virus (CIV) has emerged as a major pathogen affecting canine respiratory health. However, the interaction between CIV infection and the composition and temporal dynamics of the canine respiratory microbiota has not been reported. The role of the nasal microbiota in mediating resistance to CIV and its associated immune mechanisms remains to be elucidated.Here, we characterized the respiratory microbiota of healthy beagle dogs using 16S rRNA gene sequencing. We then integrated multi-omics analyses with experimental validation to investigate the relationships among viral loads in the nasal cavity and lungs, host gene expression profiles, and microbial community dynamics following CIV infection. Notably, we identified a canine-derived Lactobacillus strain that suppresses CIV replication by activating the host type I interferon signaling pathway and modulating autophagic flux. These findings provide initial evidence for the key role of specific nasal microbiota in regulating host immune responses during CIV infection. 1 Impact of nasal microbiota dysbiosis on the pathogenicity of influenza virus infection and functional profiling of the canine nasal microbiome A nasal microbiota dysbiosis model was established in Beagle dogs using two broad-spectrum antibiotic ointments (mupirocin and neomycin). The microbiota composition and dynamics were analyzed through 16S rRNA sequencing and functional prediction analysis. The effect of microbiota dysbiosis on CIV infection was explored. The results showed that compared to the normal control group (Nor), antibiotic treatment significantly altered the nasal microbiota structure (p < 0.05) and reduced microbiota α - diversity (Chao1 index and Richness index, p < 0.01). β - diversity analysis revealed a significant difference in the Bray-Curtis dissimilarity index (p < 0.01). Analysis of nasal microbiota composition showed that the number of highly abundant microbiota (relative abundance > 0.5%) decreased from 37 to 28 following antibiotic treatment. Further analysis indicated a significant increase in the relative abundance of Proteobacteria (p < 0.05). Moreover, the relative abundance of Lactobacillus, Prevotella, Moraxella, and Lachnoclostridium significantly decreased. After viral infection, the relative abundance of Moraxella in the antibiotic-treated CIV-infected Beagle nasal microbiota significantly increased (p < 0.05). KEGG pathway analysis based on functional predictions showed that 161 microbial functional pathways were significantly altered (p < 0.05) following antibiotic treatment, with eight pathways strongly associated with viral infection showing highly significant differences (p< 0.0001). Furthermore, dogs with dysbiotic nasal microbiota infected with a high dose (107 PFU/mL) of CIV exhibited more severe clinical symptoms, including significant weight loss and persistent high fever (up to 39.6°C). Nasal samples collected on days 1, 3, 6, and 8 post-infection and lung samples on day 8 were used to determine CIV titers by plaque assay. The results indicated that CIV titers in the nasal cavities of antibiotic-treated dogs (Abx) were consistently higher than in the untreated CIV-infected group (WT) after day 1 (p < 0.05). Indirect immunofluorescence assays showed that CIV NP protein positivity in lung tissues on day 8 was significantly higher in the Abx group compared to the WT group. Differential transcriptomic analysis of nasal tissue revealed 1031 differentially expressed genes (DEGs) between the WT and Abx groups. Compared to the WT group, the Abx group exhibited a significant upregulation of inflammation-related genes (Nlrp3, Il1b), and a significant downregulation of innate immunity-related genes (Mx1, Oasl, Oas1, Oas2, Oas3, Isg15, Isg20, Ifih1) (p < 0.05). Pathological observations of the nasal and lung tissues indicated that high-dose CIV infection caused severe damage to both the nasal and lung tissues. However, the Abx group exhibited even more severe nasal and tracheal mucosal damage and more pronounced interstitial pneumonia in the lungs, including significant alveolar wall hyperplasia and extensive inflammatory cell infiltration. Interestingly, barrier-related genes did not show expression patterns consistent with these tissue damages at the transcriptional level. Indirect immunofluorescence assays revealed compensatory expression of ZO-1 in the nasal tissue of the WT group after CIV infection, in contrast to the Abx group. The study suggests that antibiotic-induced nasal microbiota dysbiosis exacerbates CIV infection through the modulation of host mechanisms, including altering the inflammation threshold, affecting barrier maintenance and repair, and modulating IFN pathway activation. 2 Impact of nasal microbiota dysbiosis on lung microbiota composition and immune response during influenza virus infection in dogs Nasal and lung samples from the Nor, WT, and Abx groups were collected and analyzed for microbiota composition and dynamics using 16S rRNA sequencing and functional prediction analysis. The results showed that the lung microbiota of the Nor group was primarily composed of Bifidobacterium, Lactobacillus, Bacillus, Moraxella, Streptococcus, Bacteroides, and Nitratireductor (relative abundance > 0.5%). The lung microbiota structure of the WT group was similar to that of the Nor group, while the diversity of the lung microbiota in the Abx group was significantly lower than that in the Nor and WT groups after CIV infection. Microbiota composition analysis revealed that, compared to the WT group, the Abx group exhibited a significant increase in the relative abundance of Moraxella, Nitratireductor, Mesorhizobium, Marvinbryantia, and Mycobacterium (p < 0.01), whereas the relative abundance of Lactobacillus and Odoribacter significantly decreased (p < 0.01). Significant differences in the relative abundance of Moraxella and Lactobacillus were also observed between the Abx and Nor groups (p < 0.01). No significant differences in microbiota composition were observed at the genus level between the WT and Nor groups. The functional changes in the microbiota of the three groups followed a similar trend to that observed in the nasal microbiota, with significant enrichment in infection-related pathways. Compared to the nasal transcriptome results, the lung transcriptome analysis revealed that, after antibiotic treatment, the Abx group exhibited more severe inflammatory transcriptional features in lung tissues following CIV infection compared to the WT group, along with lower expression levels of interferon-stimulated genes (ISGs). The transcription levels of Toll-like receptor (TLR) genes (Tlr1, Tlr2, Tlr3, Tlr6, Tlr7, and Tlr8) were significantly higher in the Abx group compared to the WT group. Additionally, the expression of inflammatory factors (Il1b, Il6, Il17b, Il18, Nlrp3, Ccl2, Cxcl8, and Cxcl14) was significantly upregulated in the Abx group compared to the WT group. Moreover, quantitative PCR results showed that the transcription levels of Ifnb1 and antiviral protein genes Isg15, Mx1, and Oas1 were significantly lower in the Abx group compared to the WT group, whereas pro-inflammatory factors Il1b, Il6, Tnfa, and Casp3 were significantly higher in the Abx group. These results suggest that nasal microbiota dysbiosis may, to some extent, influence the innate immune antiviral response and inflammatory response during CIV infection. 3 Mechanism of host antiviral activity mediated by canine-derived lactic acid bacteria against canine influenza virus infection Correlation analysis of the differential microbiota and functional pathways in the nasal cavity and lungs with viral titers and host differentially expressed genes revealed that certain microbiota changes were closely associated with influenza susceptibility. Specifically, the relative abundance of Lactobacillus was significantly negatively correlated with influenza virus titers in the nasal cavity and lungs (p < 0.01). In the nasal and lung microbiota, the relative abundance changes of Moraxella and Lactobacillus were associated with changes in microbiota functional pathways, with virus infection-related pathways showing a significant negative correlation with Lactobacillus (p < 0.01) and a significant positive correlation with Moraxella (p < 0.01). Additionally, in the lung microbiota, the relative abundance of Lactobacillus was significantly positively correlated with the transcription levels of Ifnb1 and Myd88 in lung tissues (p < 0.01), while it was significantly negatively correlated with the transcription levels of Tnfa and Casp3 (p < 0.01). In contrast, the trends for Moraxella were completely opposite to those of Lactobacillus. These data suggest that the dynamic changes in Lactobacillus and Moraxella in the nasal microbiota are closely related to the host's susceptibility to influenza. Fifteen strains of canine-derived lactic acid bacteria (LAB) were isolated from Beagle dogs. Of these, 10 strains did not affect cell viability when co-incubated with cells. Antibiotic susceptibility testing showed that a combination of antibiotics (mupirocin and neomycin) completely inhibited the growth of all 15 strains of canine-derived lactic acid bacteria. Luciferase reporter assays for the IFNβ promoter and NF-κB activity indicated that L.plantarum C123 significantly activated IFNβ activity but had no effect on NF-κB pathway activity. In vitro antiviral tests showed that L.plantarum C123 exhibited significant antiviral activity. In the mouse model, intranasal inoculation of L.plantarum C123 inhibited influenza virus replication in the nasal cavity and lungs to some extent and alleviated the pathological damage caused by CIV infection. Moreover, co-infection experiments with L.plantarum C123 and CIV in cells showed that this bacterium exerted its antiviral effect by activating IFN through the IFN-TBK1 signaling pathway and influencing autophagic flux inhibition caused by viral infection. In conclusion, this study provides a preliminary investigation into the composition and dynamic changes of the nasal microbiota in dogs during influenza virus infection. Our findings offer new insights for developing probiotic-based strategies to prevent and control respiratory viral infections and lay the groundwork for elucidating the nasal microbiota-host immune interactions that mediate antiviral defense. |
参考文献: |
[1] Bakaletz L.O. Viral-bacterial co-infections in the respiratory tract[J]. Current Opinion in Microbiology, 2017, 35: 30-35. [2] Beck J.M., Young V.B., Huffnagle G.B. The microbiome of the lung[J]. Translational Research, 2012, 160(4): 258-266. [3] Biesbroek G., Bosch A.A., Wang X., et al. The impact of breastfeeding on nasopharyngeal microbial communities in infants[J]. American Journal Of Respiratory And Critical Care Medicine, 2014, 190(3): 298-308. [4] Biesbroek G., Tsivtsivadze E., Sanders E.A., et al. Early respiratory microbiota composition determines bacterial succession patterns and respiratory health in children[J]. American Journal Of Respiratory And Critical Care Medicine, 2014, 190(11): 1283-1292. [5] Bogaert D., De Groot R., Hermans P.W. Streptococcus pneumoniae colonisation: the key to pneumococcal disease[J]. The Lancet Infectious Diseases, 2004, 4(3): 144-154. [6] Bohnhoff M., Drake B.L., Miller C.P. Effect of streptomycin on susceptibility of intestinal tract to experimental Salmonella infection[J]. Proceedings of the Society for Experimental Biology and Medicine, 1954, 86(1): 132-137. [7] Bosch A., De Steenhuijsen Piters W.A., Van Houten M.A., et al. Maturation of the infant respiratory microbiota, environmental drivers, and health consequences. A prospective cohort study[J]. American Journal Of Respiratory And Critical Care Medicine, 2017, 196(12): 1582-1590. [8] Bosch A.A., Levin E., Van Houten M.A., et al. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery[J]. eBioMedicine, 2016, 9: 336-345. [9] Brugger S.D., Eslami S.M., Pettigrew M.M., et al. Dolosigranulum pigrum Cooperation and Competition in Human Nasal Microbiota[J]. mSphere, 2020, 5(5). [10] Caballero S., Pamer E.G. Microbiota-mediated inflammation and antimicrobial defense in the intestine[J]. Annual Review of Immunology, 2015, 33: 227-256. [11] Chen S., Zhou Y., Chen Y., et al. fastp: an ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics, 2018, 34(17): i884-i890. [12] Chow J., Mazmanian S.K. A pathobiont of the microbiota balances host colonization and intestinal inflammation[J]. Cell Host & Microbe, 2010, 7(4): 265-276. [13] Claassen-Weitz S., Gardner-Lubbe S., Xia Y., et al. Succession and determinants of the early life nasopharyngeal microbiota in a South African birth cohort[J]. Microbiome, 2023, 11(1): 127. [14] Clua P., Tomokiyo M., Raya Tonetti F., et al. The role of alveolar macrophages in the improved protection against respiratory syncytial virus and pneumococcal superinfection induced by the peptidoglycan of Lactobacillus rhamnosus CRL1505[J]. Cells, 2020, 9(7). [15] Csardi G., Nepusz T. The igraph software[J]. Complex Systems, 2006, 1695: 1-9. [16] Cuthbertson L., Craven V., Bingle L., et al. The impact of persistent bacterial bronchitis on the pulmonary microbiome of children[J]. PLoS One, 2017, 12(12): e0190075. [17] De Steenhuijsen Piters W.A., Binkowska J., Bogaert D. Early life microbiota and respiratory tract infections[J]. Cell Host & Microbe, 2020, 28(2): 223-232. [18] De Steenhuijsen Piters W.A., Watson R.L., De Koff E.M., et al. Early-life viral infections are associated with disadvantageous immune and microbiota profiles and recurrent respiratory infections[J]. Nature Microbiology, 2022, 7(2): 224-237. [19] Deretic V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54(3): 437-453. [20] Dickson R.P., Erb-Downward J.R., Huffnagle G.B. Homeostasis and its disruption in the lung microbiome[J]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2015, 309(10): L1047-1055. [21] Didierlaurent A., Goulding J., Patel S., et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection[J]. Journal of Experimental Medicine, 2008, 205(2): 323-329. [22] Dominguez-Bello M.G., Costello E.K., Contreras M., et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(26): 11971-11975. [23] Edgar R.C. Updating the 97% identity threshold for 16S ribosomal RNA OTUs[J]. Bioinformatics, 2018, 34(14): 2371-2375. [24] Erttmann S.F., Swacha P., Aung K.M., et al. The gut microbiota prime systemic antiviral immunity via the cGAS-STING-IFN-I axis[J]. Immunity, 2022, 55(5): 847-861.e810. [25] Franzosa E.A., Sirota-Madi A., Avila-Pacheco J., et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease[J]. Nature Microbiology, 2019, 4(2): 293-305. [26] Gaiser R.A., Medema M.H., Kleerebezem M., et al. Draft genome sequence of a porcine commensal, rothia nasimurium, encoding a nonribosomal peptide synthetase predicted to produce the ionophore antibiotic valinomycin[J]. Genome Announcements, 2017, 5(22). [27] Gannage M., Dormann D., Albrecht R., et al. Matrix protein 2 of influenza A virus blocks autophagosome fusion with lysosomes[J]. Cell Host & Microbe, 2009, 6(4): 367-380. [28] Garcia-Nunez M., Millares L., Pomares X., et al. Severity-related changes of bronchial microbiome in chronic obstructive pulmonary disease[J]. Journal of Clinical Microbiology, 2014, 52(12): 4217-4223. [29] García F.C., Clegg T., neill D.B., et al. The temperature dependence of microbial community respiration is amplified by changes in species interactions[J]. Nature Microbiology, 2023, 8(2): 272-283. [30] Zrelli S., Amairia S., Zrelli M. Respiratory syndrome coronavirus-2 response: microbiota as lactobacilli could make the difference[J]. Journal of Medical Virology, 2021, 93(6): 3288-3293. [31] Gutierrez-Merino J., Isla B., Combes T., et al. Beneficial bacteria activate type-I interferon production via the intracellular cytosolic sensors STING and MAVS[J]. Gut Microbes, 2020, 11(4): 771-788. [32] Hassan F., Ren D., Zhang W., et al. Moraxella catarrhalis activates murine macrophages through multiple toll like receptors and has reduced clearance in lungs from TLR4 mutant mice[J]. PLoS One, 2012, 7(5): e37610. [33] Hatakka K., Savilahti E., Ponka A., et al. Effect of long term consumption of probiotic milk on infections in children attending day care centres: double blind, randomised trial[J]. The British Medical Journal, 2001, 322(7298): 1327. [34] Hau S.J., Nielsen D.W., Mou K.T., et al. Resilience of swine nasal microbiota to influenza A virus challenge in a longitudinal study[J]. Veterinary Research, 2023, 54(1): 38. [35] Hernández-Terán A., Mejía-Nepomuceno F., Herrera M.T., et al. Dysbiosis and structural disruption of the respiratory microbiota in COVID-19 patients with severe and fatal outcomes[J]. Scientific Reports, 2021, 11(1): 21297. [36] Hosang L., Canals R.C., Van Der Flier F.J., et al. The lung microbiome regulates brain autoimmunity[J]. Nature, 2022, 603(7899): 138-144. [37] Jin J., Liu X., Shiroguchi K. Long journey of 16S rRNA-amplicon sequencing toward cell-based functional bacterial microbiota characterization[J]. iMetaOmics, 2024, 1(1): e9. [38] Kaul D., Rathnasinghe R., Ferres M., et al. Microbiome disturbance and resilience dynamics of the upper respiratory tract during influenza A virus infection[J]. Nature Communications, 2020, 11(1): 2537. [39] Kim C.H. Control of lymphocyte functions by gut microbiota-derived short-chain fatty acids[J]. Cellular & Molecular Immunology, 2021, 18(5): 1161-1171. [40] Kolde R., Kolde M.R. Package ‘pheatmap’[J]. The R Journal, 2015, 1(7): 790. [41] Kopylova E., Noé L., Touzet H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data[J]. Bioinformatics, 2012, 28(24): 3211-3217. [42] Krismer B., Weidenmaier C., Zipperer A., et al. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota[J]. Nature Reviews Microbiology, 2017, 15(11): 675-687. [43] Kristensen M., De Steenhuijsen Piters W.a.A., Wildenbeest J., et al. The respiratory microbiome is linked to the severity of RSV infections and the persistence of symptoms in children[J]. Cell Reports Medicine, 2024, 5(12): 101836. [44] Lagier J.C., Dubourg G., Million M., et al. Culturing the human microbiota and culturomics[J]. Nature Reviews Microbiology, 2018, 16: 540-550. [45] Lange-Starke A., Petereit A., Truyen U., et al. Antiviral Potential of Selected Starter Cultures, Bacteriocins and D,L-Lactic Acid[J]. Food and Environmental Virology, 2014, 6(1): 42-47. [46] Lansbury L., Lim B., Baskaran V., et al. Co-infections in people with COVID-19: a systematic review and meta-analysis[J]. Journal of Infection, 2020, 81(2): 266-275. [47] Lee A.J., Ashkar A.A. The dual nature of type I and type II interferons[J]. Frontiers in Immunology, 2018, 9: 2061. [48] Leleiwi I., Rodriguez-Ramos J., Shaffer M., et al. Exposing new taxonomic variation with inflammation - a murine model-specific genome database for gut microbiome researchers[J]. Microbiome, 2023, 11(1): 114. [49] Li H., Wu X., Zeng H., et al. Unique microbial landscape in the human oropharynx during different types of acute respiratory tract infections[J]. Microbiome, 2023, 11(1): 157. [50] Li R., Li J., Zhou X. Lung microbiome: new insights into the pathogenesis of respiratory diseases[J]. Signal Transduction and Targeted Therapy, 2024, 9(1): 19. [51] Liang W., Yang Y., Gong S., et al. Airway dysbiosis accelerates lung function decline in chronic obstructive pulmonary disease[J]. Cell Host & Microbe, 2023, 31(6): 1054-1070 e1059. [52] Liu S., Cai X., Wu J., et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation[J]. Science, 2015, 347(6227): aaa2630. [53] Liu S., Zhao W., Lan P., et al. The microbiome in inflammatory bowel diseases: from pathogenesis to therapy[J]. Protein & Cell, 2021, 12(5): 331-345. [54] Liu Y.-X., Chen L., Ma T., et al. EasyAmplicon: An easy-to-use, open-source, reproducible, and community-based pipeline for amplicon data analysis in microbiome research[J]. iMeta, 2023, 2(1): e83. [55] Lloyd-Price J., Arze C., Ananthakrishnan A.N., et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569(7758): 655-662. [56] Lloyd C.M., Saglani S. Early-life respiratory infections and developmental immunity determine lifelong lung health[J]. Nature Immunology, 2023, 24(8): 1234-1243. [57] Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550. [58] Mac Aogain M., Lau K.J.X., Cai Z., et al. Metagenomics reveals a core macrolide resistome related to microbiota in chronic respiratory disease[J]. American Journal of Respiratory and Critical Care Medicine, 2020, 202(3): 433-447. [59] Maldonado-Gomez M.X., Martinez I., Bottacini F., et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome[J]. Cell Host & Microbe, 2016, 20(4): 515-526. [60] Mckee C.F., Ostriker E.C. Theory of star formation[J]. Annual Review of Astronomy and Astrophysics, 2007, 45(1): 565-687. [61] Mehta N., Goodenough D., Gupta N.K., et al. Recurrent Clostridioides difficile infection and outcome of fecal microbiota transplantation use: a population-based assessment[J]. Open Forum Infectious Diseases, 2024, 11(7). [62] Morris D.E., Cleary D.W., Clarke S.C. Secondary bacterial infections associated with influenza pandemics[J]. Frontiers in Microbiology, 2017, 8: 1041. [63] Natalini J.G., Singh S., Segal L.N. The dynamic lung microbiome in health and disease[J]. Nature Reviews Microbiology, 2023, 21(4): 222-235. [64] Niu J., Cui M., Yang X., et al. Microbiota-derived acetate enhances host antiviral response via NLRP3[J]. Nature Communications, 2023, 14(1): 642. [65] Norris M.J., Malhi M., Duan W., et al. Targeting intracellular ion homeostasis for the control of respiratory syncytial virus[J]. American Journal of Respiratory Cell and Molecular Biology, 2018, 59(6): 733-744. [66] Odendaal M.L., De Steenhuijsen Piters W.a.A., Franz E., et al. Host and environmental factors shape upper airway microbiota and respiratory health across the human lifespan[J]. Cell, 2024, 187(17): 4571-4585 e4515. [67] Pattaroni C., Watzenboeck M.L., Schneidegger S., et al. Early-life formation of the microbial and immunological environment of the human airways[J]. Cell Host & Microbe, 2018, 24(6): 857-865 e854. [68] Perry A.K., Chen G., Zheng D., et al. The host type I interferon response to viral and bacterial infections[J]. Cell Research, 2005, 15(6): 407-422. [69] Rahim M.A., Seo H., Kim S., et al. In vitro anti-tuberculosis effect of probiotic Lacticaseibacillus rhamnosus PMC203 isolated from vaginal microbiota[J]. Scientific Reports, 2022, 12(1): 8290. [70] Rowe H.M., Meliopoulos V.A., Iverson A., et al. Direct interactions with influenza promote bacterial adherence during respiratory infections[J]. Nature Microbiology, 2019, 4(8): 1328-1336. [71] Rylance J, Kankwatira A, Nelson DE., et al. Household air pollution and the lung microbiome of healthy adults in Malawi: a cross-sectional study[J]. BMC Microbiology, 2016, 16(1): 182. [72] Sadler A.J., Williams B.R. Interferon-inducible antiviral effectors[J]. Nature Reviews Immunology, 2008, 8(7): 559-568. [73] Schaupp L., Muth S., Rogell L., et al. Microbiota-Induced Type I interferons instruct a poised basal state of dendritic cells[J]. Cell, 2020, 181(5): 1080-1096 e1019. [74] Schneider W.M., Chevillotte M.D., Rice C.M. Interferon-stimulated genes: a complex web of host defenses[J]. Annual Review of Immunology, 2014, 32: 513-545. [75] Shekhar S., Schwarzer M., Dhariwal A., et al. Nasal microbiota transplantation: a gateway to novel treatments[J]. Trends in Microbiology, 2025, 33(3): 264-267. [76] Shekhar S., Schwarzer M., Dhariwal A., et al. Nasal microbiota transplantation: a gateway to novel treatments[J]. Trends in Microbiology, 2025. [77] Shenhav L., Fehr K., Reyna M.E., et al. Microbial colonization programs are structured by breastfeeding and guide healthy respiratory development[J]. Cell, 2024, 187(19): 5431-5452 e5420. [78] Shin N.R., Whon T.W., Bae J.W. Proteobacteria: microbial signature of dysbiosis in gut microbiota[J]. Trends in Biotechnology, 2015, 33(9): 496-503. [79] Smallcombe C.C., Linfield D.T., Harford T.J., et al. Disruption of the airway epithelial barrier in a murine model of respiratory syncytial virus infection[J]. American Journal of Physiology. Lung Cellular and Molecular Physiology, 2019, 316(2): L358-L368. [80] Spacova I., De Boeck I., Bron P.A., et al. Topical microbial therapeutics against respiratory viral infections[J]. Trends in Molecular Medicine, 2021, 27(6): 538-553. [81] Stefan K.L., Kim M.V., Iwasaki A., et al. Commensal microbiota modulation of natural resistance to virus infection[J]. Cell, 2020, 183(5): 1312-1324 e1310. [82] Suarez-Arrabal M.C., Mella C., Lopez S.M., et al. Nasopharyngeal bacterial burden and antibiotics: Influence on inflammatory markers and disease severity in infants with respiratory syncytial virus bronchiolitis[J]. Journal of Infection, 2015, 71(4): 458-469. [83] Sulaiman I., Wu B.G., Chung M., et al. Lower airway dysbiosis augments lung inflammatory injury in mild-to-moderate chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine, 2023, 208(10): 1101-1114. [84] Tkacz A., Hortala M., Poole P.S. Absolute quantitation of microbiota abundance in environmental samples[J]. Microbiome, 2018, 6(1): 110. [85] Todorov S.D., Wachsman M., Tome E., et al. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium[J]. Food Microbiol, 2010, 27(7): 869-879. [86] Toivonen L., Hasegawa K., Waris M., et al. Early nasal microbiota and acute respiratory infections during the first years of life[J]. Thorax, 2019, 74(6): 592-599. [87] Tsang T.K., Lee K.H., Foxman B., et al. Association between the respiratory microbiome and susceptibility to influenza virus infection[J]. Clinical Infectious Diseases, 2019, 71(5): 1195-1203. [88] Tsirigotaki M., Galanakis E. Impact of vaccines on Staphylococcus aureus colonization: A systematic review and meta-analysis[J]. Vaccine, 2023, 41(44): 6478-6487. [89] Turnbaugh P.J., Ley R.E., Hamady M., et al. The human microbiome project[J]. Nature, 2007, 449(7164): 804-810. [90] Wang B., Zhang L., Wang Y., et al. Alterations in microbiota of patients with COVID-19: potential mechanisms and therapeutic interventions[J]. Signal Transduction and Targeted Therapy, 2022, 7(1): 143. [91] Wang R., Zhu Y., Zhao J., et al. Autophagy promotes replication of influenza A virus in vitro[J]. Journal of Virology, 2019, 93(4). [92] Ward T., Larson J., Meulemans J., et al. BugBase Predicts Organism Level Microbiome Phenotypes[J]. 2017. [93] Wickham H. ggplot2[J]. Wiley Interdisciplinary Reviews: Computational Statistics, 2011, 3(2): 180-185. [94] Woese C.R., Fox G.E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms[J]. Proceedings of the National Academy of Sciences of the United States of America, 1977, 74(11): 5088-5090. [95] Wu B.G., Sulaiman I., Tsay J.J., et al. Episodic aspiration with oral commensals induces a MyD88-dependent, pulmonary T-Helper Cell Type 17 response that mitigates susceptibility to Streptococcus pneumoniae[J]. American Journal of Respiratory and Critical Care Medicine, 2021, 203(9): 1099-1111. [96] Wypych T.P., Wickramasinghe L.C., Marsland B.J. The influence of the microbiome on respiratory health[J]. Nature Immunology, 2019, 20(10): 1279-1290. [97] Xu R., Liu P., Zhang T., et al. Progressive deterioration of the upper respiratory tract and the gut microbiomes in children during the early infection stages of COVID-19[J]. Journal of Genetics and Genomics, 2021, 48(9): 803-814. [98] Xue Q., Xie Y., He Y., et al. Lung microbiome and cytokine profiles in different disease states of COPD: a cohort study[J]. Scientific Reports, 2023, 13(1): 5715. [99] Yamano K., Sawada M., Kikuchi R., et al. Optineurin provides a mitophagy contact site for TBK1 activation[J]. EMBO Journal, 2024, 43(5): 754-779. [100] Yan M., Pamp S.J., Fukuyama J., et al. Nasal microenvironments and interspecific interactions influence nasal microbiota complexity and S. aureus carriage[J]. Cell Host & Microbe, 2013, 14(6): 631-640. [101] Yang W., Bai X., Luan X., et al. Delicate regulation of IL-1beta-mediated inflammation by cyclophilin A[J]. Cell Reports, 2022, 38(11): 110513. [102] Ye L., Schnepf D., Staeheli P. Interferon-lambda orchestrates innate and adaptive mucosal immune responses[J]. Nature Reviews Immunology, 2019, 19(10): 614-625. [103] Yu G., Gail M.H., Consonni D., et al. Characterizing human lung tissue microbiota and its relationship to epidemiological and clinical features[J]. Genome Biology, 2016, 17(1): 163. [104] Yu G., Wang L.-G., Han Y., et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. Omics: a journal of integrative biology, 2012, 16(5): 284-287. [105] Zeineldin M., Lowe J., Aldridge B. Contribution of the mucosal microbiota to bovine respiratory health[J]. Trends in Microbiology, 2019, 27(9): 753-770. [106] Zhang J., Wu Y., Liu J., et al. Differential oral microbial input determines two microbiota pneumo-types associated with health status[J]. Advanced Science, 2022, 9(32): e2203115. [107] Zhang X., Zhang X., Zhang N., et al. Airway microbiome, host immune response and recurrent wheezing in infants with severe respiratory syncytial virus bronchiolitis[J]. Pediatric Allergy and Immunology, 2020, 31(3): 281-289. [108] Zhou F., Yu T., Du R., et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study[J]. The Lancet, 2020, 395(10229): 1054-1062. [109] Abt M.C., Osborne L.C., Monticelli L.A., et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity[J]. Immunity, 2012, 37(1): 158-170. [110] Avadhanula V., Rodriguez C.A., Devincenzo J.P., et al. Respiratory viruses augment the adhesion of bacterial pathogens to respiratory epithelium in a viral species- and cell type-dependent manner[J]. Journal of Virology, 2006, 80(4): 1629-1636. [111] Bai X., Yang W., Luan X., et al. Induction of cyclophilin a by influenza A virus infection facilitates group A Streptococcus coinfection[J]. Cell Reports, 2021, 35(7): 109159. [112] Bandoro C., Runstadler J.A. Bacterial lipopolysaccharide destabilizes influenza viruses[J]. mSphere, 2017, 2(5). [113] Berger A.K., Yi H., Kearns D.B., et al. Bacteria and bacterial envelope components enhance mammalian reovirus thermostability[J]. PLoS Pathog, 2017, 13(12): e1006768. [114] Bezemer G.F., Sagar S., Van Bergenhenegouwen J., et al. Dual role of Toll-like receptors in asthma and chronic obstructive pulmonary disease[J]. Pharmacological Reviews, 2012, 64(2): 337-358. [115] Botić T., Klingberg T.D., Weingartl H., et al. A novel eukaryotic cell culture model to study antiviral activity of potential probiotic bacteria[J]. International Journal of Food Microbiology, 2007, 115(2): 227-234. [116] Bunpapong N., Nonthabenjawan N., Chaiwong S., et al. Genetic characterization of canine influenza A virus (H3N2) in Thailand[J]. Virus Genes, 2014, 48(1): 56-63. [117] Caballero-Flores G., Pickard J.M., Núñez G. Microbiota-mediated colonization resistance: mechanisms and regulation[J]. Nature Reviews Microbiology, 2023, 21(6): 347-360. [118] Celada L.J., Kropski J.A., Herazo-Maya J.D., et al. PD-1 up-regulation on CD4(+) T cells promotes pulmonary fibrosis through STAT3-mediated IL-17A and TGF-β1 production[J]. Sci Transl Med, 2018, 10(460). [119] Chen H.W., Liu P.F., Liu Y.T., et al. Nasal commensal Staphylococcus epidermidis counteracts influenza virus[J]. Scientific Reports, 2016, 6: 27870. [120] Chen M., Lyu Y., Wu F., et al. Increased public health threat of avian-origin H3N2 influenza virus caused by its evolution in dogs[J]. Elife, 2023, 12. [121] Chetty A., Blekhman R. Multi-omic approaches for host-microbiome data integration[J]. Gut Microbes, 2024, 16(1): 2297860. [122] Cheung M.K., Lam W.Y., Fung W.Y., et al. Sputum microbiota in tuberculosis as revealed by 16S rRNA pyrosequencing[J]. PLoS One, 2013, 8(1): e54574. [123] Chow J., Tang H., Mazmanian S.K. Pathobionts of the gastrointestinal microbiota and inflammatory disease[J].Current Opinion in Immunology, 2011, 23(4): 473-480. [124] Clagnan E., Costanzo M., Visca A., et al. Culturomics-and metagenomics-based insights into the soil microbiome preservation and application for sustainable agriculture[J]. Frontiers in Microbiology, 2024, 15: 1473666. [125] Combe M., Garijo R., Geller R., et al. Single-Cell Analysis of RNA virus infection identifies multiple genetically diverse viral genomes within single infectious units[J]. Cell Host & Microbe, 2015, 18(4): 424-432. [126] Crawford P.C., Dubovi E.J., Castleman W.L., et al. Transmission of equine influenza virus to dogs[J]. Science, 2005, 310(5747): 482-485. [127] David S.C., Schaub A., Terrettaz C., et al. Stability of influenza A virus in droplets and aerosols is heightened by the presence of commensal respiratory bacteria[J]. Journal of Virology, 2024, 98(7): e0040924. [128] De Boeck I., Van Den Broek M.F.L., Allonsius C.N., et al. Lactobacilli have a niche in the human nose[J]. Cell Reports, 2020, 31(8): 107674. [129] Dickson R.P., Erb-Downward J.R., Freeman C.M., et al. Spatial variation in the healthy human lung microbiome and the adapted island model of lung biogeography[J]. Annals of the American Thoracic Society, 2015, 12(6): 821-830. [130] Dickson R.P., Erb-Downward J.R., Freeman C.M., et al. Bacterial topography of the healthy human lower respiratory tract[J]. mBio, 2017, 8(1). [131] Dickson R.P., Martinez F.J., Huffnagle G.B. The role of the microbiome in exacerbations of chronic lung diseases[J]. The Lancet, 2014, 384(9944): 691-702. [132] Dominguez-Bello M.G., Godoy-Vitorino F., Knight R., et al. Role of the microbiome in human development[J]. Gut, 2019, 68(6): 1108-1114. [133] Douglas G.M., Maffei V.J., Zaneveld J.R., et al. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688. [134] Endam L.M., Alromaih S., Gonzalez E., et al. Intranasal application of Lactococcus lactis W136 Is safe in chronic rhinosinusitis patients with previous sinus surgery[J]. Frontiers in Cellular and Infection Microbiology, 2020, 10: 440. [135] Ericsson A.C., Personett A.R., Grobman M.E., et al. Composition and predicted metabolic capacity of upper and lower airway microbiota of healthy dogs in relation to the fecal microbiota[J]. PLoS One, 2016, 11(5): e0154646. [136] Fuglsang E., Pizzolla A., Krych L., et al. Changes in gut microbiota prior to influenza a virus infection do not affect immune responses in pups or juvenile mice[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 319. [137] Gao J., Yi X., Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises[J]. Computational and Structural Biotechnology Journal, 2023, 21: 4933-4943. [138] Gassen N.C., Niemeyer D., Muth D., et al. SKP2 attenuates autophagy through Beclin1-ubiquitination and its inhibition reduces MERS-Coronavirus infection[J]. Nature Communications, 2019, 10(1): 5770. [139] Ge F.F., Shen H.X., Yang D.Q., et al. The biological characteristics and infection dynamics of a novel H3N2 canine influenza virus genotype in beagles[J]. Virology Journal, 2024, 21(1): 151. [140] Glendinning L., Collie D., Wright S., et al. Comparing microbiotas in the upper aerodigestive and lower respiratory tracts of lambs[J]. Microbiome, 2017, 5(1): 145. [141] Gore C., Munro K., Lay C., et al. Bifidobacterium pseudocatenulatum is associated with atopic eczema: a nested case-control study investigating the fecal microbiota of infants[J]. Journal of Allergy and Clinical Immunology, 2008, 121(1): 135-140. [142] Groeger D., Schiavi E., Grant R., et al. Intranasal Bifidobacterium longum protects against viral-induced lung inflammation and injury in a murine model of lethal influenza infection[J]. EBioMedicine, 2020, 60: 102981. [143] Guaní-Guerra E., Negrete-García M.C., Montes-Vizuet R., et al. Human β-defensin-2 induction in nasal mucosa after administration of bacterial lysates[J]. Archives Of Medical Research, 2011, 42(3): 189-194. [144] Hilty M., Burke C., Pedro H., et al. Disordered microbial communities in asthmatic airways[J]. PLoS One, 2010, 5(1): e8578. [145] Hu Q., Liu B., Fan Y., et al. Multi-omics association analysis reveals interactions between the oropharyngeal microbiome and the metabolome in pediatric patients with influenza A virus pneumonia[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 1011254. [146] Hui A.W., Lau H.W., Chan T.H., et al. The human microbiota: a new direction in the investigation of thoracic diseases[J]. Journal of Thoracic Disease, 2013, 5 Suppl 2(Suppl 2): S127-131. [147] Ichinohe T., Pang I.K., Kumamoto Y., et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(13): 5354-5359. [148] Igartua C., Davenport E.R., Gilad Y., et al. Host genetic variation in mucosal immunity pathways influences the upper airway microbiome[J]. Microbiome, 2017, 5(1): 16. [149] Jia G., Liu X., Che N., et al. Human-origin Lactobacillus salivarius AR809 protects against immunosuppression in S.aureus-induced pharyngitis via Akt-mediated NF-κB and autophagy signaling pathways[J]. Food & Function, 2020, 11(1): 270-284. [150] Jia Y., He T., Wu D., et al. The treatment of Qibai Pingfei Capsule on chronic obstructive pulmonary disease may be mediated by Th17/Treg balance and gut-lung axis microbiota[J]. Journal of Translational Medicine, 2022, 20(1): 281. [151] Kilbourne E.D. Influenza pandemics of the 20th century[J]. Emerging Infectious Diseases, 2006, 12(1): 9-14. [152] Kim S., Lee S., Kim T.Y., et al. Newly isolated Lactobacillus paracasei strain modulates lung immunity and improves the capacity to cope with influenza virus infection[J]. Microbiome, 2023, 11(1): 260. [153] Klein D., Palla G., Lange M., et al. Mapping cells through time and space with moscot[J]. Nature, 2025, 638(8052): 1065-1075. [154] Kristensen M., De Steenhuijsen Piters W.a.A., Wildenbeest J., et al. The respiratory microbiome is linked to the severity of RSV infections and the persistence of symptoms in children[J]. Cell Reports Medicine, 2024, 5(12): 101836. [155] Langille M.G., Zaneveld J., Caporaso J.G., et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology, 2013, 31(9): 814-821. [156] Lee E., Kim E.J., Kim B.H., et al. Molecular analyses of H3N2 canine influenza viruses isolated from Korea during 2013-2014[J]. Virus Genes, 2016, 52(2): 204-217. [157] Lee I.W., Kim Y.I., Lim G.J., et al. Comparison of the virulence and transmissibility of canine H3N2 influenza viruses and characterization of their canine adaptation factors[J]. Emerging Microbes & Infections, 2018, 7(1): 17. [158] Lee K.H., Gordon A., Foxman B. The role of respiratory viruses in the etiology of bacterial pneumonia: An ecological perspective[J]. Evolution Medicine And Public Health, 2016, 2016(1): 95-109. [159] Lee K.H., Gordon A., Shedden K., et al. The respiratory microbiome and susceptibility to influenza virus infection[J]. PLoS One, 2019, 14(1): e0207898. [160] Lee Y.N., Lee H.J., Lee D.H., et al. Severe canine influenza in dogs correlates with hyperchemokinemia and high viral load[J]. Virology, 2011, 417(1): 57-63. [161] Li M., Raza M., Song S., et al. Application of culturomics in fungal isolation from mangrove sediments[J]. Microbiome, 2023, 11(1): 272. [162] Li S., Shi Z., Jiao P., et al. Avian-origin H3N2 canine influenza A viruses in Southern China[J]. Infection Genetics And Evolution, 2010, 10(8): 1286-1288. [163] Liao Y., Wu Y.X., Tang M., et al. Microbes translocation from oral cavity to nasopharyngeal carcinoma in patients[J]. Nature Communications, 2024, 15(1): 1645. [164] Lin L., Yi X., Liu H., et al. The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans[J]. Nature Medicine, 2023, 29(7): 1750-1759. [165] Liu Y., Daniel S.G., Kim H.E., et al. Addition of cariogenic pathogens to complex oral microflora drives significant changes in biofilm compositions and functionalities[J]. Microbiome, 2023, 11(1): 123. [166] Liu Y., Fu C., Lu G., et al. Comparison of pathogenicity of different infectious doses of H3N2 canine influenza virus in dogs[J]. Front Vet Sci, 2020, 7: 580301. [167] Liu Y.X., Qin Y., Chen T., et al. A practical guide to amplicon and metagenomic analysis of microbiome data[J]. Protein & Cell, 2021, 12(5): 315-330. [168] Lu H.F., Li A., Zhang T., et al. Disordered oropharyngeal microbial communities in H7N9 patients with or without secondary bacterial lung infection[J]. Emerging Microbes & Infections, 2017, 6(12): e112. [169] Luo J., Lu G., Ye S., et al. Comparative pathogenesis of H3N2 canine influenza virus in beagle dogs challenged by intranasal and intratracheal inoculation[J]. Virus Research, 2018, 255: 147-153. [170] Lyu Y., Song S., Zhou L., et al. Canine influenza virus A(H3N2) clade with antigenic variation, China, 2016-2017[J]. Emerging Infectious Diseases, 2019, 25(1): 161-165. [171] Maier L., Stein-Thoeringer C., Ley R.E., et al. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective[J]. The Lancet Microbe, 2024, 5(8): 100843. [172] Man W.H., De Steenhuijsen Piters W.A., Bogaert D. The microbiota of the respiratory tract: gatekeeper to respiratory health[J]. Nature Reviews Microbiology, 2017, 15(5): 259-270. [173] Man W.H., Van Houten M.A., Mérelle M.E., et al. Bacterial and viral respiratory tract microbiota and host characteristics in children with lower respiratory tract infections: a matched case-control study[J]. The Lancet Respiratory Medicine, 2019, 7(5): 417-426. [174] Mani A., Henn C., Couch C., et al. A brain microbiome in salmonids at homeostasis[J]. Science Advances, 2024, 10(38): eado0277. [175] Manor O., Dai C.L., Kornilov S.A., et al. Health and disease markers correlate with gut microbiome composition across thousands of people[J]. Nature Communications, 2020, 11(1): 5206. [176] Mark Welch J.L., Dewhirst F.E., Borisy G.G. Biogeography of the oral microbiome: The site-specialist hypothesis[J]. Annual Review of Microbiology, 2019, 73: 335-358. [177] Marsh R.L., Kaestli M., Chang A.B., et al. The microbiota in bronchoalveolar lavage from young children with chronic lung disease includes taxa present in both the oropharynx and nasopharynx[J]. Microbiome, 2016, 4(1): 37. [178] Mastromarino P., Cacciotti F., Masci A., et al. Antiviral activity of Lactobacillus brevis towards herpes simplex virus type 2: role of cell wall associated components[J]. Anaerobe, 2011, 17(6): 334-336. [179] Mccullers J.A., Rehg J.E. Lethal synergism between influenza virus and Streptococcus pneumoniae: characterization of a mouse model and the role of platelet-activating factor receptor[J]. Journal of Infectious Diseases, 2002, 186(3): 341-350. [180] Mcmullen C., Alexander T.W., Léguillette R., et al. Topography of the respiratory tract bacterial microbiota in cattle[J]. Microbiome, 2020, 8(1): 91. [181] Morris A., Beck J.M., Schloss P.D., et al. Comparison of the respiratory microbiome in healthy nonsmokers and smokers[J]. American Journal of Respiratory and Critical Care Medicine, 2013, 187(10): 1067-1075. [182] Muggeo A., Perotin J.M., Brisebarre A., et al. Extended bacteria culture-based clustering identifies a phenotype associating increased cough and enterobacterales in stable chronic obstructive pulmonary disease[J]. Frontiers in Microbiology, 2021, 12: 781797. [183] Ndiaye C., Bassene H., Fonkou M.D.M., et al. The application of culturomics to explore african skin microbiota[J]. American Journal Of Tropical Medicine And Hygien, 2024, 111(6): 1331-1337. [184] Ortiz Moyano R., Raya Tonetti F., Tomokiyo M., et al. The ability of respiratory commensal bacteria to beneficially modulate the lung innate immune response is a strain dependent characteristic[J]. Microorganisms, 2020, 8(5). [185] Park H., Yeo S., Ryu C.B., et al. A streamlined culturomics case study for the human gut microbiota research[J]. Scientific Reports, 2024, 14(1): 20361. [186] Passali D., Passali G.C., Vesperini E., et al. The efficacy and tolerability of Streptococcus salivarius 24SMB and Streptococcus oralis 89a administered as nasal spray in the treatment of recurrent upper respiratory tract infections in children[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(1 Suppl): 67-72. [187] Pecoraro H.L., Bennett S., Spindel M.E., et al. Evolution of the hemagglutinin gene of H3N8 canine influenza virus in dogs[J]. Virus Genes, 2014, 49(3): 393-399. [188] Pensaert M., Ottis K., Vandeputte J., et al. Evidence for the natural transmission of influenza A virus from wild ducts to swine and its potential importance for man[J]. Bulletin of the World Health Organization, 1981, 59(1): 75-78. [189] Pirolo M., Espinosa-Gongora C., Bogaert D., et al. The porcine respiratory microbiome: recent insights and future challenges[J]. Animal Microbiome, 2021, 3(1): 9. [190] Qin T., Geng T., Zhou H., et al. Super-dominant pathobiontic bacteria in the nasopharyngeal microbiota as causative agents of secondary bacterial infection in influenza patients[J]. Emerging Microbes & Infections, 2020, 9(1): 605-615. [191] Robinson C.M., Jesudhasan P.R., Pfeiffer J.K. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus[J]. Cell Host & Microbe, 2014, 15(1): 36-46. [192] Rognes T., Flouri T., Nichols B., et al. VSEARCH: a versatile open source tool for metagenomics[J]. PeerJ, 2016, 4: e2584. [193] Rohart F., Gautier B., Singh A., et al. mixOmics: An R package for 'omics feature selection and multiple data integration[J]. PLoS Computational Biology, 2017, 13(11): e1005752. [194] Roos K., Simark-Mattsson C., Grahn Håkansson E., et al. Can probiotic lactobacilli eradicate persistent carriage of meticillin-resistant Staphylococcus aureus?[J]. Journal of Hospital Infection, 2011, 78(1): 77-78. [195] Rosas-Salazar C., Kimura K.S., Shilts M.H., et al. SARS-CoV-2 infection and viral load are associated with the upper respiratory tract microbiome[J]. Journal of Allergy and Clinical Immunology, 2021, 147(4): 1226-1233.e1222. [196] Schneeberger P.H.H., Prescod J., Levy L., et al. Microbiota analysis optimization for human bronchoalveolar lavage fluid[J]. Microbiome, 2019, 7(1): 141. [197] Shanahan F., Ghosh T.S., O'toole P.W. The healthy microbiome-what is the definition of a healthy gut microbiome?[J]. Gastroenterology, 2021, 160(2): 483-494. [198] Singh N., Vats A., Sharma A., et al. The development of lower respiratory tract microbiome in mice[J]. Microbiome, 2017, 5(1): 61. [199] Singh S., Natalini J.G., Segal L.N. Lung microbial-host interface through the lens of multi-omics[J]. Mucosal Immunology, 2022, 15(5): 837-845. [200] Slevogt H., Seybold J., Tiwari K.N., et al. Moraxella catarrhalis is internalized in respiratory epithelial cells by a trigger-like mechanism and initiates a TLR2- and partly NOD1-dependent inflammatory immune response[J]. Cellular Microbiology, 2007, 9(3): 694-707. [201] Sogin M.L., Morrison H.G., Huber J.A., et al. Microbial diversity in the deep sea and the underexplored "rare biosphere"[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(32): 12115-12120. [202] Song D., Kang B., Lee C., et al. Transmission of avian influenza virus (H3N2) to dogs[J]. Emerging Infectious Diseases, 2008, 14(5): 741-746. [203] Steed A.L., Christophi G.P., Kaiko G.E., et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon[J]. Science, 2017, 357(6350): 498-502. [204] Stubbendieck R.M., Dissanayake E., Burnham P.M., et al. Rothia from the human nose inhibit Moraxella catarrhalis colonization with a secreted peptidoglycan endopeptidase[J]. mBio, 2023, 14(2): e0046423. [205] Sugimoto A., Numaguchi T., Chihama R., et al. Identification of novel lactic acid bacteria with enhanced protective effects against influenza virus[J]. PLoS One, 2023, 18(8): e0273604. [206] Sulaiman I., Chung M., Angel L., et al. Microbial signatures in the lower airways of mechanically ventilated COVID-19 patients associated with poor clinical outcome[J]. Nature Microbiology, 2021, 6(10): 1245-1258. [207] Sun Y., Liu Y., Li J., et al. Characterization of lung and oral microbiomes in lung cancer patients using culturomics and 16S rRNA Gene Sequencing[J]. Microbiology Spectrum, 2023, 11(3): e0031423. [208] Sun Y., Sun S., Ma J., et al. Identification and characterization of avian-origin H3N2 canine influenza viruses in northern China during 2009-2010[J]. Virology, 2013, 435(2): 301-307. [209] Tangwangvivat R., Chaiyawong S., Nonthabenjawan N., et al. Transmission and pathogenicity of canine H3N2 influenza virus in dog and guinea pig models[J]. Virology Journal, 2022, 19(1): 162. [210] Thibeault C., Suttorp N., Opitz B. The microbiota in pneumonia: From protection to predisposition[J]. Science Translational Medicine, 2021, 13(576). [211] Tian S., Ding T., Li H. Oral microbiome in human health and diseases[J]. mLife, 2024, 3(3): 367-383. [212] Tong S., Zhu X., Li Y., et al. New world bats harbor diverse influenza A viruses[J]. PLoS Pathog, 2013, 9(10): e1003657. [213] Trompette A., Gollwitzer E.S., Pattaroni C., et al. Dietary fiber confers protection against flu by shaping ly6c(-) patrolling monocyte hematopoiesis and CD8(+) T cell metabolism[J]. Immunity, 2018, 48(5): 992-1005.e1008. [214] Vlasblom A.A., Duim B., Patel S., et al. The developing pig respiratory microbiome harbors strains antagonistic to common respiratory pathogens[J]. mSystems, 2024, 9(10): e0062624. [215] Voorhees I.E.H., Glaser A.L., Toohey-Kurth K., et al. Spread of canine influenza A(H3N2) virus, United States[J]. Emerging Infectious Diseases, 2017, 23(12): 1950-1957. [216] Waddell G.H., Teigland M.B., Sigel M.M. A new influenza virus associated with equine respiratory disease[J]. Journal of the American Veterinary Medical Association, 1963, 143: 587-590. [217] Wang J., Li F., Sun R., et al. Bacterial colonization dampens influenza-mediated acute lung injury via induction of M2 alveolar macrophages[J]. Nature Communications, 2013, 4: 2106. [218] Wang Z., Chai W., Burwinkel M., et al. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro[J]. PLoS One, 2013, 8(1): e53043. [219] Webster R.G., Bean W.J., Gorman O.T., et al. Evolution and ecology of influenza A viruses[J]. FEMS Microbiology Reviews, 1992, 56(1): 152-179. [220] Wemheuer F., Taylor J.A., Daniel R., et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences[J]. Environmental Microbiome, 2020, 15(1): 11. [221] Wise H.M., Hutchinson E.C., Jagger B.W., et al. Identification of a novel splice variant form of the influenza A virus M2 ion channel with an antigenically distinct ectodomain[J]. PLoS Pathog, 2012, 8(11): e1002998. [222] Wu C.Y., Jan J.T., Ma S.H., et al. Small molecules targeting severe acute respiratory syndrome human coronavirus[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(27): 10012-10017. [223] Xie X., Na W., Kang A., et al. Comparison of the virulence of three H3N2 canine influenza virus isolates from Korea and China in mouse and Guinea pig models[J]. BMC Veterinary Research, 2018, 14(1): 149. [224] Yan Q., Xing J., Zou R., et al. LysoPE mediated by respiratory microorganism Aeromicrobium camelliae alleviates H9N2 challenge in mice[J]. Veterinary Research, 2024, 55(1): 136. [225] Yan Z., Chen B., Yang Y., et al. Multi-omics analyses of airway host-microbe interactions in chronic obstructive pulmonary disease identify potential therapeutic interventions[J]. Nature Microbiology, 2022, 7(9): 1361-1375. [226] Yang J., Gong Y., Zhang C., et al. Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges[J]. Landscape of human organoids: Ideal model in clinics and research, 2022, 3(5): 100306. [227] Yildiz S., Mazel-Sanchez B., Kandasamy M., et al. Influenza A virus infection impacts systemic microbiota dynamics and causes quantitative enteric dysbiosis[J]. Microbiome, 2018, 6(1): 9. [228] Yu K., Tenaglia V., Chua E.G., et al. Interactions between bacteria in the human nasopharynx: a scoping review[J]. The Lancet Microbe, 2025: 101062. [229] Yu Y., Wang W., Zhang F. The next generation fecal microbiota transplantation: To transplant bacteria or virome[J]. Adv Sci (Weinh), 2023, 10(35): e2301097. [230] Zhang L., Lee H., Grimm M.C., et al. Campylobacter concisus and inflammatory bowel disease[J]. World Journal of Gastroenterology, 2014, 20(5): 1259-1267. [231] Zhu H., Hughes J., Murcia P.R. Origins and evolutionary dynamics of H3N2 canine influenza virus[J]. Journal of Virology, 2015, 89(10): 5406-5418. |
中图分类号: | S85 |
开放日期: | 2025-06-11 |