- 无标题文档
查看论文信息

中文题名:

 BRD3/4/6/7/9 参与植物 NuA4 组装及功能初探    

姓名:

 代幻幻    

学号:

 2022116011    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071001    

学科名称:

 理学 - 生物学 - 植物学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 南京农业大学    

院系:

 生命科学学院    

专业:

 植物学    

研究方向:

 植物发育生物学    

第一导师姓名:

 徐益峰    

第一导师单位:

  南京农业大学    

完成日期:

 2025-05-16    

答辩日期:

 2025-05-20    

外文题名:

 BRD3/4/6/7/9 as a Novel Subunit of The Plant NuA4 Complex: Assembly Mechanism and Functional Analysis    

中文关键词:

 Bromodomain 蛋白 ; NuA4 复合物 ; 开花基因 FT ; 开花基因 SOC1 ; 组蛋白 乙酰化    

外文关键词:

 Bromodomain protein ; NuA4 ; Flowering gene FT ; Flowering gene SOC1 ; Histone acetylation    

中文摘要:

组蛋白乙酰化是生物体内重要的染色质重塑机制之一,参与调控植物生长发育的各个阶段。NuA4(Nucleosome Acetyltransferase of Histone H4)是酵母体内必需且唯一的乙酰转移酶复合物,影响酵母的正常生长发育。在物种进化过程中,动物的乙酰转移酶复合物NuA4/TIP60(NuA4/Tat-interactive protein, 60 kilodalton)的组成发生改变,由酵母SWR1(SWI2/SNF2-Related 1 chromatin remodeling complex)复合物与NuA4复合物的亚基经过保守进化后融合形成。在拟南芥中,存在绝大部分酵母NuA4复合物亚基的同源蛋白,并已证实各亚基的功能,但不存在关键组分EAF5(Esa1-associated factor 5)的同源蛋白。目前在已有的拟南芥NuA4复合物的质谱研究结果中均共纯化到一类BRD(Bromodomain)蛋白。这暗示了植物在进化过程中,可能演变出独特的组装构成。因此,进一步探究BRD蛋白是否参与拟南芥NuA4复合物的结构组成,有利于阐释其作用机制。

研究以模式植物拟南芥为研究对象,通过蛋白互作组学与系统进化分析方法解析BRD蛋白参与植物乙酰转移酶复合物NuA4的组装模式,并利用分子互作实验证实对组装模式的设想。另外,通过构建brd基因的多重突变体,解析突变体开花性状及其背后的分子机制,对BRD蛋白的功能进行初步解析。主要研究结果如下:

1. 整合多个拟南芥乙酰转移酶复合物NuA4/TIP60各亚基的亲和纯化串联质谱结果,以分析该复合物的组成结构及各亚基功能。结果表明,拟南芥中缺少酵母NuA4复合物亚基EAF5,但是存在一些BRD蛋白可与NuA4各亚基共纯化。通过系统进化树分析得出,BRD3/4/6/7/9属于一类特殊的拟南芥BRD蛋白分子,该类蛋白包含除了所有BRD蛋白共有的Bromodomain外,也拥有该分支特异性保守的N端序列。

2. 利用分子互作实验,从体内和体外分别证实BRD3/4/6/7/9蛋白与NuA4亚基SNS1(SnRK2 substrate 1)和EAF1(Esa1-associated factor 1)蛋白存在互作关系,桥接MRG1/2(Morf-Related Gene 1/2)-SNS1至NuA4的关键组分EAF1上,组成NuA4复合物。利用Alphafold3预测BRD3/4/6/7/9与拟南芥NuA4亚基SNS1互作的关键氨基酸位点,将这些氨基酸突变后,蛋白互作受到破坏。

3. 转录分析表明BRD3/4/6/7/9在拟南芥各组织中广泛表达。brds单突变体与双突变体brd3 brd6、brd3 brd9、brd6 brd7相较于野生型拟南芥开花时间没有明显差异。然而,brds多重突变体brd3 brd4 brd9、brd3 brd6 brd9、brd3 brd6 brd7 brd9、brd3 brd4 brd6 brd7 brd9表现出晚花表型。

4. brd3 brd4 brd6 brd7 brd9表现出类似sns1突变体的晚花性状,但没有eaf1a eaf1b突变体株型极小、叶片白化等性状,说明MRG-SNS1-BRD模块在NuA4复合物中可能是起着微调功能。转录表达确认BRD3/4/6/7/9与SNS1类似,通过调控开花关键基因FT、SOC1的表达,进而促进拟南芥在长日照下的开花。

综上所述,研究首次揭示了BRD3/4/6/7/9蛋白作为植物乙酰转移酶复合物NuA4的成员之一,初步确定其能够桥接MRG1/2-SNS1模块与EAF1,直接参与到植物乙酰转移酶复合物NuA4的组装。并且,研究也首次探明BRD3/4/6/7/9基因在拟南芥各组织中泛表达,其功能的缺失会影响拟南芥的开花时间,为进一步深度解析植物开花调控的复杂机制提供了新的视角,为丰富植物开花通路新机制的研究奠定了研究基础。

外文摘要:

Histone acetylation is one of the crucial mechanisms of chromatin remodeling in vivo, which involved in regulating all stages of plant growth and development. NuA4 (Nucleosome Acetyltransferase of Histone H4) is an essential and unique acetyltransferase complex in yeast, affecting the normal growth and development of yeast. During the process of species evolution, the composition of the acetyltransferase complex NuA4/TIP60 (NuA4/Tat-interactive protein, 60 kilodalton) in animals has changed. It is formed by the fusion of the subunits of the yeast SWR1 (SWI2/SNF2-Related 1 chromatin remodeling complex) and the NuA4 complex after conserved evolution. In Arabidopsis thaliana, most of the homologous proteins of yeast NuA4 complex subunit exist, and the function of each subunit has been confirmed, but there is no homologous protein of the key component EAF5 (Esa1-associated factor 5). At present, in the existing mass spectrometry research results of the NuA4 complex of Arabidopsis thaliana, a type of BRD (Bromodomain) protein has been co-purified. This suggests that plants may have developed unique assemblies during evolution. Therefore, further research on the structure and composition of Arabidopsis NuA4 complex will help to elucidate its mechanism of function.

The study used the model plant Arabidopsis thaliana as the research object. In order to analyze the assembly mode of Bromodomain (BRD) protein, which involved in plant acetyltransferase complex NuA4, through protein interaction omics and phylogenetic analysis. The hypothesis of assembly mode was confirmed by molecular interaction experiments. In addition, the function of BRD protein was preliminarily analyzed. The main findings are as follows:

1. The affinity purification tandem mass spectrometry results of several Arabidopsis acetyltransferase complex NuA4/TIP60 subunits were integrated to analyze the composition and function of the subunits of the complex. The results showed that only the yeast NuA4 complex subunit EAF5 was missing in Arabidopsis thaliana, but some BRD proteins were co-purified with NuA4 subunits. According to phylogenetic tree analysis, BRD3/4/6/7/9 is a special group of Arabidopsis BRD proteins, which contain not only the conserved Bromodomain, but also the specific conserved N-terminal sequence.

2. Interactions between BRD3/4/6/7/9 and NuA4 subunit SNS1 (SnRK2 substrate 1) and EAF1 (Esa1-associated factor 1) were confirmed either in vivo or in vitro by molecular interaction experiments. Moreover, it can bridge MRG2 (Morf-Related Gene 2) -SNS1 sub-module to EAF1, a key component of NuA4, to form MRG2-SNS1-BRD3/4/6/7/9-EAF1 module. For another, Alphafold3 was used to predict the key sites of interaction between BRD3/4/6/7/9 and NuA4 subunit SNS1 of Arabidopsis thaliana, and the protein interaction relationship was destroyed after amino acid mutation of these sites.

3. BRD3/4/6/7/9 are widely express in various Arabidopsis tissues. There are no significant differences in flowering time between the brds single mutant and double nutant brd3 brd 6, brd3 brd9, brd6 brd7 compared with wild-type Arabidopsis thaliana. However, multiple mutant types of brd3 brd6 brd7 brd9 and brd3 brd4 brd6 brd7 brd9 exhibit a late-flowering phenotype.

4. brd3 brd4 brd6 brd7 brd9 exhibit late-flowering traits similar to those of the sns1 mutant, but do not have traits such as extremely small plant type and albino leaves of the eaf1a and eaf1b mutants. This indicates that the MRG-SNS1-BRD module may play a fine-tuning role in the NuA4 complex. Transcriptional expression confirmed that BRD3/4/6/7/9 is similar to SNS1. By regulating the expression of key flowering genes FT and SOC1, it promotes the flowering time of Arabidopsis thaliana under long-day conditions.

In summary, the study revealed that BRD3/4/6/7/9 protein, as a member of the plant acetyltransferase complex NuA4 for the first time. And they were preliminarily identified as a subunit to bridge MRG2-SNS1 module with EAF1, which directly involved in the assembly of the plant acetyltransferase complex NuA4. In addition, this study also proved that BRD3/4/6/7/9 are widely expressed in various tissues of Arabidopsis thaliana for the first time. The loss of their function will affect the flowering time. These provide a new perspective for further in-depth analysis of the complex mechanism of plant flowering regulation, and laying a research foundation for the study of new mechanisms of enriching plant flowering pathways.

参考文献:

[1] Amasino R M, Michaels S D. The timing of flowering[J]. Plant Physiology, 2010, 154(2):516-520.

[2] Allard S, Utley R T, Savard J, et al. NuA4, an essential transcription adaptor/histone H4 acetyltransferase complex containing Esa1p and the ATM-related cofactor Tra1p[J]. EMBO Journal, 1999, 18(18):5108-5119.

[3] Andres F, Coupland G. The genetic basis of flowering responses to seasonal cues[J]. Nature Reviews Genetics, 2012, 13(9):627-639.

[4] Auger A, Galarneau L, Altaf M, et al. Eaf1 is the platform for NuA4 molecular assembly that evolutionarily links chromatin acetylation to ATP-dependent exchange of histone H2A variants[J]. Molecular and Cellular Biology, 2008, 28(7):2257-2270.

[5] Avvakumov N, Lalonde M, Saksouk N, et al. Conserved molecular interactions within the HBO1 acetyltransferase complexes regulate cell proliferation[J]. Molecular and Cellular Biology, 2012, 32(3):689-703.

[6] Bannister A J, Kouzarides T. Regulation of chromatin by histone modifications[J]. Cell Research, 2011, 21(3):381-395.

[7] Barnes C E, English D M, Cowley S M. Acetylation & Co: an expanding repertoire of histone acetylation regulates chromatin and transcription[J]. Essays in Biochemistry, 2019, 63(1):97-107.

[8] Berr A, Shafiq S, Shen W. Histone modifications in transcriptional activation during plant development[J]. Biochimica et Biophysica Acta, 2011, 1809(10):567-576.

[9] Bhat W, Ahmad S, Côté J. TINTIN, at the interface of chromatin, transcription elongation, and mRNA processing[J]. RNA Biology, 2015, 12(5):486-489.

[10] Bieluszewski T, Galganski L, Sura W, et al. AtEAF1 is a potential platform protein for Arabidopsis NuA4 acetyltransferase complex[J]. BMC Plant Biology, 2015, 15(1)15:75.

[11] Black J C, Van Rechem C, Whetstine J R. Histone lysine methylation dynamics: Establishment, regulation, and biological impact[J]. Molecular Cell, 2012, 48(4):491-507.

[12] Bottomley M J. Structures of protein domains that create or recognize histone modifications[J]. EMBO Reports, 2004, 5(5):464-469.

[13] Boudreault A A, Cronier D, Selleck W, et al. Yeast enhancer of polycomb defines global Esa1-dependent acetylation of chromatin[J]. Genes & Development, 2003, 17(11):1415-1428.

[14] Brownell J E, Allis C D. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14):6364-6368.

[15] Brownell J E, Zhou J X, Ranalli T, et al. Tetrahymena histone acetyltransferase A: A homolog to yeast Gcn5p linking histone acetylation to gene activation[J]. Cell, 1996, 84(6):843-851.

[16] Bruzzone M J, Grunberg S, Kubik S, et al. Distinct patterns of histone acetyltransferase and Mediator deployment at yeast protein-coding genes[J]. Genes & Development, 2018, 32(17-18):1252-1265.

[17] Bu Z, Yu Y, Li Z, et al. Regulation of Arabidopsis flowering by the histone mark readers MRG1/2 via interaction with CONSTANS to modulate FT expression[J]. PLoS Genetics, 2014, 10(9): e1004617.

[18] Cai Y, Jin J J, Tomomori-Sato C, et al. Identification of new subunits of the multiprotein mammalian TRRAP / TIP60-containing histone acetyltransferase complex[J]. Journal of Biological Chemistry, 2003, 278(44):42733-42736.

[19] Carrozza M J, Li B, Florens L, et al. Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription[J]. Cell, 2005, 123(4):581-592.

[20] Chen K, Wang L, Yu Z, et al. Structure of the human TIP60 complex[J]. Nature Communications, 2024, 15(1):7092.

[21] Chen L, Conaway R C, Conaway J W. Multiple modes of regulation of the human Ino80 SNF2 ATPase by subunits of the INO80 chromatin-remodeling complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51):20497-20502.

[22] Cheng X, Côté J. A new companion of elongating RNA Polymerase II: TINTIN, an independent sub-module of NuA4/TIP60 for nucleosome transactions[J]. Transcription, 2014, 5(5): e995571.

[23] Chittuluru J R, Chaban Y, Monnet-Saksouk J, et al. Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes[J]. Nature Structural & Molecular Biology, 2011, 18(11):1148-1196.

[24] Clarke A S, Lowell J E, Jacobson S J, et al. Esa1p is an essential histone acetyltransferase required for cell cycle progression[J]. Molecular and Cellular Biology, 1999, 19(4):2515-2526.

[25] Crevillén P, Gomez-Zambrano A, Lopez J A, et al. Arabidopsis YAF9 histone readers modulate flowering time through NuA4-complex-dependent H4 and H2A.Z histone acetylation at FLC chromatin[J]. New Phytologist, 2019, 222(4):1893-1908.

[26] Coustham V, Li P, Strange A, et al. Quantitative modulation of polycomb silencing underlies natural variation in vernalization[J]. Science, 2012, 337(6094):584-587.

[27] Couture J P, Nolet G, Beaulieu E, et al. The p400/Brd8 chromatin remodeling complex promotes adipogenesis by incorporating histone variant H2A.Z at PPARgamma target genes[J]. Endocrinology, 2012, 153(12):5796-5808.

[28] D'Aloia M, Bonhomme D, Bouche F, et al. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF[J]. Plant Journal, 2011, 65(6):972-979.

[29] De Lucia F, Crevillen P, Jones A M, et al. A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(44):16831-16836.

[30] Deng W, Liu C, Pei Y, et al. Involvement of the histone acetyltransferase AtHAC1 in the regulation of flowering time via repression of FLOWERING LOCUS C in Arabidopsis[J]. Plant Physiology, 2007, 143(4):1660-1668.

[31] Devoucoux M, Roques C, Lachance C, et al. MRG proteins are shared by multiple protein complexes with distinct functions[J]. Molecular & Cellular Proteomics, 2022, 21(7):100253.

[32] Dias B G, Maddox S A, Klengel T, et al. Epigenetic mechanisms underlying learning and the inheritance of learned behaviors[J]. Trends in Neurosciences, 2015, 38(2):96-107.

[33] Doyon Y, Côté J. The highly conserved and multifunctional NuA4 HAT complex[J]. Current Opinion in Genetics & Development, 2004, 14(2):147-154.

[34] Drazic A, Myklebust LM, Ree R, Arnesen T. The world of protein acetylation. Biochimica et Biophysica Acta. 2016;1864(10):1372-1401.

[35] Earley K W, Shook M S, Brower-Toland B, et al. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation[J]. Plant Journal, 2007, 52(4):615-626.

[36] Eisen A, Utley R T, Nourani A, et al. The yeast NuA4 and Drosophila MSL complexes contain homologous subunits important for transcription regulation[J]. Journal of Biological Chemistry, 2001, 276(5):3484-3491.

[37] Farhi J, Tian G, Fang H, et al. Histone deacetylase HD2D is involved in regulating plant development and flowering time in Arabidopsis[J]. Plant Signaling & Behavior, 2017, 12(7): e1300742.

[38] Ferri E, Petosa C, McKenna C E. Bromodomain: Structure, function and pharmacology of inhibition[J]. Biochemical Pharmacology, 2016, 106:1-18.

[39] Forderer A, Zhou Y, Turck F. The age of multiplexity: recruitment and interactions of Polycomb complexes in plants[J]. Current Opinion in Plant Biology, 2016, 29:169-178.

[40] Galvao V C, Horrer D, Kuttner F, et al. Spatial control of flowering by DELLA proteins in Arabidopsis thaliana[J]. Development, 2012, 139(21):4072-4082.

[41] Gerhold C B, Gasser S M. INO80 and SWR complexes: relating structure to function in chromatin remodeling[J]. Trends in Cell Biology, 2014, 24(11):619-631.

[42] Ginsburg D S, Govind C K, Hinnebusch A G. NuA4 lysine acetyltransferase Esa1 is targeted to coding regions and Stimulates transcription elongation with GCN5[J]. Molecular and Cellular Biology, 2009, 29(24):6473-6487.

[43] Gómez-Zambrano A, Crevillen P, Franco-Zorrilla J M, et al. Arabidopsis SWC4 binds DNA and recruits the SWR1 complex to modulate histone H2A.Z deposition at key regulatory genes[J]. Molecular Plant, 2018, 11(6):815-832.

[44] Greb T, Mylne J S, Crevillen P, et al. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC[J]. Current Biology, 2007, 17(1):73-78.

[45] Grunstein M. Histone acetylation in chromatin structure and transcription[J]. Nature, 1997, 389(6649):349-352.

[46] Helmlinger D, Tora L. Sharing the SAGA[J]. Trends in Biochemical Sciences, 2017, 42(11):850-861.

[47] Hodges A J, Plummer D A, Wyrick J J. NuA4 acetyltransferase is required for efficient nucleotide excision repair in yeast[J]. DNA Repair, 2019, 73:91-98.

[48] Jacquet K, Fradet-Turcotte A, Avvakumov N, et al. The TIP60 complex regulates bivalent chromatin recognition by 53BP1 through direct H4K20me binding and H2AK15 acetylation[J]. Molecular Cell, 2016, 62(3):409-421.

[49] Jaeger K E, Pullen N, Lamzin S, et al. Interlocking feedback loops govern the dynamic behavior of the floral transition in Arabidopsis[J]. The Plant Cell, 2013, 25(3):820-833.

[50] Katagiri S, Kamiyama Y, Yamashita K, et al. Accumulation of phosphorylated SnRK2 substrate 1 promotes drought escape in Arabidopsis[J]. Plant and Cell Physiology, 2024, 65(2):259-268.

[51] Keogh M C, Kurdistani S K, Morris S A, et al. Cotranscriptional Set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex[J]. Cell, 2005, 123(4):593-605.

[52] Kim W, Latrasse D, Servet C, et al. Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19[J]. Biochemical and Biophysical Research Communications, 2013, 432(2):394-398.

[53] Kim Y J, Wang R, Gao L, et al. POWERDRESS and HDA9 interact and promote histone H3 deacetylation at specific genomic sites in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(51):14858-14863.

[54] Klein B J, Ahmad S, Vann K R, et al. Yaf9 subunit of the NuA4 and SWR1 complexes targets histone H3K27ac through its YEATS domain[J]. Nucleic Acids Research, 2018, 46(1):421-430.

[55] Krogan N T, Hogan K, Long J A. APETALA2 negatively regulates multiple floral organ identity genes in Arabidopsis by recruiting the co-repressor TOPLESS and the histone deacetylase HDA19[J]. Development, 2012, 139(22):4180-4190.

[56] Kumar S V, Lucyshyn D, Jaeger K E, et al. Transcription factor PIF4 controls the thermosensory activation of flowering[J]. Nature, 2012, 484(7393):242-245.

[57] Latrasse D, Benhamed M, Henry Y, et al. The MYST histone acetyltransferases are essential for gametophyte development in Arabidopsis[J]. BMC Plant Biology, 2008, 8:121.

[58] Lazaro A, Mouriz A, Pineiro M, et al. Red Light-mediated degradation of CONSTANS by the E3 ubiquitin ligase HOS1 regulates photoperiodic flowering in Arabidopsis[J]. The Plant Cell, 2015, 27(9):2437-2454.

[59] Lee J H, Kim S H, Kim J J, et al. Alternative splicing and expression analysis of High expression of osmotically responsive genes1 (HOS1) in Arabidopsis[J]. BMB Reports, 2012, 45(9):515-520.

[60] Lee J H, Ryu H S, Chung K S, et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors[J]. Science, 2013, 342(6158):628-632.

[61] Lee K K, Workman J L. Histone acetyltransferase complexes: one size doesn't fit all[J]. Nature Reviews Molecular Cell Biology, 2007, 8(4):284-295.

[62] Li Y, Xu Z, Yang W, et al. Isolation and functional characterization of SOC1-like genes in Prunus mume[J]. Journal of the American Society for Horticultural Science, 2016, 141(4):315-326.

[63] Lin C L, Chaban Y, Rees D M, et al. Functional characterization and architecture of recombinant yeast SWR1 histone exchange complex[J]. Nucleic Acids Research, 2017, 45(12):7249-7260.

[64] Liu F, Bakht S, Dean C. Cotranscriptional role for Arabidopsis DICER-LIKE 4 in transcription termination[J]. Science, 2012, 335(6076):1621-1623.

[65] Liu X, Yang S, Yu C W, et al. Histone acetylation and plant development[J]. Enzymes, 2016, 40:173-199.

[66] Lin Y, Lu J, Zhang J, et al. Protein acetylation Microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis[J]. Cell, 2009, 136(6):1073-1084.

[67] Lu P Y T, Levesque N, Kobor M S. NuA4 and SWR1-C: two chromatin-modifying complexes with overlapping functions and components[J]. Biochemistry and Cell Biology, 2009, 87(5):799-815.

[68] Lu Y, Su C, Liu H. A GATA transcription factor recruits Hda1 in response to reduced Tor1 signaling to establish a hyphal chromatin state in Candida albicans[J]. PLoS Pathogens, 2012, 8(4):e1002663.

[69] Lu Y, Su C, Liu H. Candida albicans hyphal initiation and elongation[J]. Trends Microbiol, 2014, 22(12):707-714.

[70] Lu Y, Su C, Wang A, et al. Hyphal development in Candida albicans requires two temporally linked changes in promoter chromatin for initiation and maintenance[J]. PLoS Pathogens, 2011, 9(7): e1001105.

[71] Luger K, Mader A W, Richmond R K, et al. Crystal structure of the nucleosome core particle at 2.8 A resolution[J]. Nature, 1997, 389(6648):251-260.

[72] Luo M, Tai R, Yu C, et al. Regulation of flowering time by the histone deacetylase HDA5 in Arabidopsis[J]. Plant Journal, 2015, 82(6):925-936.

[73] Mahrez W, Arellano M S T, Moreno-Romero J, et al. H3K36ac is an evolutionary conserved plant histone modification that marks active genes[J]. Plant Physiology, 2016, 170(3):1566-1577.

[74] Marmorstein R, Berger S L. Structure and function of bromodomains in chromatin-regulating complexes[J]. Gene, 2001, 272(1-2):1-9.

[75] Marquardt S, Raitskin O, Wu Z, et al. Functional consequences of splicing of the antisense transcript COOLAIR on FLC transcription[J]. Molecular Cell, 2014, 54(1):156-165.

[76] Milagro F I, Mansego M L, De Miguel C, et al. Dietary factors, epigenetic modifications and obesity outcomes: Progresses and perspectives[J]. Molecular Aspects of Medicine, 2013, 34(4):782-812.

[77] Millar C B, Xu F, Zhang K L, et al. Acetylation of H2AZ Lys 14 is associated with genome-wide gene activity in yeast[J]. Genes & Development, 2006, 20(6):711-722.

[78] Mitchell L, Lambert J, Gerdes M, et al. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity[J]. Molecular and Cellular Biology, 2008, 28(7):2244-2256.

[79] Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity[J]. The Plant Cell, 2002, 14 Suppl (Suppl): S111-S130.

[80] Mujtaba S, Zeng L, Zhou M. Structure and acetyl-lysine recognition of the bromodomain[J]. Oncogene, 2007, 26(37):5521-5527.

[81] Narita T, Weinert B T, Choudhary C. Functions and mechanisms of non-histone protein acetylation[J]. Nature Reviews Molecular Cell Biology, 2019, 20(3):156-174.

[82] Ning Y, Chen Q, Lin R, et al. The HDA19 histone deacetylase complex is involved in the regulation of flowering time in a photoperiod-dependent manner[J]. Plant Journal, 2019, 98(3):448-464.

[83] Park H J, Baek D, Cha J, et al. HOS15 interacts with the histone deacetylase HDA9 and the evening complex to epigenetically regulate the floral activator GIGANTEA[J]. The Plant Cell, 2019, 31(1):37-51.

[84] Peng M, Li Z, Zhou N, et al. Linking PHYTOCHROME-INTERACTING FACTOR to histone modification in plant shade avoidance[J]. Plant Physiology, 2018, 176(2):1341-1351.

[85] Pokholok D K, Harbison C T, Levine S, et al. Genome-wide map of nucleosome acetylation and methylation in yeast[J]. Cell, 2005, 122(4):517-527.

[86] Rosas U, Mei Y, Xie Q, et al. Variation in Arabidopsis flowering time associated with cis-regulatory variation in CONSTANS[J]. Nature Communications, 2014, 5:3651.

[87] Rossetto D, Cramet M, Wang A Y, et al. Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling[J]. EMBO Journal, 2014, 33(12):1397-1415.

[88] Schuettengruber B, Bourbon H, Di Croce L, et al. Genome regulation by Polycomb and Trithorax: 70 years and counting[J]. Cell, 2017, 171(1):34-57.

[89] Schultz E A, Haughn G W. Genetic - Analysis of the Floral Initiation Process (FLIP) in Arabidopsis[J]. Development, 1993, 119(3):745-765.

[90] Setiaputra D, Ahmad S, Dalwadi U, et al. Molecular Architecture of the Essential Yeast Histone Acetyltransferase Complex NuA4 Redefines Its Multimodularity[J]. Molecular and Cellular Biology, 2018, 38(9).

[91] Squatrito M, Gorrini C, Amati B. Tip60 in DNA damage response and growth control: many tricks in one HAT[J]. Trends in Cell Biology, 2006, 16(9):433-442.

[92] Shahbazian M D, Grunstein M. Functions of site-specific histone acetylation and deacetylation[J]. Annual Review of Biochemistry, 2007, 76:75-100.

[93] Simpson G G, Dean C. Arabidopsis, the Rosetta stone of flowering time? [J]. Science, 2002, 296(5566):285-289.

[94] Smith E R, Eisen A, Gu W, et al. ESA1 is a histone acetyltransferase that is essential for growth in yeast[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(7):3561-3565.

[95] Song Y H, Estrada D A, Johnson R S, et al. Distinct roles of FKF1, Gigantea, and Zeitlupe proteins in the regulation of Constans stability in Arabidopsis photoperiodic flowering[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(49):17672-17677.

[96] Song Y H, Ito S, Imaizumi T. Flowering time regulation: photoperiod- and temperature-sensing in leaves[J]. Trends in Plant Science, 2013, 18(10):575-583.

[97] Song Y H, Smith R W, To B J, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering[J]. Science, 2012, 336(6084):1045-1049.

[98] Srikanth A, Schmid M. Regulation of flowering time: all roads lead to Rome[J]. Cellular and Molecular Life Sciences, 2011, 68(12):2013-2037.

[99] Steunou A L, Cramet M, Rossetto D, et al. Combined action of histone reader modules regulates NuA4 local acetyltransferase function but not its recruitment on the genome[J]. Molecular and Cellular Biology, 2016, 36(22):2768-2781.

[100] Su X, Shan Z, Duan S. Harnessing extracellular vesicles using liquid biopsy for cancer diagnosis and monitoring: highlights from AACR Annual Meeting 2024[J]. Journal of Hematology & Oncology, 2024, 17(1):55.

[101] Sun L, Fu X, Xiao Z, et al. BRD8 guards the pluripotent state by sensing and maintaining histone acetylation[J]. Advanced Science, 2025, 12(5): e2409160.

[102] Sun Q, Csorba T, Skourti-Stathaki K, et al. R-loop stabilization represses antisense transcription at the Arabidopsis FLC locus[J]. Science, 2013, 340(6132):619-621.

[103] Sun X, Klingbeil O, Lu B, et al. BRD8 maintains glioblastoma by epigenetic reprogramming of the p53 network[J]. Nature, 2023, 613(7942):195-202.

[104] Sung S, Amasino R M. Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3[J]. Nature, 2004, 427(6970):159-164.

[105] Tan L M, Zhang C J, Hou X M, et al. The PEAT protein complexes are required for histone deacetylation and heterochromatin silencing[J]. EMBO Journal, 2018, 37(19): e98770.

[106] Taverna S D, Ilin S, Rogers R S, et al. Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs[J]. Molecular Cell, 2006, 24(5):785-796.

[107] Umezawa T, Sugiyama N, Takahashi F, et al. Genetics and Phosphoproteomics reveal a protein phosphorylation network in the abscisic acid signaling pathway in Arabidopsis thaliana[J]. Science Signaling, 2013, 6(270):rs8.

[108] Uprety B, Lahudkar S, Malik S, et al. The 19S proteasome subcomplex promotes the targeting of NuA4 HAT to the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional initiation in vivo[J]. Nucleic Acids Research, 2012, 40(5):1969-1983.

[109] Valdes-Mora F, Song J Z, Statham A L, et al. Acetylation of H2A.Z is a key epigenetic modification associated with gene deregulation and epigenetic remodeling in cancer[J]. Genome Research, 2012, 22(2):307-321.

[110] Venkatesh S, Workman J L. Histone exchange, chromatin structure and the regulation of transcription[J]. Nature Reviews Molecular Cell Biology, 2015, 16(3):178-189.

[111] Voss A K, Thomas T. MYST family histone acetyltransferases take center stage in stem cells and development[J]. BioEssays, 2009, 31(10):1050-1061.

[112] Waddington C H. The epigenotype[J]. International Journal of Epidemiology, 1942, 41(1):10-13.

[113] Wang X, Ahmad S, Zhang Z, et al. Architecture of the Saccharomyces cerevisiae NuA4/TIP60 complex[J]. Nature Communications, 2018, 9(1):1147.

[114] Wang X, Zhu W, Chang P, et al. Merge and separation of NuA4 and SWR1 complexes control cell fate plasticity in Candida albicans[J]. Cell Discovery, 2018, 4:45.

[115] Wang Z W, Wu Z, Raitskin O, et al. Antisense-mediated FLC transcriptional repression requires the P-TEFb transcription elongation factor[J]. Proceedings of the National Academy of Sciences, 2014, 111(20):7468-7473.

[116] Wei Y, Schatten H, Sun Q. Environmental epigenetic inheritance through gametes and implications for human reproduction[J]. Human Reproduction Update, 2015, 21(2):194-208.

[117] Whiteway M, Bachewich C. Morphogenesis in Candida albicans[J]. Annual Review of Mi-crobiology, 2007, 61(1):529-553.

[118] Xiao J, Jin R, Wagner D. Developmental transitions: integrating environmental cues with hormonal signaling in the chromatin landscape in plants[J]. Genome Biology, 2017, 18(1):88.

[119] Xiao J, Zhang H, Xing L, et al. Requirement of histone acetyltransferases HAM1 and HAM2 for epigenetic modification of FLC in regulating flowering in Arabidopsis[J]. Journal of Plant Physiology, 2013, 170(4):444-451.

[120] Xu D, Liu Q, Chen G, et al. Aldehyde dehydrogenase ALDH3F1 involvement in flowering time regulation through histone acetylation modulation on FLOWERING LOCUS C[J]. Journal of Integrative Plant Biology, 2020, 62(8):1080-1092.

[121] Xu P, Li C, Chen Z, et al. The NuA4 Core Complex Acetylates Nucleosomal Histone H4 through a Double Recognition Mechanism[J]. Molecular Cell, 2016, 63(6):965-975.

[122] Xu Y, Gan E, Zhou J, et al. Arabidopsis MRG domain proteins bridge two histone modifications to elevate expression of flowering genes[J]. Nucleic Acids Research, 2014, 42(17):10960-10974.

[123] Yang H, Howard M, Dean C. Antagonistic roles for H3K36me3 and H3K27me3 in the cold-induced epigenetic switch at Arabidopsis FLC[J]. Current Biology, 2014, 24(15):1793-1797.

[124] Yang X, Ullah M. MOZ and MORF, two large MYSTic HATs in normal and cancer stem cells[J]. Oncogene, 2007, 26(37):5408-5419.

[125] Yu C, Liu X, Luo M, et al. HISTONE DEACETYLASE6 interacts with FLOWERING LOCUS D and regulates flowering in Arabidopsis[J]. Plant Physiology, 2011, 156(1):173-184.

[126] Yu S, Galvao V C, Zhang Y C, et al. Gibberellin regulates the Arabidopsis floral transition through miR156-targeted SQUAMOSA promoter binding-like transcription factors[J]. The Plant Cell, 2012, 24(8):3320-3332.

[127] Yu Y, Liu Z, Wang L, et al. WRKY71 accelerates flowering via the direct activation of FLOWERING LOCUS T and LEAFY in Arabidopsis thaliana[J]. Plant Journal, 2016, 85(1):96-106.

[128] Zacharaki V, Benhamed M, Poulios S, et al. The Arabidopsis ortholog of the YEATS domain containing protein YAF9a regulates flowering by controlling H4 acetylation levels at the FLC locus[J]. Plant Science, 2012, 196:44-52.

[129] Zeng X, Gao Z, Jiang C, et al. HISTONE DEACETYLASE 9 functions with Polycomb silencing to repress FLOWERING LOCUS C expression[J]. Plant Physiology, 2020, 182(1):555-565.

中图分类号:

 Q945    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式