- 无标题文档
查看论文信息

中文题名:

 萜类化合物对铜绿微囊藻的抑制效应及机理研究    

姓名:

 江雨萌    

学号:

 2021103015    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 071300    

学科名称:

 理学 - 生态学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 生态学    

研究方向:

 环境生态学    

第一导师姓名:

 罗朝晖    

第一导师单位:

  南京农业大学    

完成日期:

 2024-05-30    

答辩日期:

 2024-06-02    

外文题名:

 Study on Inhibition Effect and Antialgal Mechanism of Terpenoids on Microcystis aeruginosa    

中文关键词:

 萜类化合物 ; 铜绿微囊藻 ; 化感抑藻 ; 应用策略 ; 生态安全评估    

外文关键词:

 Terpenoids ; Microcystis aeruginosa ; Allelopathy and algal inhibition ; Application mode ; Ecological security assessment    

中文摘要:

近年来,随着水体富营养化问题的日益严重,蓝藻水华的频繁暴发已成为水质恶化、水生生物多样性降低及群落结构破坏的重要原因。蓝藻所释放的藻毒素通过生物富集作用潜入人体,对人类健康构成严重威胁。传统的除藻技术,包括物理、化学方法,普遍存在处理周期长、效率不高及潜在环境风险等问题。化感物质作为天然产物具有环境友好的特点,其中萜类化合物种类广泛,且具有丰富的生物活性和抑藻潜力。然而目前研究大多集中于萜类化合物的抑菌与抗氧化能力,对其抑藻能力研究较少,且尚不清楚其对水生态系统的影响。因此,本研究选取薄荷醇、龙脑、香叶醇、芳樟醇、柠檬醛和穿心莲内酯六种萜类化合物,以铜绿微囊藻为研究对象,旨在探究其抑藻活性,并通过定量构效关系分析(QSAR)揭示活性与化合物结构之间的关联。此外,本研究还针对香叶醇和柠檬醛两种优选萜类化合物,深入探讨了它们的抑藻机理及应用条件,并对它们的生态安全性进行了全面评估。研究结果不仅为萜类化合物在蓝藻水华治理中的应用提供了理论基础,也为治理蓝藻水华问题提供了新的思路,有助于推动水华藻类防治技术的发展。主要结果如下:

(1)6种萜类化合物的抑藻活性从高到低依次为香叶醇(XY)>柠檬醛(NM)>薄荷醇(BH)>龙脑(LN)>芳樟醇(FZ)>穿心莲内酯(CXL),香叶醇与柠檬醛抑藻效果最好,最大抑藻率分别可以达到86.3%、77.5%。采用QSAR分析揭示了单萜化合物的抑藻活性位点,当高活性基团连接在5'号碳时抑藻效果更显著;同时揭示了单萜化合物抑藻活性结构关系,结果表明抑藻活性(5d-AIR)与化合物脂水分配系数(LogP)和偶极矩(Dipole)呈显著正相关关系。

(2)铜绿微囊藻在60mg/L香叶醇与柠檬醛下的EC50分别为35.8 mg/L、45.8 mg/L,抑藻效应持续时间为7天,最佳使用浓度范围分别为35.8-60 mg/L、45.8-60 mg/L,投加周期为7天。昼夜节律及环境因素对抑藻效应影响实验结果表明:在正午或者午夜使用香叶醇,在藻初始密度106个/ml、温度16 ℃、光强5800 lx条件下可以获得最高的抑藻率96%;柠檬醛在藻初始密度8*105个/ml,温度20 ℃,光强3200 lx条件下可以获得最高抑藻率98%。

(3)在香叶醇与柠檬醛的作用下,铜绿微囊藻叶绿素a与类胡萝卜素含量降低,抑制率高达90%以上,削弱了铜绿微囊藻的光合活性;香叶醇与柠檬醛吸附在藻细胞表面,导致细胞膜脂质过氧化,丙二醛(MDA)含量不断上升,最大值为正常藻细胞的2倍左右, 超氧化物歧化酶(SOD)、过氧化氢酶(CAT)抗氧化酶活性遭到抑制,最小值分别仅为对照组的32.3%、57.8%与23.9%、48.5%,进而造成藻细胞内活性氧堆积,攻击细胞器致使藻细胞死亡。此外,香叶醇与柠檬醛使藻细胞成分发生变化,含氧官能团含量降低,含氮官能团强度提高,推测是由于藻细胞光合系统损伤与抗氧化防御及光合作用相关基因表达量增加导致。

(4)探究富萜植物共培养抑藻与缓释微球抑藻两种应用方式,结果表明富含柠檬醛的柠檬香蜂草与富含香叶醇的香茅草在与铜绿微囊藻共培养均对会其产生显著抑制作用,抑制率高达95% 以上。其中柠檬香蜂草抑藻效果由营养竞争与化感作用共同导致。香茅草抑藻原因主要为化感作用。因此,香茅草更适合作为生态浮床抑藻植物。香叶醇缓释微球与柠檬醛缓释微球在低浓度下也可对铜绿微囊藻产生显著抑制作用,并且在同一浓度水平下相较于直接投加方式,缓释微球可以提升12%和18%的抑藻效果。综合考虑抑制效果和成本效益,植物共培养方式是最优的应用策略。

(5)对香叶醇与柠檬醛的生态安全性进行了评估,结果表明,60mg/L香叶醇与柠檬醛对蛋白核小球藻的EC50值分别为10.1 mg/L、14.7 mg/L,对衣藻半致死浓度(EC50)分别为69.1 mg/L、68.8 mg/L,对萼花臂尾轮虫EC50值分别为64.3 mg/L与68.5 mg/L。表明香叶醇与柠檬醛也具有应用于抑制绿藻水华与轮虫泛滥的潜力。香叶醇与柠檬醛对大型水草伊乐藻与轮叶黑藻的株高、根长、生物量、叶绿素以及可溶性蛋白质含量均没有显著影响,对大型水生动物中华绒鳌蟹与斑马鱼的体长体重及抗氧化酶活没有抑制作用。此外,香叶醇与柠檬醛不具备“低促高抑”的Hormesis效应。综合来看,排除对蛋白核小球藻的影响,抑藻剂浓度在64.3 mg/L时香叶醇与柠檬醛是具有良好的水生态安全性。

综上所述,香叶醇与柠檬醛作为天然萜类化合物,在蓝藻水华治理中具有显著的抑藻效果和良好的生态安全性,为水华藻类防治提供了新的策略。

 

外文摘要:

In recent years, with the increasing severity of eutrophication in water bodies, the frequent outbreaks of cyanobacterial blooms have become a significant cause of water quality deterioration, reduction in aquatic biodiversity, and destruction of community structure. Cyanobacteria release toxins that can infiltrate the human body through bioaccumulation, posing a serious threat to human health. Traditional algae removal technologies, including physical and chemical methods, generally have problems such as long processing cycles, low efficiency, and potential environmental risks. Allelochemicals, as natural products, are environmentally friendly, and terpenoids, in particular, have a wide variety and rich biological activity, as well as potential for algae inhibition. However, current research has mostly focused on the antibacterial and antioxidant capabilities of terpenoids, with less study on their algae inhibition abilities, and their impact on aquatic ecosystems is not well understood. Therefore, this study selected six terpenoid compounds—menthol, borneol, geraniol, linalool, citral, and andrographolide—as research subjects, with Microcystis aeruginosa as the research object, aiming to explore their algae inhibition activity and reveal the correlation between activity and compound structure through quantitative structure-activity relationship analysis (QSAR). In addition, this study also deeply explored the algae inhibition mechanism and application conditions of two selected terpenoids, geraniol and citral, and conducted a comprehensive assessment of their ecological safety. The results not only provide a theoretical basis for the application of terpenoids in the management of cyanobacterial blooms but also offer new ideas for the management of cyanobacterial bloom problems, helping to promote the development of bloom-algae prevention and control technology. The main results are as follows:

(1) The algae inhibition activity of the six terpenoid compounds ranked from high to low is as follows: geraniol (XY) > citral (NM) > menthol (BH) > borneol (LN) > linalool (FZ) > andrographolide (CXL), with geraniol and citral showing the best inhibition effects, reaching maximum inhibition rates of 86.3% and 77.5%, respectively. QSAR analysis revealed the active sites for monoterpene compounds' algae inhibition, indicating that the inhibition effect is more pronounced when high activity groups are connected to the 5' carbon; it also revealed the structural relationship of the algae inhibition activity of monoterpenoids, showing a significant positive correlation between algae inhibition activity (5d-AIR) and the compound's lipophilicity (LogP) and dipole moment.

(2) Under 60mg/L of geraniol and citral, the EC50 values for Microcystis aeruginosa were 35.8 mg/L and 45.8 mg/L, respectively, with the algae inhibition effect lasting for 7 days. The optimal concentration range for use is 35.8-60 mg/L for both, with an application cycle of 7 days. Experiments on the influence of diurnal rhythm and environmental factors on the algae inhibition effect showed that using geraniol at noon or midnight, with an initial algae density of 106 cells/ml, a temperature of 16°C, and a light intensity of 5800 lx, can achieve the highest algae inhibition rate of 96%; citral can achieve the highest inhibition rate of 98% under an initial algae density of 8*105 cells/ml, a temperature of 20°C, and a light intensity of 3200 lx.

(3) Under the action of geraniol and citral, the content of chlorophyll a and carotenoids in Microcystis aeruginosa decreased, with an inhibition rate of over 90%, weakening the photosynthetic activity of the algae; geraniol and citral were adsorbed on the surface of the algae cells, leading to lipid peroxidation of the cell membrane, a continuous increase in malondialdehyde (MDA) content, reaching about twice that of normal algae cells, and the activities of superoxide dismutase (SOD) and catalase (CAT) antioxidant enzymes were inhibited, with minimum values being only 32.3%, 57.8%, and 23.9%, 48.5% of the control group, respectively, leading to an accumulation of reactive oxygen species within the algae cells, attacking the cell organelles and causing cell death. In addition, geraniol and citral caused changes in the composition of the algae cells, with a decrease in the content of oxygen-containing functional groups and an increase in the intensity of nitrogen-containing functional groups, which is speculated to be due to damage to the photosynthetic system and an increase in the expression of antioxidant defense and photosynthesis-related genes.

(4) Two application methods, co-cultivation with terpene-rich plants and the use of slow-release microspheres, were explored for their algal inhibition potential. Melissa officinalis, rich in citral, and Cymbopogon citratus, rich in geraniol, were found to significantly inhibit M. aeruginosa in co-culture, with inhibition rates exceeding 95%. The algae inhibition effect of Melissa officinalis was caused by both nutrient competition and allelopathic action. The algae inhibition by Cymbopogon citratus was mainly due to allelopathic action. Therefore, Cymbopogon citratus is more suitable as an algae-inhibiting plant for ecological floating beds. Geraniol sustained-release microspheres and citral sustained-release microspheres can also significantly inhibit Microcystis aeruginosa at low concentrations, and compared with the direct addition method at the same concentration level, the sustained-release microspheres can enhance the algae inhibition effect by 12% and 18%, respectively. Considering both the inhibition effect and cost-effectiveness, the plant co-cultivation method is the optimal application strategy.

(5) The ecological safety of geraniol and citral was evaluated, with EC50 values for Chlorella proteinosa being 10.1 mg/L and 14.73 mg/L, and for Chlamydomonas reinhardtii being 69.07 mg/L and 68.8 mg/L, respectively. For Brachionus calyciflorus, the semi-lethal concentration (EC50) were 64.26 mg/L and 68.53 mg/L. The study indicated that geraniol and citral possess potential for controlling algal blooms and rotifer infestations. No significant effects were observed on the growth, physiological, or biochemical parameters of the large aquatic plants Elodea nuttallii and Hydrilla verticillata, nor on the body length and weight of the large aquatic animals Chinese mitten-handed Eriocheir sinensis and Danio rerio. In conclusion, geranyl and citral have good water ecological safety when the concentration of algal suppressor is 64.3 mg/L, excluding the influence on Chlorella proteinosa.

In conclusion, geraniol and citral, as natural terpenoid compounds, have significant algae inhibition effects and good ecological safety in the management of cyanobacterial blooms, providing a new strategy for the prevention and control of bloom-forming algae.

 

参考文献:

[1] 边归国. 陆生植物化感作用抑制藻类生长的研究进展 [J]. 环境科学与技术, 2012, 35(02): 90-5.

[2] 苍晶, 赵会杰. 植物生理学实验教程 [M]. 植物生理学实验教程, 2013.

[3] 曾婷, 赵文涛, 李彤, 等. 基于臭氧氧化除藻工艺的研究进展 [J]. 环境科技, 2023, 36(02): 71-6.

[4] 陈德力, 马国需, 刘会梅, 等. 奇楠沉香中2个新的桉烷型倍半萜类化合物 [J]. 中草药, 2023, 54(16): 5137-41.

[5] 陈慧娴, 王美娟, 陈萍, 等. 双十二烷基γ-双季铵盐杀生剂的杀藻性能及机制 [J]. 常州大学学报(自然科学版), 2022, 34(05): 48-56.

[6] 陈晶莹, 周炜杰, 林果, 等. 沉水态圆叶节节菜的化感抑藻作用 [J]. 浙江农林大学学报, 2023, 40(04): 765-72.

[7] 陈莉婷, 左俊, 陶思依, 等. 利用微生物控制蓝藻研究进展 [J]. 武汉大学学报(理学版), 2019, 65(04): 401-10.

[8] 陈识文, 毛涛, 袁科平, 等. 水华治理方法研究进展 [J]. 长江大学学报(自科版), 2014, 11(35): 69-73.

[9] 高云霓, 刘碧云, 王静, 等. 蓝藻水华应急处置方法与技术研究进展 [J]. 环境科学与技术, 2023, 46(05): 108-16.

[10] 陈梓云, 刘志伟, 康春微. 山苍子果中柠檬醛含量的测定 [J]. 嘉应学院学报(自然科学版), 2022, 40(6): 22-5.

[11] 邓继选, 邹华, 庄严. 大麦秸秆抑藻物质的分离及其抑藻作用研究 [J]. 安全与环境学报, 2013, 13(06): 39-43.

[12] 杜青波. 几种中草药的化感抑藻作用及其生态安全性研究 [D], 2017.

[13] 杜先, 荀凡, 王亚蕊, 等. 蓝藻碎屑堆积对湖泊沉积物矿化特征的影响 [J]. 湖泊科学, 2020, 32(06): 1671-82.

[14] 付军, 滕曼, 万东锦, 等. 聚铁及其加载粘土絮凝去除铜绿微囊藻的研究 [J]. 水处理技术, 2010, 36(09): 56-9+86.

[15] 甘小蓉, 王超, 杨超慧. 4种化感物质对铜绿微囊藻生长及叶绿素荧光参数影响的比较 [J]. 四川环境, 2019, 38(05): 1-6.

[16] 高云霓, 刘碧云, 王静, 等. 苦草(Vallisneria spiralis)释放的酚酸类物质对铜绿微囊藻(Microcystis aeruginosa)的化感作用 [J]. 湖泊科学, 2011, 23(05): 761-6.

[17] 顾晓婧, 刘书宇, 吴明红. 电子束辐射对铜绿微囊藻生长过程的影响研究 [J]. 高校化学工程学报, 2010, 24(03): 503-7.

[18] 赵红艳, 王娇, 曹井国, 等. 柠檬香蜂草精油的气相色谱-质谱联用分析及抑菌活性研究 [J]. 食品与发酵工业, 2021, 47(02): 109-13.

[19] 洪立萍. 柠檬香蜂草离体快速繁殖(简报) [J]. 亚热带植物科学, 2006, 45(03): 58.

[20] 侯新星, 田如男. 有机酸对铜绿微囊藻生长及光合色素的影响 [J]. 生物学杂志, 2021, 38(04): 65-70.

[21] 侯颖辉, 李德文, 王少铭, 等. 贵州引种不同地区柠檬香茅草挥发油比较分析 [J]. 热带农业科学, 2023, 43(04): 70-5.

[22] 胡春霞, 陈波, 张庭廷. 稻草秸秆发酵液的抑藻效应及其机理 [J]. 中国环境科学, 2021, 41(04): 1925-31.

[23] 胡旻琪, 张玉超, 马荣华, 等. 巢湖2016年蓝藻水华时空分布及环境驱动力分析 [J]. 环境科学, 2018, 39(11): 4925-37.

[24] 胡熙. 柠檬醛、柠檬烯和薄荷醇对铜绿微囊藻的生长及产毒的影响 [D], 2014.

[25] 郇树乾, 王坚, 王志勇. 不同刈割高度对香茅草生物量及香茅草精油含量的影响 [J]. 畜牧与饲料科学, 2015, 36(11): 33-4.

[26] 黄皓旻. 天然黄酮类化合物的抑藻活性—结构关系、作用机制及抑藻剂开发研究 [D], 2016.

[27] 黄宪, 吴超权. 柠檬香蜂草作为膳食补充剂的研究进展 [J]. 大众科技, 2023, 25(01): 98-101.

[28] 黄志娟, 李冬郁, 韦锦益, 等. 香茅草的引进种植及营养分析 [J]. 中国园艺文摘, 2018, 34(02): 51-3.

[29] 蒋本超, 胡开林, 胡晓勇, 等. 去藻247对滇池水除藻效果的研究 [J]. 环境科学与管理, 2007, 01): 68-70.

[30] 蒋晓宇, 李婉冰, 刘颖, 等. 葛根的活性成分及其在食品中的应用 [J]. 武汉轻工大学学报, 2023, 42(05): 11-8.

[31] 蒋跃. 浮床植物生态特性及其抑藻效果研究 [D], 2016.

[32] 靳素娟, 高庆春. 柠檬香蜂草在重庆地区的栽培适应性初步研究 [J]. 南方农业, 2012, 6(08): 21-4.

[33] 景澄茗, 林涵, 陈庆丽, 等. 微生物控制水华藻的研究进展 [J]. 环境保护科学, 2014, 40(06): 34-7+67.

[34] 孔垂华, 胡飞. 植物化感(相生相克)作用及其应用 [M]. 植物化感(相生相克)作用及其应用, 2001.

[35] 孔繁翔, 马荣华, 高俊峰, 等. 太湖蓝藻水华的预防、预测和预警的理论与实践 [J]. 湖泊科学, 2009, 21(03): 314-28.

[36] 李蓓, 李勇涛, 蔡梅. 基于数据挖掘的太湖蓝藻生长水环境关键因子研究 [J]. 河海大学学报(自然科学版), 2020, 48(06): 506-13.

[37] 李昌杰, 许海, 詹旭, 等. 反硝化脱氮对太湖蓝藻水华态势的影响 [J]. 环境科学, 2023, 44(09): 4977-84.

[38] 李大炜, 黄晓珊, 林诗曼, 等. 香茅草在不同物态下的抑菌活性研究进展 [J]. 今日药学, 2023, 33(03): 180-5.

[39] 李德全, 胡杰, 罗俊容, 等. 薄荷醇杀菌效果的初步研究 [J]. 中国消毒学杂志, 2022, 39(05): 334-6.

[40] 李加龙, 罗纯良, 吕恒, 等. 2002—2018年滇池外海蓝藻水华暴发时空变化特征及其驱动因子 [J]. 生态学报, 2023, 43(02): 878-91.

[41] 李军集, 周丽珠, 粱忠云, 等. 香茅草种植加工与应用前景 [J]. 农村新技术, 2018, 01): 8-10.

[42] 李玥睿, 高金伟, 张文慧, 等. 蛋白核小球藻粉和雨生红球藻粉对中华绒螯蟹幼蟹生长和生理生化指标的影响 [J]. 饲料研究, 2022, 45(20): 49-54.

[43] 刘红涛 李, 席宇,赵以军,薛乐勋. 铜离子对铜绿微囊藻生长及生理的影响 [J]. 郑州大学学报(医学版), 2004, 01): 57-60.

[44] 刘华臣, 董爱君, 陈义坤, 等. 香叶酯类香料的合成及抑菌活性研究 [J]. 食品工业, 2017, 38(10): 143-6.

[45] 刘洁生, 陈芝兰, 杨维东, 等. 凤眼莲根系丙酮提取物抑制赤潮藻类生长的机制研究 [J]. 环境科学学报, 2006, 05): 815-20.

[46] 刘文杰, 张晓寒, 吴佳欢, 等. 井冈山地区龙脑樟来源真菌多样性和抗菌活性研究 [J]. 中国抗生素杂志, 2022, 47(07): 631-7.

[47] 刘正宇. 高分子季铵盐改性粘土的研发与除藻机制研究 [D], 2023.

[48] 卢诗焕, 陈彬, 尹璐, 等. 地钱浸提液对小球藻的生长抑制效应 [J]. 中国环境科学, 2020, 40(02): 824-31.

[49] 陆贻超, 王国祥, 李仁辉. 超声波和改性粘土集成技术在去除蓝藻水华上的应用 [J]. 湖泊科学, 2010, 22(03): 421-9.

[50] 罗岳平, 施周, 张丽娟, 等. 高岭土对铜绿微囊藻的PAC强化絮凝去除技术 [J]. 水生生物学报, 2009, 36(02): 22-6.

[51] 马纪, 孔玄庆, 喻快, 等. 甲基嘧啶磷对三种水生生物的急性毒性及安全性评价 [J]. 南方农业, 2023, 17(17): 10-5.

[52] 马清扬, 王元, 李传步, 等. 以拉氏拟柱胞藻和浮丝藻为主的蓝藻水华对中华绒螯蟹肠道和鳃及其养殖环境微生物群落结构的影响 [J]. 海洋渔业, 2021, 43(05): 595-606.

[53] 马妍, 石福臣, 柴民伟, 等. 几种植物对铜绿微囊藻和莱茵衣藻的影响 [J]. 南开大学学报(自然科学版), 2010, 43(03): 81-7.

[54] 门玉洁, 胡洪营. 芦苇化感物质EMA对铜绿微囊藻生长及藻毒素产生和释放的影响 [J]. 环境科学, 2007, 09): 2058-62.

[55] 彭宁彦, 杨平, 孔琼菊. 湖库水体常见蓝藻水华成因分析——以江西省2个典型水体为例 [J]. 江西水利科技, 2019, 45(06): 391-5.

[56] 强俊磊, 陈向东, 汪辉, 等. 球形棕囊藻溶藻菌的分离鉴定及溶藻作用研究 [J]. 现代农业科技, 2023, 11): 150-5.

[57] 任梦娇, 彭永丽. 除藻技术研究进展 [J]. 智能城市, 2020, 6(04): 113-4.

[58] 剡槿熙, 臧明伍, 刘贺, 等. 二萜类化合物在肉类食品保鲜防腐中的应用研究进展 [J]. 食品科学, 18(5): 1-14.

[59] 尚丽霞, 柯凡, 李文朝, 等. 高密度蓝藻厌氧分解过程与污染物释放实验研究 [J]. 湖泊科学, 2013, 25(01): 47-54.

[60] 沈银武 刘, 吴国樵,敖鸿毅,丘昌强. 富营养湖泊滇池水华蓝藻的机械清除 [J]. 水生生物学报, 2004, 14(02): 131-6.

[61] 石雨鑫. 常见行道树凋落物提取液对水华藻的抑藻效果研究 [C]. 中国水产学会, 2018年中国水产学会学术年会论文摘要集, 上海海洋大学海洋生态与环境学院, 2018: 1

[62] 田树革, 刘丛. 香草醛在中药材定性定量分析中的应用 [J]. 新疆师范大学学报(自然科学版), 2006, 25(04): 38-41.

[63] 田义. 给水中藻类的影响及其去除方法概述 [J]. 工业安全与环保, 2005, 10(01): 40-2.

[64] 王大力,祝心如. 豚草的化感作用研究 [J]. 生态学报, 1996, 4(01): 11-9.

[65] 王建斌, 高纯, 陈昊, 等. 血见愁中1个新的倍半萜类化合物 [J]. 中草药, 2023, 54(24): 7953-8.

[66] 王静, 李荣, 姜子涛. 柠檬香蜂草精油化学成分的研究 [J]. 中国调味品, 2013, 38(09): 28-30+6.

[67] 王孝源, 李爽. 萜类香料生物合成的研究进展 [J]. 香料香精化妆品, 2023, 5(06): 36-45.

[68] 王一帆, 李璇, 罗珊珊, 等. 温度和初始pH对生物结皮中4种优势蓝藻生长的影响 [J]. 应用生态学报, 2023, 02(3): 1-9.

[69] 王以鑫, 彭珍华, 胡建林, 等. 不同产地香茅草的质量评价 [J]. 中国民族民间医药, 2022, 31(09): 34-9.

[70] 魏秋兰, 肖玉菲, 张晓宁, 等. 香茅草离体快繁体系的建立 [J]. 农业研究与应用, 2022, 35(01): 30-6.

[71] 翁甜, 王昱晴, 龙超安. 香叶醇对柑橘酸腐病菌的抑菌机制 [J]. 食品科学, 2023, 44(01): 14-21.

[72] 夏文彤, 杨晓辉, 张胜娟, 等. 轮叶狐尾藻与水体微生物互作对铜绿微囊藻的抑藻效应 [C]. 中国科学技术协会, 湖泊保护与生态文明建设——第四届中国湖泊论坛论文摘要集, 安徽师范大学生命科学学院, 2014: 7

[73] 谢树莲, 王捷, 刘琪, 等. 植物化感作用控藻研究进展 [J]. 山西大学学报(自然科学版), 2017, 40(03): 652-60.

[74] 邢春玉, 孙浩晨. 黄酮类化合物对铜绿微囊藻的抑制作用 [J]. 广东蚕业, 2020, 54(10): 26-8.

[75] 徐芙清, 何伟, 郑星, 等. 野艾蒿及其有机提取物对铜绿微囊藻生长的抑制作用 [J]. 生态学报, 2010, 30(03): 745-50.

[76] 许海, 朱广伟, 秦伯强, 等. 氮磷比对水华蓝藻优势形成的影响 [J]. 中国环境科学, 2011, 31(10): 1676-83.

[77] 许明, 刘伟京, 白永刚, 等. 太湖蓝藻水华期可溶有机物的生物降解 [J]. 中国环境科学, 2018, 38(09): 3494-501.

[78] 杨超慧, 王超, 欧阳萍, 等. 丙二酸对铜绿微囊藻的抑制效果 [J]. 水资源保护, 2021, 37(03): 121-6.

[79] 杨小杰, 韩士群, 唐婉莹, 等. 凤眼莲对铜绿微囊藻生理、细胞结构及藻毒素释放与削减的影响 [J]. 江苏农业学报, 2016, 32(02): 376-82.

[80] 姚远, 贺锋, 胡胜华, 等. 沉水植物化感作用对西湖湿地浮游植物群落的影响 [J]. 生态学报, 2016, 36(04): 971-8.

[81] 张静, 宋利先, 彭宇华, 等. 浅谈高锰酸盐预氧化净水技术发展历程与研究进展 [J]. 环境科学学报, 2023, 43(12): 1-10.

[82] 张庭廷, 郑春艳, 何梅, 等. 亚油酸对铜绿微囊藻的抑制机理 [J]. 中国环境科学, 2009, 29(04): 419-24.

[83] 张伟. 耐受高光的速生集胞藻6803的分子生理学研究 [D], 2022.

[84] 张欣, 卢学强, 李玉鑫, 等. 菹草对普通小球藻和铜绿微囊藻的化感作用 [J]. 中国给水排水, 2020, 36(07): 68-73.

[85] 马纪, 孔玄庆, 喻快, 等. 姜黄中3个新的没药烷型倍半萜类化合物 [J]. 中草药, 2023, 54(14): 4420-6.

[86] 赵漫, 李冰, 马燕天, 等. 应用环境微生物治理淡水湖泊微囊藻毒素污染的研究进展 [J]. 微生物学通报, 2018, 45(04): 893-9.

[87] 赵倩名, 钟佳峻, 何培民, 等. 黄酮类物质对铜绿微囊藻的抑制效应研究 [J]. 环境科学与技术, 2022, 45(02): 1-7.

[88] 郑婷婷, 牟霄, 张崇淼, 等. 电活化过硫酸盐去除铜绿微囊藻的效果及机理研究 [J]. 环境科学研究, 2022, 35(01): 98-107.

[89] 周春妙, 肖锦程, 于俊杰, 等. 壳聚糖和纳米碳铜对铜绿微囊藻的抑制效果 [J]. 湖南农业大学学报(自然科学版), 2022, 48(02): 242-50.

[90] 周伟. 基于化感作用的新型抑藻剂筛选及其生态安全性初探 [D], 2020.

[91] 周文全, 陈文彬, 浦竞文, 等. 3种水草搭配模式对河蟹生长及水环境的影响 [J]. 水产科技情报, 2022, 49(03): 127-31.

[92] 朱广伟, 秦伯强, 张运林, 等. 2005-2017年北部太湖水体叶绿素a和营养盐变化及影响因素 [J]. 湖泊科学, 2018, 30(02): 279-95.

[93] 朱俊英, 刘碧云, 王静, 等. 穗花狐尾藻化感作用对铜绿微囊藻光合效率的影响 [J]. 环境科学, 2011, 32(10): 2904-8.

[94] 朱小琴, 刀国华, 陶益, 等. 典型植物化感物质对铜绿微囊藻生长的抑制效果评价 [J]. 中国环境科学, 2020, 40(05): 2230-7.

[95] 朱原. 溶藻菌的分离鉴定及溶藻特性的研究 [D], 2023.

[96] 祝志林. 两种观赏型水生植物对铜绿微囊藻生长的抑制作用研究 [D], 2014.

[97] 邹芳, 徐洁, 史家源, 等. 两种投喂模式对中华绒螯蟹生长性能及可食部位风味品质的影响 [J]. 饲料工业, 2024, 45(10): 71-7.

[98] 邹华 潘, 陈灏. 壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除 [J]. 环境科学, 2004, 21(06): 40-3.

[99] Anguraj M, Sundarrajan T. Pharmacophore, QSAR, molecular docking, molecular dynamics and ADMET study of trisubstituted benzimidazole derivatives as potent anti-tubercular agents [J]. Chemical Physics Impact, 2024, 8(2024): 1-13.

[100] Buratti F, M , Manganelli M, Vichi S, et al. Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation [J]. Archives of toxicology, 2017, 91(3): 1049-130.

[101] Calabrese EJ. Hormesis: principles and applications [J]. Homeopathy, 2015, 104(2): 69-82.

[102] Carusso S, Juarez AB, Moretton J, et al. Corrigendum to "Effects of three veterinary antibiotics and their binary mixtures on two green alga species" [J]. Chemosphere, 2018, 197(2018): 821-7.

[103] Chandran SS, Kealey JT, Reeves CD. Microbial production of isoprenoids [J]. Process Biochemistry, 2011, 46(9): 1703-10.

[104] Chavan A, Heisler J, Chang Y, et al. Protocols for in vitro reconstitution of the cyanobacterial circadian clock [J]. Biopolymers, 2023, 115(2): 1-15.

[105] Chen S, Zheng T, Ye C, et al. Algicidal properties of extracts from Cinnamomum camphora fresh leaves and their main compounds [J]. Ecotoxicology and Environmental Safety, 2018, 163(2018): 594-603.

[106] Cheng T, Zhao Y, Li X, et al. Computation of octanol-water partition coefficients by guiding an additive model with knowledge [J]. Journal of Chemical Information and Modeling, 2007, 47(6): 2140-8.

[107] Gao Y, Yang H, Dong J, et al. Growth and photosynthesis responses of microcystin (MC)- and non-MC-producing Microcystis strains during co-culture with the submerged macrophyte Myriophyllum spicatum [J]. Water Science & Technology, 2022, 86(1): 56-65.

[108] Han H, Alsayed A, Mohammed,Mohammed, Wang Y, et al. Discovery of β-cyclocitral-derived mono-carbonyl curcumin analogs as anti-hepatocellular carcinoma agents via suppression of MAPK signaling pathway [J]. Bioorganic chemistry, 2023, 132(2023): 1-11.

[109] Han MY, Kim W. A theoretical consideration of algae removal with clays [J]. Microchemical Journal, 2001, 68(2-3): 157-61.

[110] Hartmut K, Lichtenthaler, Alan R, Wellburn. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents [J]. Analysis, 1983, 11(5): 591-2.

[111] He Y, Zhou Q-H, Liu B-Y, et al. Programmed cell death in the cyanobacterium Microcystis aeruginosa induced by allelopathic effect of submerged macrophyte Myriophyllum spicatum in co-culture system [J]. Journal of Applied Phycology, 2016, 28(5): 2805-14.

[112] Hu X, Liu Y, Zeng G, et al. Effects of limonene stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905 [J]. Ecotoxicology and Environmental Safety, 2014, 105(2014): 121-7.

[113] Hu X, Liu Y, Zeng G, et al. Effects of d-menthol stress on the growth of and microcystin release by the freshwater cyanobacterium Microcystis aeruginosa FACHB-905 [J]. Chemosphere, 2014, 113(2014): 30-5.

[114] Jampeetong A, Brix H. Nitrogen nutrition of Salvinia natans: Effects of inorganic nitrogen form on growth, morphology, nitrate reductase activity and uptake kinetics of ammonium and nitrate [J]. Aquatic Botany, 2009, 90(1): 67-73.

[115] Krztoń W, Kosiba J, Pociecha A, et al. The effect of cyanobacterial blooms on bio- and functional diversity of zooplankton communities [J]. Biodiversity and Conservation, 2019, 28(7): 1815-35.

[116] Lau NS, Matsui M, Abdullah AA. Cyanobacteria: Photoautotrophic Microbial Factories for the Sustainable Synthesis of Industrial Products [J]. Biomed Research International, 2015, 2015(52): 1-9.

[117] Leticia D, María P, Daniel G, et al. In Vitro Toxicity Evaluation of Cyanotoxins Cylindrospermopsin and Microcystin-LR on Human Kidney HEK293 Cells [J]. Toxins, 2022, 14(7): 429-49.

[118] Li B, Xu D, Feng L, et al. Ecotoxic side-effects of allelochemicals on submerged plant and its associated microfloras effectively relieved by sustained-release microspheres [J]. Science of The Total Environment, 2023, 871(32): 1-12.

[119] Lu Y, Wang J, Yu Y, et al. Changes in the physiology and gene expression of Microcystis aeruginosa under EGCG stress [J]. Chemosphere, 2014, 117(21): 164-9.

[120] Luo Y, Yang Y, Hou W, et al. Novel Algicides against Bloom-Forming Cyanobacteria from Allelochemicals: Design, Synthesis, Bioassay, and 3D-QSAR Study [J]. Biology (Basel), 2021, 10(11): 23-31.

[121] Mallick N, Mohn FH. Reactive oxygen species: response of algal cells [J]. Journal of Plant Physiology, 2000, 157(2): 183-93.

[122] Masrat M, Aijaz A, Dar. Formulation challenges in encapsulation and delivery of citral for improved food quality [J]. Food Hydrocolloids, 2014, 37(2014): 182-95.

[123] Mohamed ZA, Hashem M, Alamri SA. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride [J]. Toxicon, 2014, 86(2014): 51-8.

[124] Montgomery BL. Mechanisms and fitness implications of photomorphogenesis during chromatic acclimation in cyanobacteria [J]. Journal of Experimental Botany, 2016, 67(14): 4079-90.

[125] Nakai S. Myriophyllum spicatum-released allelopathic polyphenols inhibiting growth of blue-green algae Microcystis aeruginosa [J]. Water Research, 2000, 34(11): 3026-32.

[126] Ni L, Acharya K, Hao X, et al. Isolation and identification of an anti-algal compound from Artemisia annua and mechanisms of inhibitory effect on algae [J]. Chemosphere, 2012, 88(9): 1051-7.

[127] Ni L, Acharya K, Ren G, et al. Preparation and characterization of anti-algal sustained-release granules and their inhibitory effects on algae [J]. Chemosphere, 2013, 91(5): 608-15.

[128] Ni L, Hao X, Li S, et al. Inhibitory effects of the extracts with different solvents from three compositae plants on cyanobacterium Microcystis aeruginosas [J]. Science China Chemistry, 2011, 54(7): 1123-9.

[129] Ni L, Jie X, Wang P, et al. Characterization of unsaturated fatty acid sustained-release microspheres for long-term algal inhibition [J]. Chemosphere, 2015, 120(2015): 383-90.

[130] Ni L, Rong S, Gu G, et al. Inhibitory effect and mechanism of linoleic acid sustained-release microspheres on Microcystis aeruginosa at different growth phases [J]. Chemosphere, 2018, 212(2018): 654-61.

[131] Ni L, Zhu C, Du C, et al. Characterization of a Novel Artemisinin Algicidal Particle and Its Inhibitory Effect on Microcystis aeruginosa [J]. Bulletin of Environmental Contamination and Toxicology, 2023, 110(5): 82-93.

[132] Paerl HW, Bland PT, Bowles ND, et al. ADAPTATION TO HIGH-INTENSITY, LOW-WAVELENGTH LIGHT AMONG SURFACE BLOOMS OF THE CYANOBACTERIUM MICROCYSTIS-AERUGINOSA [J]. Applied and Environmental Microbiology, 1985, 49(5): 1046-52.

[133] Petra L, Eliška S, Ondřej B, et al. Cyanobacteria, Cyanotoxins, and Lipopolysaccharides in Aerosols from Inland Freshwater Bodies and Their Effects on Human Bronchial Cells [J]. Environmental toxicology and pharmacology, 2023, 98(2023): 1-15.

[134] Qun L, Jiarong F, Zhong H, et al. ROS-dependent cell death of Heterosigma akashiwo induced by algicidal bacterium Hahella sp. KA22 [J]. Marine Genomics, 2023, 69(24): 1-8.

[135] Shao J, Liu D, Gong D, et al. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action [J]. Aquatic Toxicology, 2013, 142-143(32): 257-63.

[136] Shokoohi R, Rahmani A, Asgari G, et al. Removal of algae using hydrodynamic cavitation, ozonation and oxygen peroxide: Taguchi optimization (case study: Raw water of sanandaj water treatment plant) [J]. Process Safety and Environmental Protection, 2023, 169(24): 896-908.

[137] Suzuki Y, Saijo H, Takahashi K, et al. Growth-inhibitory components in Sugi (Cryptomeria japonica) extracts active against Microcystis aeruginosa [J]. Cogent Environmental Science, 2018, 4(1): 1-10.

[138] Tang T, Huang H, Hu J, et al. Discovery of novel anti-cyanobacterial allelochemicals by multi-conformational QSAR approach [J]. Aquatic Toxicology, 2023, 256(2023): 106420.

[139] Wang C, Yu X, Wu L, et al. A contrast of emerging contaminants rac- and l-menthol toxicities to Microcystis aeruginosa through biochemical, physiological, and morphological investigations [J]. Science of The Total Environment, 2024, 912(2024): 169508.

[140] Wang YS, Tian SP, Xu Y, et al. Changes in the activities of pro- and anti-oxidant enzymes in peach fruit inoculated with Cryptococcus laurentii or Penicillium expansum at 0 or 20 °C [J]. Postharvest Biology and Technology, 2004, 34(1): 21-8.

[141] Wen J, Liao H, Nie H, et al. Comprehensive transcriptomics and metabolomics revealed the antifungal mechanism of Cymbopogon citratus essential oil nanoemulsion against Fusarium solani [J]. Chemical and Biological Technologies in Agriculture, 2023, 10(1): 263-74.

[142] Wu Z, Shi J, Yang S. The effect of pyrogallic acid on growth, oxidative stress, and gene expression in Cylindrospermopsis raciborskii (Cyanobacteria) [J]. Ecotoxicology, 2013, 22(2): 271-8.

[143] Xia DD, Han XY, Zhang Y, et al. Chemical Constituents and Their Biological Activities from Genus Styrax [J]. Pharmaceuticals (Basel), 2023, 16(7): 1-24.

[144] Xia H, Song T, Wang L, et al. Effects of dietary toxic cyanobacteria and ammonia exposure on immune function of blunt snout bream (Megalabrama amblycephala) [J]. Fish & Shellfish Immunology, 2018, 78(2018): 383-91.

[145] Yan Y, Xu X, Shi C, et al. Ecotoxicological effects and accumulation of ciprofloxacin in Eichhornia crassipes under hydroponic conditions [J]. Environmental Science and Pollution Research, 2019, 26(29): 30348-55.

[146] Yuan R, Li Y, Li J, et al. The allelopathic effects of aqueous extracts from Spartina alterniflora on controlling the Microcystis aeruginosa blooms [J]. Science of the Total Environment, 2020, 712(53): 124-37.

[147] Yue L, Li J, Chen W, et al. Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent [J]. Carbohydrate Polymers, 2017, 176(2017): 356-64.

[148] Zhang S, Benoit G. Comparative physiological tolerance of unicellular and colonial Microcystis aeruginosa to extract from Acorus calamus rhizome [J]. Aquatic Toxicology, 2019, 215(73): 562-76.

[149] Zhu J, Liu B, Wang J, et al. Study on the mechanism of allelopathic influence on cyanobacteria and chlorophytes by submerged macrophyte (Myriophyllum spicatum) and its secretion [J]. Aquatic Toxicology, 2010, 98(2): 196-203.

中图分类号:

 X17    

开放日期:

 2024-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式