中文题名: | 野生大豆磷效率相关性状的全基因组关联分析和候选基因的挖掘及功能验证 |
姓名: | |
学号: | 2019101141 |
保密级别: | 保密两年 |
论文语种: | chi |
学科代码: | 090102 |
学科名称: | 农学 - 作物学 - 作物遗传育种 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 大豆耐逆育种 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2022-05-31 |
答辩日期: | 2022-05-26 |
外文题名: | Genome-wide Association Analysis,Candidate Gene Mining And Functional Validation Of Traits Related To Phosphorus Efficiency In Wild Soybean. |
中文关键词: | |
外文关键词: | wild soybean ; Genome-wide association analysis(GWAS) ; phosphorus efficiency ; SNP |
中文摘要: |
大豆[Glycine max (L.) Merr.]是需磷量较大的作物,在整个生育期中均需要保持较高的磷营养水平,其中出苗到盛花期对磷的需求较为敏感。大豆植株在缺磷后表现出明显的缺素症状,例如植株变矮小、叶片发生萎缩、出现坏死的斑点等,甚至还会导致叶片脱落、花期推迟、结荚变少等症状,从而严重影响大豆产量和品质。大豆耐低磷的种质资源匮乏,遗传基础狭窄,成为大豆耐低磷育种中的瓶颈。野生大豆(Glycine soja Sieb.et Zucc.)是栽培大豆的近缘野生种,目前对野生大豆已经开展了包括生态学、品质化学、结构植物学、植物保护等基础的生物学研究。并且野生大豆具有抗病、抗旱、抗虫以及耐盐、耐贫瘠等多种抗逆性和环境适应能力。 本研究以 240 份野生大豆组成的自然群体为研究材料,通过水培试验进行表型鉴定与分析,结合高通量的SNP标记对耐低磷相关性状进行全基因组关联分析,对显著且稳定关联的SNP位点所在的区间内的候选基因进行功能预测和表达模式分析。主要研究结果如下: 1. 野生大豆苗期磷效率相关性状的表型变化显著:低磷胁迫处理后,总根长显著增加,总投影面积和总根表面积出现上升趋势,而平均根系直径、总根体积、根尖数和分支数的表型均值在正常磷水平下高于低磷水平均值,表明根系形态变化是大豆应对低磷胁迫的机制之一。而低磷胁迫处理后,地上部分鲜重、地上部分干重、地上部分磷浓度和地上部分磷积累量整体出现显著下降趋势,其中地上部分磷积累量在低磷胁迫处理下下降了约11倍。根冠比和地上部分磷利用效率则相反,鲜重根冠比和干重根冠比在低磷胁迫下分别增加了2.5倍和2倍,而地上部分磷利用效率在低磷胁迫下增加了5倍。此外,分析表明地上部分鲜重、地上部分干重、鲜重根冠比、干重根冠比、地上部分磷浓度、地上部分磷积累量和地上部分磷利用效率等均存在广泛的表型变异,变异系数在29.61%~116.01%,且大部分呈现出正态分布或接近于正态的分布,表现出数量性状的特点。 2. 分别利用两种高通量的SNP标记(以Williams82基因型为参考基因组,包括1,038,402个高质量SNPs和以W05野生基因型为参考基因组,包括1,293,045个SNPs)对野生大豆磷效率相关的16个性状进行全基因组关联分析。在以W05野生基因型为参考基因组时,GWAS发现同一性状在多环境重复定位的稳定关联位点147个;在以Williams82基因型为参考基因组时,GWAS结果中发现同一性状在多环境重复定位的稳定关联位点35个,另外,发现4个一因多效的稳定位点:地上部鲜重和根干重在E2和E4环境下定位到rs527215和rs527234;地上部鲜重、干重和地上部总磷积累量在E2和E4环境下以及根干重在E1和E2环境下都定位到rs505515;地上部鲜重和干重在E1、E2和E3环境下以及根干重在E1和E4环境下定位到rs822515。并将这些位点用于进一步研究。 3. 候选基因的预测:在以Williams82基因型为参考基因组的1,038,402个SNPs文件检测到的关联SNP位点附近80 kb的范围内寻找候选基因,在以W05基因型为参考基因组的1,293,045个SNPs文件检测到的关联SNP位点附近40 kb的范围内寻找候选基因,结合生物学信息,最终选出可能与磷效率相关的13个野生豆特有基因,分别命名为磷酸化传导信号Gs01、磷酸转运因子Gs02、酸性磷酸酶Gs03、蛋白激酶Gs04、蛋白磷酸酶Gs05、蛋白激酶Gs06、膜联蛋白Gs07、类受体激酶Gs08、乙酰辅酶α羧化酶Gs09、F-box蛋白Gs10、蛋白磷酸酶Gs11、LRR类受体丝氨酸/苏氨酸蛋白激酶基因Gs12、LOB蛋白Gs13。对13个候选基因诱导表达实验结果中,Gs01、Gs06、Gs07、Gs09、Gs10受到低磷胁迫的诱导,表达量显著提升,而Gs02、Gs03、Gs04、Gs05在正常磷水平下表达量显著高于低磷胁迫条件下。进一步对Gs01和Gs02的功能分析,构建了过表达载体转化大豆毛状根,当Gs01在大豆毛状根中过表达时,与对照相比,低磷条件下的根鲜重显著增加,同时过表达该基因促进了低磷条件下根的伸长,这些结果说明Gs01可能通过促进低磷条件下根生长进而参与大豆的低磷胁迫应答响应。与Gs01相反,过表达Gs02显著降低了低磷条件下的根鲜重,且低磷条件下的根长与对照相比显著降低,初步说明Gs02可能负调控大豆低磷胁迫应答反应中根系的变化,这些结果表明以上候选基因可能与大豆耐低磷相关。 |
外文摘要: |
Soybean [Glycine Max (L.) Merr. ] is a crop that needs a large amount of phosphorus, and it needs a high phosphorus nutrient level throughout its growth period, especially from seedling emergence to flowering stage. Soybean plants with phosphorus deficiency will show obvious deficiency symptoms,such as shorter plants,smaller leaves, necrotic spots,etc. If plants with phosphorus deficiency in pod-setting stage,it will also lead to leaf shedding,delayed flowering,less pod-setting and other symptoms,thus seriously affecting soybean yield and quality. The lack of germplasm resources and narrow genetic basis of soybean low phosphorus tolerance has become the bottleneck of soybean low phosphorus tolerance breeding. Wild soybean (Glycine soja Sieb. Et Zucc.) is a relative wild species of cultivated soybean. The basic biology of wild soybeans has been studied,including ecology,structure botany,quality chemistry and plant protection. The results showed that wild soybeans had special chemical quality and strong resistance to disease,insects,drought and barren. In this study,240 wild soybean populations were used as research materials. Phenotypic identification and analysis were carried out through hydroponic tests. Genome-wide association analysis was conducted for traits related to low phosphorus tolerance by combining high throughput SNP markers. The candidate genes were predicted and analyzed according to the interval and functional annotation of the identified stable associated SNP loci.The main research contents are as follows: 1. Phenotypic variation of wild soybean root related traits at seedling stage: Phosphorus stress after processing,the total root length,total projection area,plant total root surface area show an upward trend.The mean value of traits including average root diameter, total root volume,tips and forks of phenotype were slightly higher at normal P level than at low P level.Phenotypic variation of phosphorus efficiency related traits in wild soybean seedlings is significant: under P stress treatment, shoot dry weight, shoot fresh weight, P concentration of shoot and total P of shoot showed a significant downward trend,and total P of the shoot decreased by about 11 times under low P stress. The root-shoot ratio and P utilization efficiency of shoot showed the opposite.The root-shoot ratio by fresh weight increased by 2.5 times and the root-shoot ratio by dry weight increased 2 times under low P.while the P utilization efficiency of shoot increased 5 times.The analysis under low P stress. In addition, the analysis shows that the shoot fresh weight, shoot dry weight, root-shoot ratio by dry weight , root-shoot ratio by fresh weight,P concentration of shoot ,total P of shoot and P utilization efficiency of shoot show a wide range of phenotypic variation, the variation coefficient was 29.61% ~ 116.01%, and most of this traits present normal distribution or close to normal distribution, It shows the characteristics of quantitative characters. 2. Genome-wide association analysis of 16 traits related to phosphorus efficiency in wild soybean was conducted using two high-throughput SNP markers (1,038,402 high-quality SNPs with Williams82 genotype as the reference genome and 1,293,045 SNPs with W05 genotype as the reference genome). Genome-wide association analysis of 16 traits related to phosphorus efficiency in wild soybean was conducted. When using W05 wild genotype as the reference genome, we found 147 stable SNPs for the same trait repeatedly located in multiple environments.When using Williams82 genotype as the reference genome, 35 stable SNPS were identified, In addition, 4 stable SNPs tended to have pleiotropism: rs527215 and rs527234 were located in shoot fresh weight and root dry weight in E2 and E4 environments.we located rs505515 in shoot fresh weight, dry weight and total P of shoot in E2 and E4 and root dry weight in E1 and E2.rs822515 was located in the fresh weight and dry weight of shoot in E1, E2 and E3,and the dry weight of root in E1 and E4. These SNPs will be used for further study. 3. Prediction of candidate genes: Candidate genes are searched within a range of 80 KB near the SNPS with stable association detected when using W82 Genotype file, and 40KB near the SNPS with stable association detected when using W05 Genotype file.several genes were found,and 13 genes that might be related to phosphorus efficiency were finally selected based on literature review and biological information. They are Phosphorylated transduction signal Gs01,phosphate transporter Gs02, acid phosphatase Gs03, protein kinase Gs04,protein phosphatase Gs05, protein kinase Gs06,and Annexin-like protein Gs07,receptor-like kinase Gs08,acetyl-CoA carboxylase Gs09,F-box protein Gs10,protein phosphatase Gs11, LRR receptor-like serine/threonine protein kinase gene Gs12,LOB protein Gs13.Among the 13 candidate genes,Gs01,Gs06,Gs07,Gs09 and Gs10 were significantly induced by low phosphorus.Gs02, Gs03, Gs04 and Gs05 were significantly higher under normal P than under low P stress.By further functional analysis of Gs01 and Gs02, an overexpression vector was constructed to transform hairy roots of soybean. When Gs01 was overexpressed in hairy roots of soybean, the root fresh weight significantly increased under low P condition compared with the control. Meanwhile, overexpression of Gs01 promoted root elongation under low P condition. These results suggest that Gs01 may be involved in soybean response to low P stress by promoting root growth under low P stress. In contrast to Gs01, overexpression of Gs02 significantly reduced the root fresh weight and root length under low P conditions compared with the control, suggesting that Gs02 may negatively regulate the changes of the root system in response to low P stress. These results suggest that the above candidate genes may be related to low P tolerance of soybean. |
参考文献: |
[1] Adeleke R,Nwangburuka C,Oboirien B.Origins. Roles and fate of organic acids in soils:A review[J]. South African Journal of Botany, 2017, 108: 393-406. [2] Adeyemi N O,Atayese O,Sakariyawo S,et al. Influence of different arbuscular mycorrhizal fungi isolates in enhancing growth,phosphorus uptake and grain yield of soybean in a phosphorus deficient soil under field conditions [J]. Communications in Soil Science Plant Analysis,2021,52(10):1171-1183. [3] Ayadi A ,David P,Arrighi J F, et al. Reducing the genetic redundancy of Arabidopsis PHOSPHATE TRANSPORTER1 transporters to study phosphate uptake and signaling[J]. Plant Physiology,2015,167(4):1511-1526. [4] Bozzo G,Dunn L,Plaxton C.Differential synthesis of phosphate-starvation inducible purple acid phosphatase isozymes in tomato (Lycopersicon esculentum) suspension cells and seedlings[J].Plant Cell and Environment,2006,29(2):303-13 [5] Cai Z,Cheng Y,Xian P,et al.Acid phosphatase gene GmHAD1 linked to low phosphorus tolerance in soybean,through fine mapping[J].Theoretical and Applied Genetics.2018, 131(8):1715-1728. [6] Campos P,Borie F,Cornejo P,et al. Wheat root trait plasticity,nutrient acquisition and growth responses are dependent on specific arbuscular mycorrhizal fungus and plant genotype interactions [J]. Journal of Plant Physiology,2021,256:153-279. [7] Canarini A,Kaiser C,Merchant A,et al. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli [J].Frontiers in Plant Science,2019,10:157. [8] Chao S,Du W,Lu T,et al.Genome-wide association study of soybean (Glycine Max) phosphorus deficiency tolerance during the seedling stage[J].Plant Breeding ,2020,140(2):267-284. [9] Che J,Yamaji N,Miyaji T,et al. Node-Localized transporters of phosphorus essential for seed development in rice[J]. Plant Cell Physiology.2020,61(8):1387-1398. [10] Chen Y,Siddique K,Rengel Z,et al.Temporal and spatial dynamics of rhizosphere chemistry among cluster-root-forming white lupin and yellow lupin and non-cluster-root narrow-leafed lupin[R]. October 2015. [11] Dai X,Wang Y,Yang A,et al.OsMYB2P-1,an R2R3 MYB Transcription Factor,Is Involved in the Regulation of Phosphate-Starvation Responses and Root Architecture in Rice[J]. Plant Physiology,2012,159(1):169-183. [12] Devaiah B,Madhuvanthi R,Karthikeyan A,et al.Phosphate starvation responses and Gibberellic Acid biosynthesis are regulated by the MYB62 transcription factor in Arabidopsis[J]. Molecular Plant ,2009,2(1):43-58. [13] Devaiah N,Karthikeyan S,Raghothama G.WRKY75 Transcription Factor Is a Modulator of Phosphate Acquisition and Root Development in Arabidopsis[J]. Plant Physiology,2007, 143(4):1789-1801. [14] Fredeen A ,Madhusudana R,Terry N,et al. Influence of phosphorus nutrition on grow thand carbon partitioning in Glycine max[J].Plant Physiology,1989(89):225-230. [15] Ghahremani M,Park J,Anderson E,et al.Lectin AtGAL1 interacts with high-mannose glycoform of the purple acid phosphatase AtPAP26 secreted by phosphate-starved Arabidopsis[J]. Plant Cell & Environment ,2019,42:1158–1166. [16] Gordon-Weeks R,Tong Y,Emyr D,et al.Restricted spatial expression of a high-affinity phosphate transporter in potato roots[J]. Journal of Cell Science,2003,116(15):3135-3144. [17] Gu M,Zhang J,Li H,et al.Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1,an R2R3-type MYB transcription factor in rice[J].Journal of Experimental Botany,2017,68(13):3603-3615. [18] Guo B,Irigoyen S,Fowler T,et al. Differential expression and phylogenetic analysis suggest specialization of plastid-localized members of the PHT4 phosphate transporter family for photosynthetic and heterotrophic tissues[J]. Plant Signaling &Behavior,2008a, 3(10):784-790. [19] Guo B,Jin Y,Wussler C,et al. Functional analysis of the Arabidopsis PHT4 family of intracellular phosphatetransporters[J].New Phytologist,2008b,177(4):889-898. [20] Guo C,Guo L,Li X,et al. TaPT2,a high-affinity phosphate transporter gene in wheat (Triticum aestivumL),is crucial in plant Pi uptake under phosphorus deprivation[J]. Acta Physiologiae Plantarum,2014,36(6):1373-1384. [21] Humira S,Louise O,Cober E,et al.Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soybean.Plant Biotechnology journal[J].2015,13(2):211-21. [22] Haling R,Yang Z,Shadwell N,et al.Root morphological traits that determine phosphorus-acquisition efficiency and critical external phosphorus requirement in pasture species[J].Functional Plant Biology.2016,43(9):815-826. [23] Hamel P,Saint-Georges Y,Pinto B,et al. Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana[J]. Molecular Microbiology,2004,51(2):307-317. [24] He L,Zhao M,Wang Y,et al. Phylogeny,structural evolution and functional diversification of the plant PHOSPHATE1 gene family: A focus on Glycine max[J]. BMC Evolutionary Biology, 2013,13(1):103-116. [25] Hochholdinger F,Zimmermann R. Conserved and diverse mechanisms in root development. Current Opinion in Plant Biology [J],2007,11(1):70-74. [26] Hodge A,Berta G,Doussan C,et al.Plant root growth,architecture and function[J]. Plant and Soil,2009,321:153-187. [27] Huang C,Roessner U,Eickmeier I,et al. Metabolite Profiling Reveals Distinct Changes in Carbon and Nitrogen Metabolism in Phosphate-Deficient Barley Plants (Hordeum vulgare L.)[J]. Plant & Cell Physiology,2008,49(5):691-703. [28] Hwang E,Song Q,Jia G,et al. A genome-wide association study of seed protein and oil content in soybean[J].BMC Genomics. 2014;15:1. [29] King K,Lauter N,Lin S,et al. Evaluation and QTL mapping of phosphorus concentration in soybean seed[J]. Euphytica,2013,189(2):261-269. [30] KongY, Li X,Wang B,et al. The soybean purple acid phosphatase GmPAP14 predominantly enhances external phytate utilization in Plants.Frontiers in Plant Science,2018,9:292. [31] Korte A,Farlow A. The advantages and limitations of trait analysis with GWAS: a review[J]. Plant methods,2013,9:29. [32] Lan P,Li W,Schmidt W,et al.Genome-wide co-expression analysis predicts protein kinases as important regulators of phosphate deficiency-induced root hair remodeling in Arabidopsis. BMC Genomics,2013,14:210. [33] Li C C,Li C F,Zhang H,et al. The purple acid phosphatase GmPAP21 enhances internal phosphorus utilization and possibly plays a role in symbiosis with rhizobia in soybean[J]. Physiologia Plantarum.2017,159(2):215-227. [34] Li Y,Wang Y,Tong Y,et al.QTL mapping of phosphorus deficiency tolerance in soybean (Glycine max L. Merr.)[J]. Euphytica,2005,142(1-2):137-142. [35] Li H,Shen J,Zhang F,et al.Dynamics of phosphorus fractions in the rhizosphere of common bean (Phaseolus vulgaris L.) and durum wheat (Triticum turgidum durum L.) grown in monocropping and intercropping systems[J].Plant and Soil .2008,312:139–150. [36] Lin W,Huang T,Chiou T. Nitrogen limitation adaptation,a target of microRNA827,mediates degradation of plasma membrane-localized phosphate transporters to maintain phosphate homeostasis in Arabidopsis.The Plant Cell,2013,25(10):4061-74. [37] Liu J,Yang L,Luan M,et al. A vacuolar phosphate transporter essential for phosphate homeostasis in Arabidopsis[J]. Proceedings of the National Academy of ences.2015, 112(47):6571-6578. [38] Liu T,Huang T,Yang S,et al. Identification of plant vacuolar transporters mediating phosphate storage[J]. Nature Communications,2016,31(7):11095-11105. [39] Livak K, Schmittgen T. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods[J].2001,25(4):402-408. [40] Lü H,Yang Y,Li H,et al.Genome-Wide association studies of photosynthetic traits related to phosphorus efficiency in soybean[J].Frontiers in Plant Science.2018,9:1226. [41] Lynch J,Brown K.Topsoil foraging-an architectural adaptation of plants to low phosphorus availability[J].Plant and Soil,2001,237:225-237. [42] Muchane M,Jama B,Othieno C,et al.Influence of improved fallow systems and phosphorus application on arbuscular mycorrhizal fungi symbiosis in maize grown in western Kenya [J]. Agroforestry Systems,2010,78:139-150. [43] Neumann G,Massonneau A,Martinoia E,et al.Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin [J]. Planta,1999,208:373-382. [44] Ning L,Kan G,Du W,et al.Association analysis for detecting significant single nucleotide polymorphisms for phosphorus-deficiency tolerance at the seedling stage in soybean [Glycine max (L) Merr.][J]. Breeding Science. 2016,66:191-203. [45] Pavón,Lorena R,Lundh,et al. Arabidopsis ANTR1 is a Thylakoid Na⁺ -dependent phosphate transporter: FUNCTIONAL CHARACTERIZATION IN ESCHERICHIA COLI[J]. Journal of Biological Chemistry,2008,283(20):13520-13527. [46] Rausch C,Bucher M.Molecular mechanisms of phosphate transport in plants[J].Planta. 2002.216(1):23-37. [47] Robinson W,Park J,Tran H,et al. The secreted purple acid phosphatase isozymes AtPAP12 and AtPAP26 play a pivotal role in extracellular phosphate-scavenging by Arabidopsis thaliana[J]. Journal of Experimental Botany. 2012,63:6531–6542. [48] Secco D, Baumann A,Poirier Y. Characterization of the rice PHO1 gene family reveals a key role for OsPHO1;2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons[J].Plant Physiology,2010,152(3):1693-1704. [49] Soumya P,Sharma S,Meena M,et al.Response of diverse bread wheat genotypes in terms of root architectural traits at seedling stage in response to low phosphorus stress [J]. Plant Physiology Reports,2020,26:152-161. [50] Su T,Xu Q,Zhang F,et al.WRKY42 modulates phosphate homeostasis through regulating phosphate translocation and acquisition in Arabidopsis[J]. Plant Physiology,2015, 167(4):1579-1591. [51] Takabatake R,Hata S,Taniguchi M,et al. Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean,maize,rice,and Arabidopsis[J]. Plant Molecular Biology,1999,40(3):479-486. [52] Tomizioli M,Lazar C,Sabine B,et al. Deciphering thylakoid sub-compartments using a mass spectrometry-based approach[J]. Molecular & Cellular Proteomics,2014,13(8):2147-2167. [53] Tran H,Qian W,Hurley B,et al.Biochemical and molecular characterization of AtPAP12 and AtPAP26: the predominant purple acid phosphatase isozymes secreted by phosphate-starved Arabidopsis thaliana[J].Plant Cell & Environment.2010,33:1789-1803. [54] Vance C,Claudia U,Allan D,et al.Phosphorus acquisition and use: Critical adaptations by plants for securing a nonrenewable resource[J].New Phytologist,2003,157( 3):423-447. [55] Villaécija-Aguilar J,Körösy C,Maisch L,et al.KAI2 promotes Arabidopsis root hair elongation at low external phosphate by controlling local accumulation of AUX1 and PIN2.Current Biology,2022,32(1):228-236. [56] Wang Y,Gao H,He L,et al.The phosphate1 gene participate in salt and Pi signaling pathways and play adaptive roles during soybean evolution.BMC Plant Biology.2019,19:353. [57] Wang Y,David S,Yves P,et al.Characterization of the PHO1 gene family and the responses to phosphate deficiency of physcomitrella patens[J]. Plant Physiology,2008,146(2):646-656. [58] Wayne K,Versaw,Maria J,et al.A chloroplast phosphate transporter,PHT2;1,influences allocation of phosphate within the plant and phosphate-starvation responses[J].The Plant cell,2002,14(8):1751-66. [59] Wege S,Ghazanfar A,Jung J.The EXS domain of PHO1 participates in the response of shoots to phosphate deficiency via a root-to-shoot signal[J].Plant Physiology,2016,170,(1),385-400. [60] Wu W,Lin Y,Liu P,et al. Association of extra-cellular dNTP utilization with a GmPAP1-like protein identified in cell wall proteomic analysis of soybean roots[J]. Journal of Experimental Botany,2018,69:603–617. [61] Yuan H,Liu D.Signaling components involved in plant responses to phosphate starvation[J]. Journal of Integrative Plant Biology,2008,50(7):849-859. [62] Yang W,Baek D,Yun D,et al.Rice OsMYB5P improves plant phosphate acquisition by regulation of phosphate transporter[J].PLoS One.2018,13(3):e0194628. [63] Yang W,Baek D,Yun D,et al.Overexpression of OsMYB4P,an R2R3-type MYB transcriptional activator,increases phosphate acquisition in rice[J].Plant Physiology and Biochemistry.2014,80: 259-267. [64] Yang Z,Gao Z,Zhou H,et al.GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean[J]. The plant journal.2021,107(2):525-543. [65] Yang Z,Yang J,Wang Y,et al.PROTEIN PHOSPHATASE95 Regulates phosphate homeostasis by affecting phosphate transporter trafficking in rice[J].The Plant Cell.2020,32(3):740-757. [66] Yin L,Vener A,Spetea C.The membrane proteome of stroma thylakoids from,Arabidopsis thaliana,studied by successive in-solution and in-gel digestion[J]. Physiologia Plantarum,2015,154(3):433-446. [67] Zhang D,Cheng H,Geng L,et al. Detection of quantitative trait loci for phosphorus deficiency tolerance at soybean seedling stage[J]. Euphytica,2009,167(3):313-322. [68] Zhang D,Song H,Cheng H,et al. The acid phosphatase-encoding gene GmACP1 contributes to soybean tolerance to low-phosphorus stress[J]. PLoS Genetics,2014,10(1): e1004061. [69] Zheng L,Bao Y,Zhang X,et al. Research progress of phosphorus transporter gene in plants[J].Ecology and Environmental Sciences,2017,26(2):342-349. [70] Zhu W,Miao Q,Sun D,et al. The mitochondrial phosphate transporters modulate plant responses to salt stress via affecting ATP and gibberellin metabolism in Arabidopsis thaliana[J]. Plos One,2012,7(8):43530-43539. [71] 查蕾. PHR1、WRKY75在拟南芥低磷应答中的功能差异研究 [D].华中师范大学.2021 [72] 方丹丹,张婷,文晓鹏.超表达马尾松PmPT3基因提高拟南芥耐低磷能力[J].生物技术通报. 2021,37(10):1-8. [73] 冯峰,张福锁,杨新泉.植物营养研究进展与展望[M].北京:中国农业大学出版社,2000,1-11. [74] 耿雷跃,崔士友,张丹等.大豆磷效率QTL定位及互作分析[J].大豆科学,2007,26(4):460-466. [75] 龚丝雨.苗期耐低磷烟草基因型筛选及其磷效率[J].植物营养与肥料学报,2019,25(04) [76] 官纪元,樊卫国.供磷水平对刺梨幼苗生长和养分含量及其相关生理指标的影响[J].西北植物学报. 2018,38(07):1315-1324. [77] 胡佩,周顺桂,刘德辉.土壤磷素分级方法研究评述[J].土壤通报,2003,34(3):229-232. [78] 华瑞,沈玉芳,李世清等.小麦及玉米苗期生物量对介质供磷水平的反应[J].西北农林科技大学学报,2008,36(11):82-90. [79] 黄楠,赵跃,刘继培等.减施磷肥对京郊设施番茄产量、品质及土壤有效磷的影响[J].中国农学通报,2018,34(16):65-69. [80] 姜德锋,蒋家慧,李敏等.AM菌对玉米某些生理特性和籽粒产量的影响[J].中国农业科学,1998,031:15-20. [81] 梁翠月,廖红.植物根系响应低磷胁迫的机理研究[J].生命科学,2015,27(3):389-397. [82] 刘国选,陈康等.大豆GmPIN2b调控根系响应低磷胁迫的功能研究[J]华南农业大学学报.2021,42(4):33-41. [83] 刘明秀,梁国鲁.植物比叶质量研究进展[J].植物生报,2016,40(8):847-860. [84] 刘润进,陈应龙.菌根学[M],科学出版社.2007. [85] 刘永顺.大豆苗期耐低磷相关基因的挖掘及功能初步验证[D]. 南京农业大学,2020. [86] 鲁甜.野生大豆苗期磷效率相关性状的全基因组关联分析[D]. 南京农业大学,2021. [87] 邱全胜.双组分系统——细胞识别渗透胁迫信号的感应器[J].生物化学与生物物理进展,2000,27(6):593-596. [88] 王聪慧,范付华,覃慧娟等.马尾松miR156a基因表达及其耐低磷功能分析[D]分子遗传育种.2021. [89] 王至玉.野生大豆萌发期耐低温相关性状的全基因组关联分析[D].南京农业大学,2021. [90] 吴爱姣.不同根系类型作物品种的根系对低磷胁迫的响应机制[D].中国科学院教育部水土保持与生态环境研究中心,2020. [91] 武海燕,李喜焕,李文龙等.大豆耐低磷性状鉴定及优异种质筛选[J].河南农业科学, 2020,49(1):61-67. [92] 严小龙.根系生物学原理与应用[M]. 北京:科学出版社,2007. [93] 印莉萍,黄勤妮,吴平等.植物营养分子生物学及信号传导[M].北京:科学出版社,2006. [94] 于人杰.响应低磷干旱胁迫磷转运蛋白基因在大豆组织中的表达及功能分析[D].长春:吉林农业大学,2019. [95] 朱春权,朱晓芳,沈仁芳.硫化氢促进缺磷条件下水稻根系细胞壁磷的再利用[J].土壤,2018, 50(1):51-58. [96] 张诗溪.低磷胁迫下野生大豆苗期根系相关性状的关联分析[D].南京农业大学,2021. [97] 周玉琼.玉米PIP5K基因启动子的克隆与功能分析[D].安徽农业大学,2013. |
中图分类号: | S330 |
开放日期: | 2024-06-17 |