- 无标题文档
查看论文信息

中文题名:

 生物质炭对旱地红壤红薯-油菜轮作下线虫群落特征的影响    

姓名:

 程刘竹    

学号:

 2020103005    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0713    

学科名称:

 理学 - 生态学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 生态学    

研究方向:

 土壤生态学    

第一导师姓名:

 胡锋    

第一导师单位:

 南京农业大学    

完成日期:

 2023-06-18    

答辩日期:

 2023-06-03    

外文题名:

 Effects of Biochar on Nematode Community Characteristics under Sweet Potato-Rape Rotation in Upland Red soil    

中文关键词:

 土壤食物网 ; 旱地红壤 ; 生物质炭 ; 土壤改良 ; 线虫营养群落 ; 可持续发展    

外文关键词:

 Soil food web ; Upland red soil ; Biochar ; Soil improvement ; Nematode trophic group ; Sustainable development    

中文摘要:

增施有机物料是提高资源利用率并协同作物产量提升、生态环境保护和可持续发展的有效措施。生物质炭作为生物质热解产生的富碳、碱性和多孔隙的高效有机物料,其性质与红壤地区的贫碳、酸化和粘重的不利因素形成互补,因此生物质炭在红壤耕地的生物多样性恢复和土壤健康提升方面潜力巨大。土壤线虫群落分析不仅反映农业管理的影响,更能提供土壤生态功能的信息。鉴于此,本研究基于南方红壤地区的红薯(Ipomoea batatas L)和油菜(Brassica napus L)轮作体系,结合田间定位试验和微区试验,探究生物质炭在化肥配施及生物质炭性质等不同条件下对土壤线虫群落特征的影响,在深化对生物质炭影响红壤生物群落机制认识的同时,为充分利用生物质炭实现土壤可持续利用奠定理论基础。

通过生物质炭与不施有机物料和施用秸秆(低碳氮比和较高养分)的对比,探究生物质炭与养分水平对旱地红壤线虫群落的交互影响。采用2×3全因子交互式设计,包括化肥(2水平:全量化肥NPK和减量化肥60%NPK)和有机物料(3水平:不施有机物料、秸秆、生物质炭)。主要研究结果如下:

  1. 无论化肥减施与否,与单施化肥相比,施用生物质炭可以有效提高土壤pH并改善土壤结构,且在化肥减施时效果更显著。同时生物质炭与化肥减量配施能够促进根系生长,红薯季和油菜季的根系生物量与单施化肥相比,分别增加了42%和88%。但生物质炭与化肥减量配施降低了土壤矿质氮含量,特别在红薯季显著降低了14%的矿质氮含量,造成了土壤养分限制。
  2. 与单施化肥相比,生物质炭与化肥减量配施显著增加了线虫总数,在红薯季和油菜季分别增加了58%和27%的线虫数量,主要是显著增加了植食性线虫的数量;且无论化肥减施与否,与单施化肥相比,施加生物质炭显著增加了食细菌线虫数量,同时也显著增加了线虫成熟度指数、丰富度指数及反映生物质炭施加后土壤线虫群落组成与土壤健康关系的瓦斯乐斯卡指数。

在上述有关生物质炭与外源养分交互影响的田间研究基础上,为进一步探究生物质炭自身性质介导的养分限制对土壤线虫群落的影响,筛选7种不同原材料烧制的生物质炭(玉米芯生物质炭、甘蔗渣生物质炭、玉米秸秆生物质炭、稻壳生物质炭、椰壳生物质炭、水稻秸秆生物质炭、油茶壳生物质炭),碳氮比从低到高分别为: 24.8、39.8、47.1、52.2、70.9、120.2和188.3,在田间原位条件下开展了不同种类生物质炭在全量化肥施用下对旱地红壤线虫群落特征影响的微区试验。主要研究结果如下:

  1. 在油菜季,与单施化肥相比,施用不同种类的生物质炭均显著提高了油菜籽生物量、根系生物量和茎叶生物量,但降低了油菜的根冠比。无论种植季节如何,施用生物质炭均显著提高了土壤pH,随着生物质炭碳氮比增加,植物根冠比、土壤pH、矿质氮含量、土壤微生物总量、细菌总量呈现先增加后降低趋势,在中等碳氮比生物质炭(C/N比50-80)处理下达到峰值。
  2. 与单施化肥相比,低碳氮比(C/N比20-50)和高碳氮比(C/N比80以上)生物质炭处理下的土壤线虫总数和植食性线虫数量降低,而中等碳氮比(C/N比50-80)生物质炭处理显著增加了线虫总数和植食性线虫数量。与单施化肥相比,施用生物质炭显著增加食细菌线虫数量,随着生物质炭碳氮比增加,食细菌线虫和食真菌线虫数量呈现先增加后降低趋势,在中等碳氮比生物质炭处理下达到峰值。
  3. 与单施化肥相比,施用生物质炭显著增加了线虫成熟度指数、丰富度指数和瓦斯乐斯卡指数。线虫通路比值随着生物质炭碳氮比增加呈增加趋势。

综上,生物质炭是旱地红壤性质的有效改良剂,可以促进土壤环境、植物生长和土壤微生物群落的发展。生物质炭对土壤线虫群落特征的影响因生物质炭种类的不同而呈现出差异,主要表现在植食性线虫上,较低和较高碳氮比生物质炭会抑制植食性线虫,中等碳氮比生物质炭促进植食性线虫发展。因此,结合生物质炭施用和化肥减量的措施应全面考虑土壤养分缺乏及相关的根系害虫对作物生长的不利影响。

外文摘要:

Increasing the application of organic materials is an effective measure to improve resource utilization, synergistically increase crop yield, protect ecological environment and promote sustainable development. Biochar, as a carbon-rich, alkaline and porous high-efficiency organic material produced by biomass pyrolysis, is complementary to the unfavorable factors of carbon deficiency, acidification and viscosity in red soil regions. Therefore, biochar has enormous potential in restoring biodiversity and enhancing soil health in red soil cultivation. Soil nematode community analysis not only reflects the impact of agricultural management, but also provides information on soil ecological functions. In view of this, this study used nematode community analysis as a tool, based on the rotation system of sweet potato (Ipomoea batatas L) and rapeseed (Brassica napus L) in the red soil region of Southern China. Combined with field experiments and microplot trials, this study explored the effects of biochar on soil nematode community characteristics under different conditions such as chemical fertilizer application and biochar properties. By deepening the understanding of the mechanism of biochar affecting the red soil biological community, it aims to lay a theoretical foundation for making full use of biochar to realize sustainable utilization of soil agriculture.

The interaction effects of biochar and nutrient levels on nematode communities in upland red soil were investigated by comparing biochar with no organic materials and straw (low carbon nitrogen ratio, high nutrient). A 2×3 full-factor interactive design was used, including chemical fertilizer (2 levels, full chemical fertilizer NPK and chemical fertilizer reduction 60% NPK) and organic materials (3 levels, no organic materials, straw, biochar). The main results are as follows:

  1. Whether chemical fertilizer is reduced or not, compared with single chemical fertilizer, the application of biochar effectively increased soil pH and improved soil structure, and the effect was more significant under chemical fertilizer reduction. At the same time, the combined application of biochar and chemical fertilizer reduction promoted root growth. The root biomass of sweet potato and rapeseed increased by 42% and 88%, respectively. However, it led to a decrease in soil mineral nitrogen content, especially during the sweet potato season, where there was a significant reduction of 14% in mineral nitrogen content, which resulted in nutrient limitations in the soil.
  2. Compared with single chemical fertilizer, the combined application of biochar and chemical fertilizer reduction significantly increased the abundance of soil nematodes by 58% and 27% in sweet potato season and rape season, respectively, and significantly increased the abundance of herbivores by 57% and 26%, respectively. Regardless of whether the chemical fertilizer was reduced or not, compared with the single application of chemical fertilizer, the application of biochar significantly increased the abundance of bacterivores, and significantly increased the nematode maturity index, Margalef richness index and Wasilewska index which reflects the relationship between soil nematode community composition and soil health after biochar application.

Based on the field experiments on the interaction between biochar and exogenous nutrients, further investigations were conducted to explore the influence of nutrient limitations mediated by the inherent properties of biochar on soil nematode communities.. Seven different types of biochar, derived from various raw materials including corn cob, sugarcane bagasse, corn straw, rice husk, coconut shell, rice straw, and camellia shell, were selected. The carbon-to-nitrogen (C/N) ratios of these biochars ranged from low to high were 24.8, 39.8, 47.1, 52.2, 70.9, 120.2 and 188.3, respectively. Field microplot experiments were conducted to investigate the effects of these different types of biochar, combined with the application of a complete fertilizer, on the characteristics of nematode communities in upland red soil. The main results are as follows:

1. In the rape season, compared to single fertilizer application, the application of different types of biochar significantly increased the biomass of rapeseed, root biomass and shoot biomass, but reduced the root shoot ratio of plants. Regardless of the seasonal variation of planting, the application of biochar significantly increased soil pH. With the gradual increase of C: N of biochar, plant root-shoot ratio, soil pH, mineral nitrogen content, total soil microorganisms and total bacteria showed a trend of increasing first and then decreasing, reaching a peak under moderate C: N (C/N ratio 50-80) biochar treatment.

2. Compared to single fertilizer application, the total number of nematodes and herbivores decreased under the treatment of biochar with low carbon-to-nitrogen ratios (C/N ratio of 20-50) and high carbon-to-nitrogen ratios (C/N ratio above 80). However, the treatment with biochar of moderate carbon-to-nitrogen ratios (C/N ratio 50-80) significantly increased both the total number of nematodes and herbivores. In comparison to single fertilizer application, the application of biochar significantly increased the abundance of bacterivores. With the gradual increase of the carbon-to-nitrogen ratios of biochar, the abundance of bacterivores and fungivores showed an initial increase followed by a decrease, reaching a peak under the treatment of biochar with moderate carbon-to-nitrogen ratios.

3. Compared to single fertilizer application, the application of biochar significantly increased the nematode maturity index, Margalef richness index and Wasilewska index. The application of biochar significantly increased the nematode channel ratio as the carbon-to-nitrogen ratios of biochar gradually increased.

In summary, biochar is an effective amendment to the properties of upland red soil, which can promote soil environment, plant growth and the development of soil microbial community. The effects of biochar on the characteristics of soil nematode community showed great differences due to the different types of biochar, mainly on herbivores. Lower and higher C/N ratios of biochar inhibited herbivores nematode, and medium C/N ratios of biochar promoted the development of herbivores nematode. Therefore, the combination of biochar application and fertilizer reduction should fully consider the adverse effects of soil nutrient deficiency and related root pests on crop growth.

参考文献:

[1] 包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721-729.

[2] 鲍士旦. 土壤农化分析 [M]. 北京: 中国农业出版社, 1999.

[3] 陈小云, 刘满强, 胡锋, 等. 根际微型土壤动物-原生动物和线虫的生态功能[J]. 生态学报, 2007, 27 (8): 3132-3143.

[4] 陈温福, 张伟明, 孟军. 农用生物炭研究进展与前景[J], 中国农业科学, 2013, 46(16): 3324-3333.

[5] 陈云峰, 韩雪梅, 李钰飞, 等. 线虫区系分析指示土壤食物网结构和功能研究进展[J]. 生态学报, 2014, 34 (5): 1072-1084.

[6] 程效义, 孟军, 黄玉威. 生物炭对玉米根系生长和氮素吸收及产量的影响[J]. 沈阳农业大学学报,2016, 47(2): 218-223.

[7] 杜晓芳, 李英滨, 刘芳, 等. 土壤微食物网结构与生态功能[J]. 应用生态学报, 2018, 29: 403-411.

[8] 何绪生, 张树清, 佘雕等. 生物炭对土壤肥料的作用及未来研究[J]. 中国农学同报, 2011, 27(15):16-25.

[9] 何玉亭, 王昌全, 沈杰, 等. 两种生物质炭对红壤团聚体结构稳定性和微生物群落的影响[J]. 中国农业科学, 2016, 49(12): 2333-2342.

[10] 华建峰, 林先贵, 尹睿, 等.矿区砷污染对土壤线虫群落结构特征的影响[J]. 生态与农村环境学报, 2009, 25(1): 79-84.

[11] 胡锋, 李辉信, 谢涟琪, 等.土壤食细菌线虫与细菌的相互作用及其对 N, P 矿化生物 固定的影响及机理[J]. 生态学报, 1999, 19: 914-920.

[12] 刘学军, 巨晓棠, 张福锁. 减量施氮对冬小麦-夏玉米种植体系中氮利用与平衡的影响[J]. 应用生态学报, 2004, 15(3):458-462.

[13] 刘婷, 叶成龙, 陈小云, 等. 不同有机肥源及其与化肥配施对稻田土壤线虫群落结构的影响[J], 应用生态学报, 2013, 24(12): 3508-3516.

[14] 李琪, 梁文举, 姜勇, 等. 农田土壤线虫多样性研究现状及展望[J]. 生物多样性, 2007, 15(2): 134-141.

[15] 李宜浓, 周晓梅, 张乃莉, 等. 陆地生态系统混合凋落物分解研究进展[J]. 生态学报, 2016, 36(16): 4977-4987.

[16] 梁文举, 葛亭魁, 段玉玺. 土壤健康及土壤动物生物指示的研究与应用[J]. 沈阳农业大学学报, 2001(1): 70-72.

[17] 卢焱焱, 王明伟, 陈小云, 等. 生物质炭与氮肥配施对红壤线虫群落的影响[J]. 应用生态学报, 2016, 01: 263-274.

[18] 蒋健, 王宏伟, 刘国玲, 等. 生物炭对玉米根系特性及产量的影响[J]. 玉米科学, 2015, 23: 62-66.

[19] 蒋雪洋, 张前前, 沈浩杰, 等. 生物质炭对稻田土壤团聚体稳定性和微生物群落的影响[J]. 土壤学报, 2021, 58(6): 1564-1573.

[20] 江春, 黄菁华, 李修强, 等. 长期施用有机肥对红壤旱地土壤线虫群落的影响[J]. 土壤学报, 2011, 48(6): 1235-1241.

[21] 牛亚茹. 施用生物质炭对日光温室黄瓜生长及土壤微生物和线虫群落结构的影响[D]. 南京农业大学(硕士论文), 2016.

[22] 任竹红. 有机物料类型对旱地农田红壤不同团聚体中线虫群落的影响[D]. 南京农业大学(硕士论文), 2021.

[23] 任逸文, 肖谋良, 袁红朝, 等. 水稻光合碳在植物–土壤系统中的分配及其对CO2升高和施氮的响应[J]. 应用生态学报, 2018(29): 1397-1404.

[24] 史多鹏, 叶子壮, 李惠通, 等. 生物炭和氮肥配施对夏玉米⁃冬小麦轮作体系耕层土壤质量的影响[J]. 应用生态学报, 2023, 34(2): 442-450.

[25] 孙新, 李琪, 姚海凤, 等. 土壤动物与土壤健康[J]. 土壤学报, 2021, 58(5): 1073-1083.

[26] 孙宁婷, 王小燕, 周豪, 等. 生物质炭种类与混施深度对紫色土水分运移和氮磷流失的影响[J]. 土壤学报, 2022, 59(3): 722-732.

[27] 王明伟, 刘雨迪, 陈小云, 等. 旱地红壤线虫群落对不同耕作年限的响应及指示意义[J]. 土壤学报, 2016, 53(2): 510-521.

[28] 武爱莲, 王劲松, 董二伟, 等. 施用生物炭和秸秆对石灰性褐土氮肥去向的影响[J], 土壤学报, 2019, 56(1): 176-185.

[29] 吴纪华, 宋慈玉, 陈家宽. 食微线虫对植物生长及土壤养分循环的影响[J],生物多样性, 2007, 15(2): 124-133.

[30] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20): 1896-1899.

[31] 杨彩迪, 刘静静, 卢升高. 生物质炭改良酸性土壤的电化学特性研究[J]. 土壤学报, 2023, 60(3): 815-823.

[32] 尹文英. 中国土壤动物检索图鉴[M]. 北京; 科学出版社, 1998.

[33] 叶成龙, 刘婷, 张运龙, 等. 麦地土壤线虫群落结构对有机肥和秸秆还田的响应[J]. 土壤学报, 2013, 50(5): 997-1005.

[34] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24): 7615-7622.

[35] 张萌, 魏全全, 肖厚军, 等. 生物质炭对贵州黄壤朝天椒减氮的生物效应及氮肥利用率的影响[J], 土壤学报, 2019, 56(5): 1201-1209.

[36] 张千丰, 王光华. 生物炭理化性质及对土壤改良效果的研究进展[J]. 土壤与作物, 2012(4): 219-226.

[37] 张叶叶, 莫非, 韩娟, 等. 秸秆还田下土壤有机质激发效应研究进展[J]. 土壤学报, 2021, 58(6): 1381-1392.

[38] 朱柏菁. 减施化肥配施不同有机物料对旱地红壤线虫群落的影响[D]. 南京农业大学(硕士论文), 2019.

[39] Ahmad, M., Ok, Y.S., Kim, B.Y., et al. Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil[J]. Journal of Environmental Management, 2016, 166:131-139.

[40] Ameloot, N., Sleutel, S., Das, K.C., et al. Biochar amendment to soils with contrasting organic matter level: effects on N mineralization and biological soil properties[J]. Global Change Biology Bioenergy, 2015, 7:135-144.

[41] Bai, W., Wan, S., Niu, S., et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: implications for ecosystem C cycling[J]. Global Change Biology, 2010, 16:1306-1316.

[42] Bardgett, R.D., van der Putten, W.H. Belowground biodiversity and ecosystem functioning[J]. Nature, 2014, 515:505-511.

[43] Bakonyi, G., Nagy, P., Kovacs-Lang, E., et al. Soil nematode community structure as affected by temperature and moisture in a temperate semiarid shrubland[J]. Applied Soil Ecology, 2007, 37:31-40.

[44] Bongers, T. The Maturity Index: An ecological measure of environmental disturbance based on nematode species composition[J]. Oecologia, 1990, 83(1):14-19.

[45] Bongers, T. De nematoden van Nederland. KNNV Pirola, Schoorl NL, 1988.

[46] Bongers, T., Ferris, H. Nematode community structure as a bioindicator in environmental monitoring[J]. Trends in Ecology and Evolution, 1999, 14:224-228.

[47] Bolen, N., Hoang, S.A., Beiyuan, J., et al. Multifunctional applications of biochar beyond carbon storage[J]. International Materials Reviews, 2022, 67:150-200.

[48] Chimento, C., Almagro, M., Amaducci, S., et al. Carbon sequestration potential in perennial bioenergy crops: the importance of organic matter inputs and its physical protection[J]. Global Change Biology Bioenergy, 2016, 8:111-121.

[49] Cortois, R., Veen, G.F., Duyts, H., et al. Possible mechanisms underlying abundance and diversity responses of nematode communities to plant diversity[J]. Ecosphere, 2017, 8:e01719.

[50] Dai, Z., Hu, J., Xu, X., et al. Sensitive responders among bacterial and fungal microbiome to pyrogenic organic matter (biochar) addition differed greatly between rhizosphere and bulk soils[J]. Scientific Reports, 2016, 6:36101.

[51] Dai, Z., Zhang, X., Tang, C., et al. Potential role of biochars in decreasing soil acidification-A critical review[J]. Science of Total Environment, 2017, 581:601-611.

[52] Dai, Z., Enders, A., Rodrigues, J.L.M., et al. Soil fungal taxonomic and functional community composition as affected by biochar properties[J]. Soil Biology and Biochemistry, 2018, 126:159-167.

[53] Duan, Y., Chen, L., Zhang, J.B., et al. Long-term fertilization reveals close associations between soil organic carbon composition and microbial traits at aggregate scales[J]. Agriculture Ecosystems and Environment, 2021, 306:07169.

[54] Du Preez, G., Daneel, M., De Goede, R., et al. Nematode-based indices in soil ecology: Application, utility, and future directions[J]. Soil Biology and Biochemistry, 2022, 169:108640.

[55] Downie, A., Crosky, A., Munroe, P. Physical properties of biochar [M]. London: Earthscan, 2009.

[56] Ferris, H., Bongers, T., De Goede, R.G.M., et al. A framework for soil food web diagnostics: extension of the nematode faunal analysis concept[J]. Applied Soil Ecology, 2001, 18:13-29.

[57] Fox, A., Kwapinski, W., Griffiths, B.S., et al. The role of sulfur-and phosphorus-mobilizing bacteria in biocharinduced growth promotion of Lolium perenne[J]. FEMS Microbiology Ecology, 2014, 90(1):78-91.

[58] Gao, D., Wang, F., Li, J., et al. Soil nematode communities as indicators of soil health in different land use types in tropical area[J]. Nematology, 2020, 22:595-610.

[59] García‐Palacios, P., Maestre, F.T., Kattge, J., et al. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes[J]. Ecology Letters, 2013, 16:1045-1053.

[60] Garibaldi, L.A., Pérez-Méndez, N., Garratt, M.P.D., et al. Policies for ecological intensification of crop production[J]. Trends in Ecology and Evolution, 2019, 34:282-286.

[61] Gebremikael, M.T., De Waele, J., Buchan, D., et al. The effect of varying gamma irradiation doses and soil moisture content on nematodes, the microbial communities and mineral nitrogen[J]. Applied Soil Ecology, 2015, 92:1-13.

[62] Griffiths, B., Ball, B., Daniell, T., et al. Integrating soil quality changes to arable agriculturalsystems following organic matter addition, or adoption of a ley-arable rotation[J]. Applied Soil Ecology, 2010, 46:43-53.

[63] Griffiths, B., Neilson, R., Bengough, A.G., et al. Soil factors determined nematode community composition in a two years pot experiment[J]. Nematology, 2003, 5:889-897.

[64] Grandy, A.S, Wieder, W.R, Wickings, K., et al. Beyond microbes: Are fauna the next frontier in soil biogeochemical models [J]. Soil Biology and Biochemistry, 2016, 102:40-44.

[65] Glaser, B., Lehmann, J., Zech, W., et al. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal-a review[J]. Biology and Fertility Soils, 2002, 35:219-230.

[66] Goralczyk, K. Nematodes in a coastal dune succession: indicators of soil properties[J]? Applied Soil Ecology, 1998, 9:465-469.

[67] Han, Z., Xu, P., Li, Z., et al. Microbial diversity and the abundance of keystone species drive the response of soil multifunctionality to organic substitution and biochar amendment in a tea plantation[J]. Global Change Biology Bioenergy, 2022, 14:481-495.

[68] Holste, E.K., Kobe, R.K., Gehring, C.A., et al. Plant species differ in early seedling growth and tissue nutrient responses to arbuscular and ectomycorrhizal fungi[J]. Mycorrhiza, 2017, 27:1-13.

[69] Jeong, C.Y., Dodla, S.K., Wang, J.J., et al. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by products[J]. Chemosphere, 2016, 142:4-13.

[70] Jiang, Y., Luan, L., Hu, K., et al. Trophic interactions as determinants of the arbuscular mycorrhizal fungal community with cascading plant-promoting consequences[J]. Microbiome, 2020, 8:1-14.

[71] Jiang, Y., Sun, B., Jin, C., et al. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil[J]. Soil Biology and Biochemistry, 2013, 60:1-9.

[72] Johnston, A.E., Poulton, P.R. The importance of long-term experiments in agriculture: their management to ensure continued crop production and soil fertility; the Rothamsted experience[J]. European Journal of Soil Science, 2018, 69:113-125.

[73] Kamra, A., Sharma, S., Soil temperature regimes and nematode distribution in India[J]. Journal of Nematology, 2000, 30:219-224.

[74] Kamau, S., Karanja, N.K., Ayuke, F.O., et al. Short-term influence of biochar and fertilizer-biochar blends on soil nutrients, fauna and maize growth[J]. Biology and Fertility of Soils, 2019, 55:661-673.

[75] Kasozi, G. N., Zimmerman, A. R., Nkedi-Kizza, P., et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons[J]. Environmental Science Technology, 2010, 44:6189-6195.

[76] Kitagami, Y., Matsuda, Y. Temperature changes affect multi-trophic interactions among pines, mycorrhizal fungi, and soil nematodes in a microcosm experiment[J]. Pedobiologia, 2020, 78:150595.

[77] Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review[J]. Biogeochemistry, 2007, 85:91-118.

[78] Khodadad, C.L.M., Zimmerman, A.R., Green, S.J., et al. Taxa- specific changes in soil microbial community composition induced by pyrogenic carbon amendments[J]. Soil Biology and Biochemistry, 2011, 43:385-392.

[79] Lehmann, R.M., Cambardella, C.A., Stott D.E., et al. Understanding and enhancing soil biological health: The solution for reversing soil degradation[J]. Sustainability, 2015, 7(1):988-1027.

[80] Lehmann, J., Rillig, M.C., Thies, J., et al. Biochar effects on soil biota-a review[J]. Soil Biology and Biochemistry, 2011, 43(9):1812-1836.

[81] Lu, H., Zhang, W., Wang, S., et al. Characterization of sewage sludge-derived biochars from different feedstocks and pyrolysis temperatures[J]. Journal of Analytical and Applied Pyrolysis, 2013, 102:137-143.

[82] Lin Z, Rui Z, Liu M, et al. Pyrolyzed biowastes deactivated potentially toxic metals and eliminated antibiotic resistant genes for healthy vegetable production[J]. Journal of cleaner production, 2020, 276:124208-124208.

[83] Liu, X., Zhang, D., Li, H., et al. Soil nematode community and crop productivity in response to 5-year biochar and manure addition to yellow cinnamon soil[J]. BMC Ecology, 2020, 20:39.

[84] Liu, H., Du, X., Li, Y., et al. Organic substitutions improve soil quality and maize yield through increasing soil microbial diversity[J]. Journal of Cleaner Production, 2022, 47:131323.

[85] Liang, W., Lou, Y., Li, Q., et al. Nematode faunal response to long-term application of nitrogen fertilizer and organic manure in Northeast China[J]. Soil Biology and Biochemistry, 2009, 41:883-890.

[86] Liu, W., Zhang, Z., Wan, S., et al. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland[J]. Global Change Biology, 2009, 5:184-195.

[87] Liu, T., Chen, X., Hu, F., et al. Carbon-rich organic fertilizers to increase soil biodiversity: evidence from a meta-analysis of nematode communities[J]. Agricuture, Ecosystems Environment, 2016, 232:199-207.

[88] Li, J., Wang, D., Fan, W., et al. Comparative effects of different organic materials on nematode community in continuous soybean monoculture soil[J]. Applied Soil Ecology, 2018, 125:12-7.

[89] Lucheta, A.R., Cannavan, F.D.S., Roesch, L.F.W., et al. Fungal community assembly in the amazonian Dark earth[J]. Microbial Ecology, 2016, 71:962-973.

[90] Luo, S., Wang, S., Tian, L., et al. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland[J]. Applied Soil Ecology, 2017, 117-118:10-15.

[91] Lorenzen, S. The Phylogenetic Systematics of Free Living Nematodes[J]. Ray Society, 1994.

[92] Mackie, K.A., Marhan, S., Ditterich, F., et al. The effects of biochar and compost amendments on copper immobilization and soil microorganisms in a temperate vineyard[J]. Agriculture, Ecosystems and Environment, 2015, 201:58-69.

[93] Martínez-Blanco, J., Lazcano, C., Christensen, T.H., et al. Compost benefits for agriculture evaluated by life cycle assessment. A review[J]. Agronomy for Sustainable Development, 2013, 33:721-732.

[94] Matute, M.M., Manning, Y.A., Kaleem, M.I., et al. Community structure of soil nematodes associated with solanum tuberosum[J]. Journal of Agricultural Science and Technology, 2013, 5:44-53.

[95] Nguyen, V.T., Nguyen, T.B., Chen, C.W., et al. Influence of pyrolysis temperature on polycyclic aromatic hydrocarbons production and tetracycline adsorption behavior of biochar derived from spent coffee ground[J]. Bioresource Technology, 2019, 284:197-203.

[96] Nguyen, B., Lehmann, J., Hockaday, W.C., et al. Temperature sensitivity of black carbon decomposition and oxidation[J]. Environmental Science Technology, 2010, 44:3324-333.

[97] Nie, C., Yang, X., Niazi, N.K., et al. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study[J]. Chemosphere, 2018, 200:274-282.

[98] Ouyang, W., Zhao, X.C., Tysklind, M., et al. Typical agricultural diffuse herbicide sorption with agricultural waste-derived biochars amended soil of high organic matter content[J]. Water Research, 2016, 92:56-163.

[99] Pathy, A., Ray, J., Paramasivan, B. Biochar amendments and its impact on soil biota for sustainable agriculture[J]. Biochar, 2020, 2:287-305.

[100] Pan, F., Han X., Li N., et al. Effect of organic amendment amount on soil nematode community structure and metabolic footprints in soybean phase of soybean-maize rotation in Mollisols[J]. Pedosphere, 2017, 30:544-54.

[101] Peng, X., Ye, L., Wang, C., et al. Temperature- and duration-dependent rice straw-derived biochar: characteristics and its effects on soil properties of an Ultisol in southern China[J]. Soil and Tillage Research, 2011, 112:159-166.

[102] Perez-Cruzado, C., Merino, A., Rodriguez-Soalleiro, R., et al. A management tool for estimating bioenergy production and carbon sequestration in Eucalyptus globulus and Eucalyptus nitens grown as short rotation woody crops in north-west Spain[J]. Biomass Bioenergy, 2011, 35:2839-2851.

[103] Pietikainen, J., Kiikkila, O., Fritze, H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000, 9:231-242.

[104] Plaza, C., Giannetta, B., Fernández, J.M., et al. Response of different soil organic matter pools to biochar and organic fertilizers[J]. Agriculture, Ecosystems, Environment, 2016, 225:150-159.

[105] Purakayastha, T.J., Bera, T., Bhaduri, D., et al. A review on biochar modulated soil condition improvements and nutrient dynamics concerning crop yields: Pathways to climate change mitigation and global food security[J]. Chemosphere, 2019, 227:345-365.

[106] Ren, H., Huang, B., Fern´andez-García, V., et al. Biochar and rhizobacteria amendments improve several soil properties and bacterial diversity[J]. Microorganisms, 2020, 8:502

[107] Ronsse, F., van Hecke, S., Dickinson, D., et al. Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions[J]. Global Change Biology Bioenergy, 2013, 5:104-115.

[108] Saarnio, S., Heimonen, K., Kettunen, R., et al. Biochar addition indirectly affects N2O emissions via soil moisture and plant N uptake[J]. Soil Biology and Biochemistry, 2013, 58:99-106.

[109] Sauvadet, M., Chauvat, M., Fanin, N., et al. Comparing the effects of litter quantity and quality on soil biota structure and functioning: Application to a cultivated soil in Northern France[J]. Applied Soil Ecology, 2016, 107:261-271.

[110] Singh, R., Kumari, T., Verma, P., et al. Compatible package-based agriculture systems: an urgent need for agro-ecological balance and climate change adaptation[J]. Soil Ecology Letters, 2022, 4:187-212.

[111] Sun, G., Sun, M., Luo, Z.C., et al. Effects of different fertilization practices on anammox activity, abundance, and community compositions in a paddy soil[J]. Soil Ecology Letters, 2021, 99:103206.

[112] Sun, W., Gu, J., Wang, X.J., et al. Impacts of biochar on the environmental risk of antibiotic resistance genes and mobile genetic elements during anaerobic digestion of cattle farm wastewater[J]. Bioresource Technology, 2018, 256:342-349.

[113] Stewart, C.E., Zheng, J., Botte, J., et al. Co-generated fast pyrolysis biochar mitigates greenhouse gas emissions and increases carbon sequestration in temperate soils[J]. Global Change Biology Bioenergy, 2013, 5:153-164.

[114] Solaiman, Z.M., Blackwell, P., Abbott, L.K., et al. Direct and residual effect of biochar application on mycorrhizal root colonisation, growth and nutrition of wheat[J]. Australian Journal of Soil Research, 2010, 48:546-554.

[115] Song, M., Li, X., Jing, S., et al. Responses of soil nematodes to water and nitrogen additions in an old-field grassland[J]. Applied Soil Ecology, 2016, 102:53-60.

[116] Takahiro, I., Araki, M., Komatsuzaki, M., et al. Soil nematode community structure affected by tillage systems and cover crop managements in organic soybean production[J]. Applied Soil Ecology, 2015, 86:137-47.

[117] Thoden, T.C., Korthals, G.W., Termorshuizen, A.J., et al. Organic amendments and their influences on plant-parasitic and free-living nematodes: a promising method for nematode management[J]. Nematology, 2011, 13:133-53.

[118] Toju, H., Sato, H. Root-associated fungi shared between arbuscular mycorrhizal and ectomycorrhizal conifers in a temperate forest[J]. Frontiers in Microbiology, 2018, 9:433.

[119] Treonis, A.M., Wall, D.H. Soil nematodes and desiccation survival in the extreme arid environment of the Antarctic Dry Valleys[J]. Integrative and Comparative Biology, 2005, 45:741-750.

[120] Tsiafouli, M.A., Thebault, E., Sgardelis, S.P., et al. Intensive agriculture reduces soil biodiversity across Europe[J]. Global Change Biology, 2015, 21:973-985.

[121] Van der Werf., Hayo M G., Knudsen, M.T., et al. Towards better representation of organic agriculture in life cycle assessment[J]. Nature Sustainability, 2020, 3:419-425.

[122] Van Zwieten, L., Kimber, S., Morris, S., et al. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility[J]. Plant and Soil, 2009, 327:235-246.

[123] Van den Hoogen, J., Geisen, S., Routh, D., et al. Soil nematode abundance and functional group composition at a global scale[J]. Nature, 2019, 572:194-198.

[124] Villenave, C., Saj, S., Pablo, A.L., et al. Influence of long-term organic and mineral fertilization on soil nematofauna when growing sorghum bicolor in Burkina Faso[J]. Biology and Fertility Soils, 2010, 46:659-70.

[125] Wasilewska, L. Soil invertebrates as bioindicators, with special reference to soil-inhabiting nematodes[J]. Russian Journal of Nematology, 1997, 5:113-126.

[126] Warnock, D.D., Lehmann, J., Kuyper, T.W., et al. Mycorrhizal responses to biochar in soil-concepts and mechanisms[J]. Plant and Soil, 2007, 300:9-20.

[127] Wall, D.H., Virginia, R.A. Controls on soil biodiversity: insights from extreme environments[J]. Applied Soil Ecology, 1999, 13:137-150.

[128] Wan, B., Liu, T., Gong, X., et al. Energy flux across multitrophic levels drives ecosystem multifunctionality: Evidence from nematode food webs[J]. Soil Biology and Biochemistry, 2022, 169:108656.

[129] Wang, X., Song, D., Liang, G., et al. Maize biochar addition rate influences soil enzyme activity and microbial community composition in a fluvo-aquic soil[J]. Applied Soil Ecology, 2015, 96:265-272.

[130] Wong, J.T.F., Chen, Z., Chen, X., et al. Soil-water retention behavior of compacted biochar-amended clay: a novel landfill final cover material[J]. Journal of Soils and Sediments, 2016, 17:590-598.

[131] Wilschut, R.A., Geisen, S. Nematodes as Drivers of Plant Performance in Natural Systems[J]. Trends in Plant Science, 2021, 26:237-247.

[132] Xiao, X., Chen, B.L., Zhu, L.Z., et al. Transformation, Morphology, and Dissolution of Silicon and Carbon in Rice Straw-Derived Biochars under Different Pyrolytic Temperatures[J]. Environmental Science Technology, 2014, 48:3411-3419.

[133] Xavier, Domenea.B., Stefania, Mattanaa., Sara, Sánchez-Moreno., et al. Biochar addition rate determines contrasting shifts in soil nematode trophic groups in outdoor mesocosms: An appraisal of underlying mechanisms[J]. Applied Soil Ecology, 2021, 158:103788.

[134] Yao, Q., Liu, J., Yu, Z., et al. Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of northeast China[J]. Soil Biology and Biochemistry, 2017, 110:56-67.

[135] Yang, W., Li, C., Wang, S., et al. Influence of biochar and biochar-based fertilizer on yield, quality of tea and microbial community in an acid tea orchard soil[J]. Applied Soil Ecology, 2021, 166:104005.

[136] Ye, L., Zhao, X., Bao, E., et al. Bio-organic fertilizer with reduced rates of chemical fertilization improves soil fertility and enhances tomato yield and quality[J]. Scientific Reports, 2020, 10:177.

[137] Yu, H., Zou, W., Chen, J., et al. Biochar amendment improves crop production in problem soils: A review[J]. Journal of Environmental Management, 2019, 232:8-21.

[138] Zhang, X.K., Li, Q., Liang, W.J., et al. Soil nematode response to biochar addition in a Chinese wheat field [J]. Pedosphere, 2013, 23(1):98-103.

[139] Zhang, X., Ferris, H., Mitchell, J., et al. Ecosystem services of the soil food web after long-term application of agricultural management practices[J]. Soil Biology and Biochemistry, 2017, 111:36-43.

[140] Zhang X, Guan P, Wang Y, et al. Community composition, diversity and metabolic footprints of soil nematodes in differently-aged temperate forests[J]. Soil Biology and Biochemistry, 2015, 80: 118-126.

[141] Zheng, F., Zhu, D., Giles, M., et al. Mineral and organic fertilization alters the microbiome of a soil nematode Dorylaimus stagnalis and its resistome[J]. Science of Total Environment, 2019, 680: 70-8.

[142] Zhao, Y.C., Wang, M.Y., Hu, S.J., et al. Economics- and policy-driven organic carbon input enhancement dominates soil organic carbon accumulation in Chinese croplands[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115:4045-4050.

[143] Zhou, Y., Qin, S., Verma, S., et al. Production and beneficial impact of biochar for environmental application: a comprehensive review[J]. Bioresource Technology, 2021, 337:125451.

[144] Zhu, B., Wan, B., Liu, T., et al. Biochar enhances multifunctionality by increasing the uniformity of energy flow through a soil nematode food web[J]. Soil Biology and Biochemistry, 2023, 183:109056.

中图分类号:

 S154    

开放日期:

 2023-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式