中文题名: | 慢性皮质酮暴露影响鸡肝脏胆汁酸合成转运以及盲肠微生物菌群结构的研究 |
姓名: | |
学号: | 2019807126 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0952 |
学科名称: | 农学 - 兽医 |
学生类型: | 硕士 |
学位: | 兽医硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 畜禽应激生理学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2021-04-14 |
答辩日期: | 2021-06-02 |
外文题名: | Effects of Chronic Corticosterone Exposure on the Synthesis and Transport of Hepatic Bile Acids and Cecal Microbiota Structure in Chickens |
中文关键词: | |
外文关键词: | chicken ; chronic stress ; liver ; Bile acid ; Cecal flora structure |
中文摘要: |
现代集约化养殖中潮湿、噪声等各种刺激因素易使鸡长期处于应激环境,对鸡的生产性能产生不利影响。慢性应激下会导致肉鸡体重下降、采食量增加、外周脂肪沉积。胆汁酸的从头合成是调节肝脏脂质代谢的重要途径之一,胆汁酸的疏水性能抑制特定的肠道微生物的生长,其中含有胆盐水解酶的肠道微生物能够将初级胆汁酸代谢为次级胆汁酸,改变胆汁酸池的胆汁酸组成。为了探究皮质酮暴露诱导的慢性应激是否影响肝脏胆汁酸的合成与转运,总胆汁酸的改变是否影响盲肠内容物中微生物的菌群结构,菌群结构的改变是否与脂肪肝的产生有关联?这些问题均尚不清楚,研究主要分为以下两部分。 1.慢性应激对鸡肝脏胆汁酸合成转运影响的探究 本研究以1日龄雪山草鸡为研究对象,正常饲喂至30日龄,随机挑选24只大小体重相近的鸡,分为两组,每组12只生物学重复。处理组每天于皮下注射等体积的2 mg/kg的皮质酮溶液(每天注射两次,上午8:00~9:00;下午17:00~18:00),对照组按体重注射对应体积的酒精溶剂(15%的乙醇生理盐水),连续处理14天建立慢性应激模型,在实验期间鸡自由采食和饮水。45日龄鸡过夜进食后宰杀,收集血浆,采集肝脏冰冻组织及分子样。油红染色结果表明:慢性应激皮质酮暴露导致鸡肝脏脂肪肝,肝细胞内出现大量脂肪变性。肝脏中TG 含量与形态学观察一致,慢性皮质酮暴露增加了肝脏的TG含量(P < 0.01)血液生化结果显示慢性皮质酮暴露极显著降低了血清中碱性磷酸酶水平的酶活性(P < 0.001),血浆中的谷草转氨酶和谷丙转氨酶活性并无显著差异。 此外,慢性皮质酮暴露极显著增加了血浆中Tch(P < 0.001)、LDL(P < 0.001)和VLDL(P < 0.01)的含量。我们还检测了总胆汁酸在肝肠循环中的含量。结果表明:慢性皮质酮暴露显著(P < 0.01)降低了肝脏中总胆汁酸含量,盲肠内容物中总胆汁酸的含量显著(P < 0.01)增加,但是不影响血清中总胆汁酸的含量。采用荧光实时定量RT-PCR 检测肝脏中与胆汁酸合成、转运相关基因表达的结果显示:慢性皮质酮暴露显著增加(P < 0.05)了肝脏中FXR和OATP1B1 mRNA的水平,但显著(P < 0.05)降低了CYP8B1的mRNA表达。Western blot 结果显示 :慢性皮质酮暴露显著(P < 0.05)降低了肝脏CYP27A1的蛋白表达水平。 2.对慢性应激下对盲肠中微生物的组成变化的探究 屠宰后,收集鸡两侧盲肠内容物。每组随机选取8个生物学重复,提取微生物DNA。针对微生物基因组V3-V4区进行特异性引物扩增,PCR产物采用illumina MiSeq测序平台进行16S rDNA测序。结果表明:慢性皮质酮暴露对盲肠微生物α多样性中Simpson指数和Shannon指数没有明显影响,对反映微生物丰富度的指数Ace和Chao也均无显著影响。从β多样性分析结果来看:慢性皮质酮暴露显著(P < 0.05)增加了弯曲菌门(Campilobacterota)的相对含量。PcoA主成分分析显示:慢性皮质酮暴露显著(P < 0.05)改变了鸡盲肠微生物的群落组成。采用LEFSe分析进行组间差异物种比较,结果显示:慢性皮质酮暴露显著(P < 0.05)降低梭状芽胞杆菌(Clostridia)、颤螺菌属(Oscillospiraceae)、毛螺旋菌属(Lachnospiraceae)和艾森伯格氏菌(Eisenbergiella)等在盲肠的富集程度,显著增加巴恩斯氏菌科(Barnesiellaceae)、乳杆菌科(Lactobacillaceae)、弯曲菌科(Campilobacterota)和螺杆菌科(Helicobacteraceae)等在盲肠的富集程度。通过肠道微生物与环境因子的互作分析,结果表明:粪便总胆汁酸与乳酸菌属(Lactobacillus)的丰度呈显著(P < 0.05)正相关;而肝脏总胆汁酸与优杆菌属(Eubacterium)呈显著(P < 0.05)正相关,与螺杆菌属(Helicobacter)呈显著(P < 0.05)负相关;血浆胆固醇与乳酸菌属(Lactobacillus)、巴恩斯氏菌(Barnesiella)呈显著(P < 0.05)正相关,与布劳特氏菌属(blautia)、优杆菌属(Eubacterium)呈显著负相关。 综上所述,慢性皮质酮暴露诱导鸡脂肪肝,破坏了肝脏胆汁酸转运与合成,导致肝脏内总胆汁酸含量下降。此外,盲肠内容物中滞留的总胆汁酸改变了鸡肠道微生物菌群结构,乳酸菌属(Lactobacillus)的显著变化与粪便胆汁酸、甘油三酯、胆固醇相关,优杆菌属(Eubacterium)的变化与肝脏胆汁酸相关。 |
外文摘要: |
Moisture, noise and other stimulating factors in modern intensive breeding industry tend to make chickens live in a stressful environment in the long run , which will cause negative effects on the performance of chickens. Broilers under chronic stress can lead to weight loss, increased food intake and peripheral fat deposition. Synthesis of the bile acids from the very beginning is one of the most important ways to regulate the lipid metabolism in the liver. The hydrophobic property of bile acids will inhibit the growth of specific group of intestinal microorganisms. Among them, the intestinal microorganisms which contains the bile hydrolytic enzyme can metabolize the primary bile acids into secondary and change the composition of bile acids pool. To explore whether the chronic stress induced by corticosterone exposure affects the synthesis and transport of liver bile acid. Whether the change of total bile acid affects the microbial community structure in cecal contents? Whether the change of microbial community structure is associated with the production of fatty liver? These questions remain unresolved. The research is mainly carried out from two aspects. 1. The effect of chronic stress on bile acid synthesis and transport in chicken liver In this study, one-day-old Xueshan Grass chickens were used as the research subjects. Twenty-four chickens of similar size and weight were randomly selected, normally fed to 30 days’ age. They were divided into two groups with 12 biological replicates in each group. Treatment group was subcutaneously injected with the same volume of 2 mg/kg corticosterone solution every day (twice daily, 8:00A.M~9:00 A.M.; 17:00 PM ~18:00 PM), the control group was injected with the corresponding volume of alcoholic solvent (15% ethanol normal saline) ,according to body weight. The chronic stress model was established after continuous treatment for 14 days. During this experiment, chickens were free to eat and drink. The 45-day-old chickens were fed at night and slaughtered to collect their plasma ,frozen liver tissue and molecular samples. The results of oil-red staining showed that chronic stress exposure to corticosterone resulted in fatty liver and a large amount of steatosis in liver cells. TG content in liver is consistent with the morphological observation ; chronic corticosterone exposure has increased liver TG content (P < 0.01); blood biochemical results showed that chronic corticosterone exposure significantly reduced the activity of serum alkaline phosphatase enzyme (P < 0.001),whereas plasma aspertate aminotransferase and third transaminase activity has no significant difference. In addition, chronic corticosterone exposure significantly increased the plasma contents of Tch (P < 0.05), LDL (P < 0.05) and VLDL (P < 0.05). We also measured the total bile acid levels in the hepatointestinal circulation. The results showed that chronic corticosterone exposure significantly decreased the content of total bile acid in liver (P < 0.01), and significantly increased the content of total bile acid in cecum contents (P < 0.01), but did not affect the content of total bile acid in serum. Fluorescence real-time quantitative RT-PCR was used to detect the expression of genes related to bile acid synthesis and transport in the liver. The results showed that: Chronic corticosterone exposure significantly increased the mRNA levels of FXR (P < 0.05) and OATP1B1 (P < 0.05) in liver, but significantly decreased the mRNA expression of CYP8B1 (P < 0.01). Western blot results showed that chronic corticosterone exposure significantly decreased the protein expression level of CYP27A1 in liver(P < 0.05). 2. The study on the changes of the composition of cecal microbial under chronic stress After the slaughter, the cecal contents on both sides of the chicken were collected. Eight biological replicates were randomly selected from each group to extract microbial DNA. Specific primers were amplified for the V3-V4 region of the microbial genome, and 16S rDNA sequencing of the PCR products was performed using Illumina MiSeq sequencing platform. The results showed that chronic corticosterone exposure had no significant effect on the Simpson index and Shannon index of α diversity of cecal microorganisms. It has no effect on the ACE and Chao indices of microbial richness, either. According to the results of β-diversity analysis, chronic corticosterone exposure significantly increased the relative content of Bacteroidota (P < 0.05). PCOA principal component analysis showed that chronic corticosterone exposure significantly changed the composition of microbial community in the cecum of chickens (P < 0.05). LEFSE analysis was used to compare different species between groups, and the results showed that: Chronic corticosterone exposure significantly reduced the enrichment degree of Clostridia, Oscillospiraceae, Lachnospiraceae and Eisenbergiella in cecum. Significantly increased the enrichment degree of Barnesiellaceae, Lactobacillaceae, Campilobacterota and Helicobacteraceae in cecum. Through interaction analysis of intestinal microorganism and environmental factors, the results showed that fecal total bile acid was positively correlated with the abundance of Lactobacillus (P < 0.05). The total bile acid of liver was significantly (P < 0.05) positively correlated with Eubacterium, and negatively correlated with Helicobacter. Plasma cholesterol was positively correlated with Lactobacillus and Barnesiella (P < 0.05), and negatively correlated with Blautia and Eubacterium (P < 0.05). In conclusion, chronic corticosterone-induced fatty liver in chickens destroys liver’s total bile acid, and its transport and synthesis, thus leading to a decrease in liver’s total bile acid content. In addition, the retention of total bile acids in cecum contents changed the structure of intestinal microflora. Significant changes in Lactobacillus were associated with fecal bile acid, triglyceride and cholesterol, while changes in Eubacterium were associated with liver bile acid.
|
参考文献: |
[1] 卢庆萍. 高温环境下不同基因型肉鸡肉质性状及脂肪沉积规律的研究[D]. 北京: 中国农业科学院, 2007. Lu Q P. Study on meat quality traits and fat deposition of different genotypes of broilers under high temperature[D]. Beijing: Chinese Academy of Agricultural Sciences,2007(in Chinese with English absract). [2] Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response[J]. Annual Review of Physiology, 2005, 67(1): 259-284. [3] McEwen B S. Stress and hippocampal plasticity[J]. Annual review of neuroscience, 1999, 22(1): 105-122. [4] Sapolsky R M, Krey L C, McEwen B S. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis[J]. Endocrine reviews, 1986, 7(3): 284-301. [5] Kar L. D. V. D. Forebrain pathways mediating stress-induced hormone secretion[J]. Frontiers in Neuroendocrinology, 2010, 23(2): 166-170. [6] Herman J P, Figueiredo H, Mueller N K, Ulrich-Lai Y, Ostrander M M, Choi D C, Cullinan W E. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness[J]. Front Neuroendocrinol, 2003, 24(3): 151-180. [7] Cullinan W. E. Ventral subicular interaction with the hypothalamic paraventricular nucleus: Evidence for a relay in the bed nucleus of the stria terminalis[J]. Journal of Comparative Neurology, 2010, 332 [8] Radley J J. Toward a limbic cortical inhibitory network: implications for hypothalamic-pituitary-adrenal responses following chronic stress[J]. Frontiers in behavioral neuroscience, 2012, 6: 7. [9] Dallman M F, Pecoraro N, Akana S F, La Fleur S E, Gomez F, Houshyar H, Bell M E, Bhatnagar S, Laugero KD, Manalo S. Chronic stress and obesity: a new view of "comfort food"[J]. Proceedings of the National Academy of Sciences, 2003, 100(20): 11696-11701. [10] Krizanova O, Kvetnansky R, Jurkovicova D. Effect of Two Distinct Stressors on Gene Expression of the Type 1 IP~ 3 Receptors[J]. General physiology and biophysics, 2005, 24(2): 237. [11] Lauterborn J. C. Stress induced changes in cortical and hypothalamic c-fos expression are altered in fragile X mutant mice[J]. Brain Res Mol Brain Res, 2004, 131(1-2): 101-109. [12] Horan M P, Quan N, Subramanian S V, Strauch A R, Gajendrareddy P K, Marucha P T. Impaired wound contraction and delayed myofibroblast differentiation in restraint-stressed mice[J]. Brain Behavior & Immunity, 2005, 19(3): 207-216. [13] Kosten T A, Karanian D A, Yeh J, et al. Memory impairments and hippocampal modifications in adult rats with neonatal isolation stress experience[J]. Neurobiology of learning and memory, 2007, 88(2): 167-176. [14] 张玲. 壳寡糖对脂多糖和环磷酰胺应激仔猪生产性能和免疫功能的影响[D]. 四川: 四川农业大学, 2013. Zhang L. Effects of chitooligosaccharide on growth performance and immune function of piglets under lipopolysaccharide and cyclophosphamide stress[D]. Si Chuan: Sichuan Agricultural University,2013(in Chinese with English absract). [15] 贾安峰, 冯京海, 张敏红, 李泽阳, 常玉, 徐胜胜, 何川. 递增注射脂多糖诱导慢性免疫应激对仔猪生长性能的影响[J]. 动物营养学报, 2015, 27(06): 1868-1874. Jia A F,Feng J H,Zhang M H,Li Z Y,Chang Yu,Xu S S,He C. Effects of chronic immune stress induced by increasing lipopolysaccharide injection on growth performance of piglets[J]. Journal of animal nutrition, 2015, 27(06): 1868-1874(in Chinese with English absract). [16] 潘迪子, 李国军, 胡贵丽, 王玉诗, 张博, 贺喜. 活性酵母对脂多糖应激黄羽肉鸡肠道健康的影响[J]. 动物营养学报, 2017, 29(07): 2520-2534. Pan D Z,Li G J,Hu G L,Wang Y S,Zhang B,He X. Effect of active yeast on intestinal health of yellow feathered broilers under lipopolysaccharide stress[J]. Journal of animal nutrition, 2017, 29(07): 2520-2534(in Chinese with English absract). [17] Fan Y, Ma L, Zhang W, Xu Y, Zhi X, Cui E, Song X. Microemulsion can improve the immune-enhancing activity of propolis flavonoid on immunosuppression and immune response[J]. International Journal of Biological Macromolecules, 2014, 63126-63132. [18] 张明秀, 王秀平. 脂多糖应激对肉鸡生长性能、免疫功能和疫苗免疫效果的影响[J]. 黑龙江畜牧兽医, 2021(05): 118-122. Zhang M X,Wang X P. Effects of lipopolysaccharide stress on growth performance, immune function and immune effect of vaccine in Broilers. [J]. Heilongjiang Animal Husbandry and veterinary, 2021(05): 118-122(in Chinese with English absract). [19] Ran R, Lu A, Zhang L, Tang Y, Sharp F R. Hsp70 promotes TNF-mediated apoptosis by binding IKK gamma and impairing NF-kappa B survival signaling[J]. Genes & Development, 2004, 18(12): 1466-1481. [20] Puvadolpirod S, Thaxton J P. Model of physiological stress in chickens 1. Response parameters[J]. Poultry Science, 2000, 79(3): 363-369. [21] Arnaldi G, Angeli A, Atkinson A B. Diagnosis and complications of Cushing’s syndrome: a consensus statement[J]. The Journal of Clinical Endocrinology & Metabolism, 2003, 88(12): 5593-5602. [22] West K M. Response of the blood glucose to glucocorticoids in man: determination of the hyperglycemic potencies of glucocorticoids[J]. Diabetes, 1959, 8(1): 22-28. [23] Conn J W, Fajans S S. Influence of adrenal cortical steroids on carbohydrate metabolism in man[J]. Metabolism-clinical & Experimental, 1956, 5(2): 114-127. [24] Rizza R A, Mandarino L J, Gerich J E. Cortisol-Induced Insulin Resistance in Man: Impaired Suppression of Glucose Production and Stimulation of Glucose Utilization due to a Postreceptor Defect of Insulin Action[J]. J Clin Endocrinol Metab, 1982(1): 131-138. [25] Perley M, Kipnis D M. Effect of glucocorticoids on plasma insulin[J]. N Engl J Med, 1966, 274(22): 1237-1241. [26] Ross E J, Linch D C. Cushing's syndrome—killing disease: discriminatory value of signs and symptoms aiding early diagnosis[J]. The Lancet, 1982, 320(8299): 646-649. [27] Plotz C M, Knowlton A I, Ragan C. The natural history of Cushing's syndrome[J]. The American journal of medicine, 1952, 13(5): 597-614. [28] Pupo A A, Wajchenberg B L, Schnaider J. Carbohydrate metabolism in hyperadrenocorticism[J]. Diabetes, 1966, 15(1): 24-29. [29] Urbanic R C, George J M. Cushing's disease-18 years' experience[J]. Medicine, 1981, 60(1): 14-24. [30] Modigliani E, Strauch G, Luton J P, et al. Effects of glucose and arginine on the secretion of insulin in Cushing's syndrome[J]. Diabetologia, 1970, 6(1): 8-14. [31] Boyle P J, Cushing's disease, glucocorticoid excess, glucocorticoid deficiency, and diabetes[J]. Diabetes Rev, 1993, 1: 301. [32] Henley D E, Lightman S L. Cardio-metabolic consequences of glucocorticoid replacement: relevance of ultradian signalling[J]. Clinical Endocrinology, 2014, 80(5): 621-628. [33] Cassuto H, Kochan K, Chakravarty K, Cohen H, Blum B, Olswang Y, Hakimi P, Xu C, Massillon D, Hanson R W. Glucocorticoids Regulate Transcription of the Gene for Phosphoenolpyruvate Carboxykinase in the Liver via an Extended Glucocorticoid Regulatory Unit[J]. Journal of Biological Chemistry, 2005, 280(40): 33873-33884. [34] Vander Kooi B T, Onuma H, Oeser J K. The glucose-6-phosphatase catalytic subunit gene promoter contains both positive and negative glucocorticoid response elements[J]. Molecular endocrinology, 2005, 19(12): 3001-3022. [35] Wu Z, Jiao P, Huang X. MAPK phosphatase–3 promotes hepatic gluconeogenesis through dephosphorylation of forkhead box O1 in mice[J]. The Journal of clinical investigation, 2010, 120(11): 3901-3911. [36] Feng B, He Q, Xu H. FOXO1-dependent up-regulation of MAP kinase phosphatase 3 mediates glucocorticoid-induced hepatic lipid accumulation in mice[J]. Molecular & Cellular Endocrinology, 2014, 393(1-2): 46-55. [37] Woods C, Tomlinson J W. The dehydrogenase hypothesis[J]. Glucocorticoid Signaling, 2015: 353-380. [38] Dube S, Slama M Q, Basu A. Glucocorticoid excess increases hepatic 11β-HSD-1 activity in humans: implications in steroid-induced diabetes[J]. The Journal of Clinical Endocrinology & Metabolism, 2015, 100(11): 4155-4162. [39] Harno E, Cottrell E C, Keevil B G. 11-Dehydrocorticosterone causes metabolic syndrome, which is prevented when 11β-HSD1 is knocked out in livers of male mice[J]. Endocrinology, 2013, 154(10): 3599-3609. [40] Shu T, Song X, Cui X. Fc gamma receptor IIb expressed in hepatocytes promotes lipid accumulation and gluconeogenesis[J]. International journal of molecular sciences, 2018, 19(10): 2932. [41] Kuo T, Lew M J, Mayba O. Genome-wide analysis of glucocorticoid receptor-binding sites in myotubes identifies gene networks modulating insulin signaling[J]. Proceedings of the National Academy of Sciences, 2012, 109(28): 11160-11165. [42] Gathercole L L, Bujalska I J, Stewart P M. Glucocorticoid modulation of insulin signaling in human subcutaneous adipose tissue[J]. The Journal of Clinical Endocrinology & Metabolism, 2007, 92(11): 4332-4339. [43] Connaughton S, Chowdhury F, Attia R R. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin[J]. Molecular and cellular endocrinology, 2010, 315(1-2): 159-167. [44] Kwon HS, Huang B, Unterman TG, Harris RA. Protein Kinase B-α Inhibits Human Pyruvate Dehydrogenase Kinase-4 Gene Induction by Dexamethasone Through Inactivation of FOXO Transcription Factors[J]. Diabetes, 2004, 53(4): 899-910. [45] Kuo T, Harris C A, Wang J C. Metabolic Functions ofGlucocorticoidReceptor in SkeletalMuscle[J]. Molecular and Cellular Endocrinology, 2013, 380(1): 79-88. [46] Lützner N, Kalbacher H, Krones-Herzig A. FOXO3 is a glucocorticoid receptor target and regulates LKB1 and its own expression based on cellular AMP levels via a positive autoregulatory loop[J]. PloS one, 2012, 7(7): e42166. [47] Watts R, Ghozlan M, Hughey C, Johnsen VL, Hittel DS. Myostatin inhibits proliferation and insulin-stimulated glucose uptake in mouse liver cells[J]. Biochemistry & Cell Biology-biochimie Et Biologie Cellulaire, 2014, 92(3): 226-234. [48] Giorgino F, Almahfouz A, Goodyear L J, Smith R J. Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo[J]. Journal of Clinical Investigation, 1993, 91(5): 2020-2030. [49] Saad M, Folli F, Kahn J A, Kahn C R. Modulation of insulin receptor, insulin receptor substrate-1, and phosphatidylinositol 3-kinase in liver and muscle of dexamethasone-treated rats[J]. Journal of Clinical Investigation, 1993, 92(4): 2065-2072. [50] Stuart A ,Morgan M S, Laura L, Jeremy W. 11 beta-hydroxysteroid dehydrogenase type 1 regulates glucocorticoid-induced insulin resistance in skeletal muscle[J]. Diabetes, 2009, 58(11): 2506-2515. [51] Weinstein S P, Wilson C M, Pritsker A, Cushman S W. Dexamethasone inhibits insulin-stimulated recruitment of GLUT4 to the cell surface in rat skeletal muscle[J]. Metabolism, 1998, 47(1): 3-6. [52] Ruzzin J, Wagman A S, Jensen J. Glucocorticoid-induced insulin resistance in skeletal muscles: defects in insulin signalling and the effects of a selective glycogen synthase kinase-3 inhibitor[J]. Diabetologia, 2005, 48(10): 2119-2130. [53] Burén J, Lai Y C, Lundgren M, Eriksson J W, Jensen J. Insulin action and signalling in fat and muscle from dexamethasone-treated rats[J]. Archives of Biochemistry & Biophysics, 2008, 474(1): 91-101. [54] Geer E B, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism[J]. Endocrinology & Metabolism Clinics of North America, 2014, 43(1): 75-102. [55] Hochberg I, Harvey I, Tran Q T. Gene expression changes in subcutaneous adipose tissue due to Cushing's disease[J]. Journal of molecular endocrinology, 2015, 55(2): 81. [56] Volpe J J, Marasa J C. Hormonal regulation of fatty acid synthetase, acetyl-CoA carboxylase and fatty acid synthesis in mammalian adipose tissue and liver[J]. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid Metabolism, 1975, 380(3): 454-472. [57] Yu C Y, Oleg M, Lee J V, Joanna T, Charlie H, Speed T P, Wang J C, Pazin M J. Genome-Wide Analysis of Glucocorticoid Receptor Binding Regions in Adipocytes Reveal Gene Network Involved in Triglyceride Homeostasis[J]. Plos One, 2010, 5(12): e15188. [58] Blerina K, Mirjam C C, Francesca L, Giorgio A, Gilberta G, Marco B, Grossman A B, Ma?rta K. Changes in adenosine 5'-monophosphate-activated protein kinase as a mechanism of visceral obesity in Cushing's syndrome[J]. The Journal of Clinical Endocrinology & Metabolism, 2008, 93(12): 4969-4973. [59] Chimin P, Farias T, Torres-Leal F L, Bolsoni-Lopes A, Campa A, Andreotti S, Lima FB. Chronic glucocorticoid treatment enhances lipogenic activity in visceral adipocytes of male Wistar rats[J]. Acta Physiologica, 2014, 211(2): 409-420. [60] Villena J A, Roy S, Sarkadi-Nagy E. Desnutrin, an adipocyte gene encoding a novel patatin domain-containing protein, is induced by fasting and glucocorticoids: ectopic expression of desnutrin increases triglyceride hydrolysis[J]. Journal of Biological Chemistry, 2004, 279(45): 47066-47075. [61] Seckl J R, Morton N M, Chapman K E. Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue[J]. Recent progress in hormone research, 2004, 59: 359-394. [62] Wang Y, Yan C, Liu L. 11β-Hydroxysteroid dehydrogenase type 1 shRNA ameliorates glucocorticoid-induced insulin resistance and lipolysis in mouse abdominal adipose tissue[J]. American journal of physiology-endocrinology and metabolism, 2015, 308(1): E84-E95. [63] Lee M J, Pramyothin P, Karastergiou K, Fried S K. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity[J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2014, 1842(3): 473-481. [64] Rebuffé-Scrive M, Br?nnegard M, Nilsson A. Steroid hormone receptors in human adipose tissues[J]. The Journal of Clinical Endocrinology & Metabolism, 1990, 71(5): 1215-1219. [65] Hazlehurst J M, Gathercole L L, Nasiri M. Glucocorticoids fail to cause insulin resistance in human subcutaneous adipose tissue in vivo[J]. The Journal of Clinical Endocrinology & Metabolism, 2013, 98(4): 1631-1640. [66] Helena F, Monson J P, Maria K, Anders M, Gudmundur J. The impact of glucocorticoid replacement regimens on metabolic outcome and comorbidity in hypopituitary patients[J]. J Clin Endocrinol Metab, 2006(10): 3954-3961. [67] Wang X, Magkos F, Patterson B W, Reeds D N, Mittendorfer B. Low-dose dexamethasone administration for 3 weeks favorably affects plasma HDL concentration and composition but does not affect very low-density lipoprotein kinetics[J]. European Journal of Endocrinology, 2012, 167(2): 217-223. [68] Berg A L, Nilsson-Ehle P. ACTH lowers serum lipids in steroid-treated hyperlipemic patients with kidney disease[J]. Kidney International, 1996, 50(2): 538-542. [69] Berg A L, Hansson P, Nilsson-Ehle P. ACTH 1-24 decreases hepatic lipase activities and low density lipoprotein concentrations in healthy men[J]. Journal of Internal Medicine, 2010, 229(2): 201-203. [70] Berg A L, Nilsson-Ehle P. Direct effects of corticotropin on plasma lipoprotein metabolism in man—studies in vivo and in vitro[J]. Metabolism, 1994, 43(1): 90-97. [71] Giordano R, Picu A, Marinazzo E, et al. Metabolic and cardiovascular outcomes in patients with Cushing’s syndrome of different aetiologies during active disease and 1 year after remission[J]. Clinical endocrinology, 2011, 75(3): 354-360. [72] Antongiulio F, Rosario P, Stefano S, Cristina D, Mariagiovanna F, Gaetano L, Annamaria C. Cardiovascular Risk Factors and Common Carotid Artery Caliber and Stiffness in Patients with Cushing's Disease during Active Disease and 1 Year after Disease Remission[J]. Journal of Clinical Endocrinology & Metabolism, 2003(6): 2527-2533. [73] Amatruda J M, Danahy S A, Chang C L. The effects of glucocorticoids on insulin-stimulated lipogenesis in primary cultures of rat hepatocytes[J]. Biochemical Journal, 1983, 212(1): 135-141. [74] Zhao L F, Iwasaki Y, Zhe W, et al. Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription[J]. Endocrine journal, 2010: 1001130377-1001130377. [75] Dolinsky V W, Douglas D N, Lehner R, Vance D E. Regulation of the enzymes of hepatic microsomal triacylglycerol lipolysis and re-esterification by the glucocorticoid dexamethasone[J]. Biochemical Journal, 2004, 378(3): 967-974. [76] Jean-Marc S, Peter L, Doris D, Karmen A. Hepatic de novo lipogenesis in normoinsulinemic and hyperinsulinemic subjects consuming high-fat, low-carbohydrate and low-fat, high-carbohydrate isoenergetic diets[J]. American Journal of Clinical Nutrition, 2003(1): 43-50. [77] Ley R E, Peterson D A, Gordon J I. Ecological and evolutionary forces shaping microbial diversity in the human intestine[J]. Cell, 2006, 124(4): 837-848. [78] Turnbaugh P J, Ley R E, Mahowald M A, Magrini V, Mardis E R, Gordon J I. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature, 2006, 444(7122): 1027-1031. [79] Frank D N, Amand S, Feldman R A, Boedeker E C, Harpaz N, Pace N R. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases[J]. Proceedings of the National Academy of Sciences, 2007, 104(34): 13780-13785. [80] Kassinen A, Krogius-Kurikka L, Paulin L, Corander J, Malinen E, Apajalahti J, Palva A. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects[J]. Gastroenterology, 2007, 133(1): 24-33. [81] Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach[J]. Digest of the World Core Medical Journals, 2006, 55(2): 205-211. [82] Ahlman H, Bhargava H N, Dahlstrm A, Larsson I, Pettersson G. On the presence of serotonin in the gut lumen and possible release mechanisms[J]. Acta Physiologica Scandinavica, 1981, 112(3): 263-269. [83] Pfeiler E A, Klaenhammer T R. The genomics of lactic acid bacteria[J]. Trends in microbiology, 2007, 15(12): 546-553. [84] de La Serre C B, Ellis C L, Lee J, et al. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2010, 299(2): G440-G448. [85] Ventura M, O'flaherty S, Claesson M J, et al. Genome-scale analyses of health-promoting bacteria: probiogenomics[J]. Nature Reviews Microbiology, 2009, 7(1): 61-71. [86] Lyte M, Arulanandam B, Nguyen K, et al. Norepinephrine induced growth and expression of virulence associated factors in enterotoxigenic and enterohemorrhagic strains of Escherichia coli[M].Mechanisms in the pathogenesis of enteric diseases. Springer, Boston, MA, 1997: 331-339. [87] Strous G J, Dekker J. Mucin-type glycoproteins[J]. Crc Critical Reviews in Biochemistry, 1992, 27(1-2): 57-92. [88] Boshi Y, Nezu R, Khan J, et al. Developmental changes in distribution of the mucous gel layer and intestinal permeability in rat small intestine[J]. Journal of Parenteral and Enteral Nutrition, 1996, 20(6): 406-411. [89] Pang K Y, Bresson J L, Walker W A. Development of the gastrointestinal mucosal barrier. Evidence for structural differences in microvillus membranes from newborn and adult rabbits[J]. Biochimica et Biophysica Acta, 1983, 727(1): 201-208. [90] Elburg RMV, Uil JJ, Monchy JGRD, Heymans HSA. Intestinal permeability in pediatric gastroenterology[J]. Scandinavian Journal of Gastroenterology, 1992, 27(s194): 19-24. [91] Hentges D J. Gut flora and disease resistance[M].Probiotics. Springer, Dordrecht, 1992: 87-110. [1] Cai Y, Song Z, Zhang X, Wang X, Jiao H, Hai L. Increased de novo lipogenesis in liver contributes to the augmented fat deposition in dexamethasone exposed broiler chickens (Gallus gallus domesticus)[J]. Comparative Biochemistry & Physiology Toxicology & Pharmacology Cbp, 2009, 150(2): 164-169. [2] Liu J, Duan Y, Hu Y, et al. Exogenous administration of chronic corticosterone affects hepatic cholesterol metabolism in broiler chickens showing long or short tonic immobility[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2016, 191: 53-58. [3] Chow M D, Lee Y H, Guo G L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Molecular aspects of medicine, 2017, 56: 34-44. [4] Jia W, Xie G, Jia W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nature reviews Gastroenterology & hepatology, 2018, 15(2): 111. [5] Zhu Y, Liu H, Zhang M, et al. Fatty liver diseases, bile acids, and FXR[J]. Acta Pharmaceutica Sinica B, 2016, 6(5): 409-412. [6] Dawson P A, Lan T, Rao A. Bile acid transporters[J]. Journal of lipid research, 2009, 50(12): 2340-2357. [7] Chiang J Y L, Ferrell J M. Bile acids as metabolic regulators and nutrient sensors[J]. Annual review of nutrition, 2019, 39: 175-200. [8] Chiang J Y L. Bile acids: regulation of synthesis: Thematic Review Series: Bile Acids[J]. Journal of lipid research, 2009, 50(10): 1955-1966. [9] Vaz F M, Ferdinandusse S. Bile acid analysis in human disorders of bile acid biosynthesis[J]. Molecular aspects of medicine, 2017, 56: 10-24. [10] Ridlon J M, Harris S C, Bhowmik S, Kang D J, Hylemon P B. Consequences of bile salt biotransformations by intestinal bacteria[J]. Gut microbes, 2016, 7(1): 22-39. [11] Nagahashi M, Yuza K, Hirose Y, et al. The roles of bile acids and sphingosine-1-phosphate signaling in the hepatobiliary diseases[J]. Journal of lipid research, 2016, 57(9): 1636-1643. [12] Ouml, Lzke H, Baumeister S E, Alte D, Hoffmann W, Schwahn C, Simon P, John U, Lerch M M. Independent risk factors for gallstone formation in a region with high cholelithiasis prevalence[J]. Digestion, 2005, 71(2): 97-105. [13] Yamanishi Y, Nosaka Y, Kawasaki H, et al. Sterol and bile acid metabolism after short-term prednisolone treatment in patients with chronic active hepatitis[J]. Gastroenterologia Japonica, 1985, 20(3): 246-251. [14] Lemke U, Krones-Herzig A, Diaz M B, Narvekar P, Ziegler A, Vegiopoulos A, Cato A, Bohl S, Klingmüller U, Screaton R A. The Glucocorticoid Receptor Controls Hepatic Dyslipidemia through Hes1[J]. Cell Metabolism, 2008, 8(3): 212-223. [15] Arenas F, Hervias I, úriz M, et al. Combination of ursodeoxycholic acid and glucocorticoids upregulates the AE2 alternate promoter in human liver cells[J]. The Journal of clinical investigation, 2008, 118(2): 695-709. [16] Rautiainen H, K?rkk?inen P, Karvonen A L, et al. Budesonide combined with UDCA to improve liver histology in primary biliary cirrhosis: a three‐year randomized trial[J]. Hepatology, 2005, 41(4): 747-752. [17] Hagenbuch B, Dawson P. The sodium bile salt cotransport family SLC10[J]. Pflügers Archiv, 2004, 447(5): 566-570. [18] Rose A, Díaz M, Reimann A, Klement J, Walcher T, Krones-Herzig A, Strobel O, Werner J, Peters A, Kleyman A. Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor[J]. Cell Metabolism, 2011, 14(1): 123-130. [19] Eloranta J J, Jung D, Kullak-Ublick G A. The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-γ coactivator-1α, and suppressed by bile acids via a small heterodimer partner-dependent mechanism[J]. Molecular endocrinology, 2006, 20(1): 65-79. [20] Craddock A L, Love M W, Daniel R W, et al. Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 1998, 274(1): G157-G169. [21] Oelkers P, Kirby L C, Heubi J E, Dawson P A. Primary bile acid malabsorption caused by mutations in the ileal sodium-dependent bile acid transporter gene (SLC10A2)[J]. Journal of Clinical Investigation, 1997, 99(8): 1880-1887. [22] Meihoff W E, Kern F. Bile salt malabsorption in regional ileitis, ileal resection, and mannitol-induced diarrhea[J]. The Journal of clinical investigation, 1968, 47(2): 261-267. [23] Krag E, Krag B. Regional ileitis (Crohn’s disease) I. Kinetics of bile acid absorption in the perfused ileum[J]. Scandinavian journal of gastroenterology, 1976, 11(5): 481-486. [24] Scheurlen C, Kruis W, Büll U, Stellaard F, Lang P, Paumgartner G. Comparison of 75SeHCAT retention half-life and fecal content of individual bile acids in patients with chronic diarrheal disorders[J]. Digestion, 1986, 35(2): 102-108. [25] Davie R J, Hosie K B, Grobler S P, et al. Ileal bile acid malabsorption in colonic Crohn's disease[J]. British journal of surgery, 1994, 81(2): 289-290. [26] Fujisawa T, Kimura A, Ushijima K, et al. Intestinal absorption of ursodeoxycholic acid in children and adolescents with inflammatory bowel disease[J]. Journal of pediatric gastroenterology and nutrition, 1998, 26(3): 279-285. [27] Crestani M, Stroup D, Chiang J. Hormonal regulation of the cholesterol 7 alpha-hydroxylase gene (CYP7)[J]. Journal of lipid research, 1995, 36(11): 2419-2432. [28] Song K H, Chiang J Y. Glucagon and cAMP inhibit cholesterol 7α‐hydroxylase (CYP7a1) gene expression in human hepatocytes: Discordant regulation of bile acid synthesis and gluconeogenesis[J]. Hepatology, 2006, 43(1): 117-125. [29] Vlahcevic Z R, Pandak W M, Stravitz R T. Regulation of bile acid biosynthesis[J]. Gastroenterology Clinics, 1999, 28(1): 1-25. [30] Ren S, Marques D, Redford K, Hylemon P B, Gil G, Vlahcevic Z R, Pandak W M. Regulation of oxysterol 7α-hydroxylase (CYP7B1) in the rat[J]. Metabolism, 2003, 52(5): 636-642. [31] Dulos J, Kaptein A, Kavelaars A, Heijnen C, Boots A. Tumour necrosis factor-α stimulates dehydroepiandrosterone metabolism in human fibroblast-like synoviocytes: a role for nuclear factor-κB and activator protein-1 in the regulation of expression of cytochrome p450 enzyme 7b[J]. Arthritis research & therapy, 2005, 7(6): 1-10. [32] 邵幼林, 范建高. 非酒精性脂肪性肝病的流行现状与危害[J]. 中华肝脏病杂志, 2019(01): 10-Shao Y L,Fan J G. Prevalence and harm of nonalcoholic fatty liver disease[J]. Chinese Journal of Hepatology, 2019(01): 10-13 (in Chinese with English absract). [33] Del C, Paloma G, Lourdes G. Role of inflammatory response in liver diseases: Therapeutic strategies[J]. World Journal of Hepatology, 2018, 10(1): 1-7. [34] Buzzetti E, Pinzani M, Tsochatzis E A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism-clinical & Experimental, 2016,1038-1048. [35] Hu Y, Sun Q, Liu J, et al. In ovo injection of betaine alleviates corticosterone-induced fatty liver in chickens through epigenetic modifications[J]. Scientific reports, 2017, 7(1): 1-13. [36] Zhao Y, Su B, Jacobs R L, Kennedy B, Francis G A, Waddington E, Brosnan J T, Vance J E, Vance DE. Lack of Phosphatidylethanolamine N-Methyltransferase Alters Plasma VLDL Phospholipids and Attenuates Atherosclerosis in Mice[J]. Arterioscler Thromb Vasc Biol, 2009, 29(9): 1349-1355. [37] Zhang Y, Liu Z, Liu R, et al. Alteration of hepatic gene expression along with the inherited phenotype of acquired fatty liver in chicken[J]. Genes, 2018, 9(4): 199. [38] Makishima M. Identification of a Nuclear Receptor for Bile Acids[J]. Science, 1999, 284(5418): 1362-1365. [39] Goodwin B, Gauthier K C, Umetani M, et al. Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor[J]. Proceedings of the National Academy of Sciences, 2003, 100(1): 223-228. [40] Makishima M, Lu T T, Wen X, Whitfield G K, Mangelsdorf D J. Vitamin D Receptor As an Intestinal Bile Acid Sensor[J]. Science, 2002, 296(5571): 1313-1316. [41] Maruyama T, Miyamoto Y, Nakamura T, Tamai Y, Okada H, Sugiyama E, Nakamura T, Itadani H, Tanaka K. Identification of membrane-type receptor for bile acids (M-BAR)[J]. Biochem Biophys Res Commun, 2002, 298(5): 714-719. [42] Trabelsi M S, Daoudi M, Prawitt J, et al. Farnesoid X receptor inhibits glucagon-like peptide-1 production by enteroendocrine L cells[J]. Nature communications, 2015, 6(1): 1-13. [43] Izzat N N, Deshazer M E, Loose-Mitchell D S. New molecular targets for cholesterol-lowering therapy[J]. Journal of Pharmacology & Experimental Therapeutics, 2000, 293(2): 315-320. [44] Kawamata Y, Fujii R, Hosoya M, Harada M, Fujino M. A G Protein-coupled Receptor Responsive to Bile Acids[J]. Journal of Biological Chemistry, 2003, 278(11): 9435-9440. [45] Kumar D P, Rajagopal S, Mahavadi S, Mirshahi F, Sanyal A J. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic β cells[J]. Biochemical & Biophysical Research Communications, 2012, 427(3): 600-605. [46] Schaap F G, Trauner M, Jansen P L M. Bile acid receptors as targets for drug development[J]. Nature reviews Gastroenterology & hepatology, 2014, 11(1): 55. [47] Knight D, Girling K J. Gut flora in health and disease[J]. Lancet, 2003, 361(9371): 512-519. [48] Hamer H M, De Preter V, Windey K, Verbeke K. Functional analysis of colonic bacterial metabolism: relevant to health?[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(1): 1-9. [49] Muegge B D, Kuczynski J, Knights D, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans[J]. Science, 2011, 332(6032): 970-974. [50] Compare D, Coccoli P, Rocco A, Nardone O M, Nardone G. Gut-liver axis: the impact of gut microbiota on non alcoholic fatty liver disease[J]. Nutrition Metabolism & Cardiovascular Diseases Nmcd, 2012, 22(6): 471-476. [51] Bilzer M, Roggel F, Gerbes A L. Role of Kupffer cells in host defense and liver disease[J]. Liver International, 2006, 26(10): 1175-1186. [52] Zeuzem S. Gut-liver axis[J]. International Journal of Colorectal Disease, 2000, 15(2): 59-82. [53] Yuan L. Bile acid receptors and nonalcoholic fatty liver disease[J]. World Journal of Hepatology, 2015, 7(28): 2811-2818. [54] Thomas C, Pellicciari R, Pruzanski M, et al. Targeting bile-acid signalling for metabolic diseases[J]. Nature reviews Drug discovery, 2008, 7(8): 678-693. [55] Haeusler R A, Astiarraga B, Camastra S, et al. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids[J]. Diabetes, 2013, 62(12): 4184-4191. [56] Amaral J D, Viana R J S, Ramalho R M, et al. Bile acids: regulation of apoptosis by ursodeoxycholic acid[J]. Journal of lipid research, 2009, 50(9): 1721-1734. [57] Parlesak A, Schaeckeler S, Moser L, et al. Conjugated primary bile salts reduce permeability of endotoxin through intestinal epithelial cells and synergize with phosphatidylcholine in suppression of inflammatory cytokine production[J]. Critical care medicine, 2007, 35(10): 2367-2374. [58] Pathak P, Liu H, Boehme S, Xie C, Krausz K W, Gonzalez F, Chiang J Y. Farnesoid X receptor induces Takeda G-protein receptor 5 cross-talk to regulate bile acid synthesis and hepatic metabolism[J]. Journal of Biological Chemistry, 2017, 292(26): 11055-11069. [59] Inagaki T, Choi M, Moschetta A, Peng L, Cummins C L, Mcdonald J G, Luo G, Jones S A, Goodwin B, Richardson J A. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis[J]. Cell Metabolism, 2005, 2(4): 217-225. [60] Potthoff M J, Kliewer S A, Mangelsdorf D J. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine[J]. Genes Dev, 2015, 26(4): 312-324. [61] Kim I, Ahn S H, Inagaki T, Choi M, Ito S, Guo G L, Kliewer S A, Gonzalez F J. Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine[J]. Journal of lipid research, 2007, 48(12): 2664-2672. [62] Zhu Y, Li F, Guo G L. Tissue-specific function of farnesoid X receptor in liver and intestine[J]. Pharmacological research, 2011, 63(4): 259-265. [63] Kong B, Wang L, Chiang J Y L, et al. Mechanism of tissue‐specific farnesoid X receptor in suppressing the expression of genes in bile‐acid synthesis in mice[J]. Hepatology, 2012, 56(3): 1034-1043. [64] Parks, D. J. Bile Acids: Natural Ligands for an Orphan Nuclear Receptor[J]. Science, 1999, 284(5418): 1365-1368. [65] Wang H, Chen J, Hollister K, Sowers L C, Forman B M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR[J]. Molecular cell, 1999, 3(5): 543-553. [1] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2? ΔΔCT method[J]. methods, 2001, 25(4): 402-408. [2] Cai Y, Song Z, Zhang X, Wang X, Jiao H, Hai L. Increased de novo lipogenesis in liver contributes to the augmented fat deposition in dexamethasone exposed broiler chickens (Gallus gallus domesticus)[J]. Comparative Biochemistry & Physiology Toxicology & Pharmacology Cbp, 2009, 150(2): 164-169. [3] Liu J, Duan Y, Hu Y, et al. Exogenous administration of chronic corticosterone affects hepatic cholesterol metabolism in broiler chickens showing long or short tonic immobility[J]. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2016, 191: 53-58. [4] Chow M D, Lee Y H, Guo G L. The role of bile acids in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis[J]. Molecular aspects of medicine, 2017, 56: 34-44. [5] Jia W, Xie G, Jia W. Bile acid–microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nature reviews Gastroenterology & hepatology, 2018, 15(2): 111. [6] Wahlstr?m A, Sayin S I, Marschall H U, B?ckhed F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism[J]. Cell Metabolism, 2016, 24(1): 41-50. [7] Fang W, Wen X, Meng Q, et al. Alteration in bile acids profile in Large White pigs during chronic heat exposure[J]. Journal of thermal biology, 2019, 84: 375-383. [8] Palmer R H, Fuh M M. How bile acids differ: studies of receptor-mediated LDL uptake[J]. Transactions of the American Clinical and Climatological Association, 1988, 99: 177. [9] Silvennoinen R, Quesada H, Kareinen I, et al. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice[J]. Physiological Reports, 2015, 3(5). [10] Eloranta J J, Jung D, Kullak-Ublick G A. The human Na+-taurocholate cotransporting polypeptide gene is activated by glucocorticoid receptor and peroxisome proliferator-activated receptor-γ coactivator-1α, and suppressed by bile acids via a small heterodimer partner-dependent mechanism[J]. Molecular endocrinology, 2006, 20(1): 65-79 [1] Dai Z L, Zhang J, Wu G, Zhu W Y. Utilization of amino acids by bacteria from the pig small intestine[J]. Amino Acids, 2010, 39(5): 1201-1215. [2] Sommer F, B?ckhed F. The gut microbiota—masters of host development and physiology[J]. Nature reviews microbiology, 2013, 11(4): 227-238. [3] Vajro P, Paolella G, Fasano A. Microbiota and gut-liver axis: a mini-review on their influences on obesity and obesity related liver disease[J]. Journal of pediatric gastroenterology and nutrition, 2013, 56(5): 461. [4] Tang W, Wang Z, Levison B S, Koeth R A, Britt E, Fu X, Wu Y, Hazen S L. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk[J]. New England Journal of Medicine, 2013, 368(17): 1575-1584. [5] Shi D, Bai L, Qu Q, et al. Impact of gut microbiota structure in heat-stressed broilers[J]. Poultry science, 2019, 98(6): 2405-2413 [6] Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani D, Furlanello C, Zandonà A, Paci P, Capuani G. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta‐omics‐based approach[J]. Hepatology, 2017, 65(2): 451-464. [7] Jiang C, Xie C, Li F, Zhang L, Nichols R G, Krausz K W, Cai J, Qi Y, Fang Z Z, Takahashi S. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease[J]. The Journal of clinical investigation, 2015, 125(1): 386-402. [8] Udayappan S, Manneras-Holm L, Chaplin-Scott A, Belzer C, Herrema H, Dallinga-Thie G M, Duncan SH, Stroes ES, Groen AK, Flint HJ. Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice[J]. NPJ biofilms and microbiomes, 2016, 2(1): 1-10. [9] Eeckhaut V, Machiels K, Perrier C, Romero C, Maes S, Flahou B, Steppe M, Haesebrouck F, Sas B, Ducatelle R. Butyricicoccus pullicaecorum in inflammatory bowel disease[J]. Gut, 2013, 62(12): 1745-1752. [10] Morrison D J, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism[J]. Gut microbes, 2016, 7(3): 189-200. [11] Terpstra M L, Sinnige M J, Hugenholtz F, et al. Butyrate production in patients with end-stage renal disease[J]. International journal of nephrology and renovascular disease, 2019, 12: 87. [12] Zhang Q, Xiao X, Li M, Yu M, Ping F, Zheng J, Wang T, Wang X. Vildagliptin increases butyrate-producing bacteria in the gut of diabetic rats[J]. PloS one, 2017, 12(10): e0184735. [13] Zhou W, Sailani M R, Contrepois K, Zhou Y, Ahadi S, Leopold S R, Zhang M J, Rao V, Avina M, Mishra T. Longitudinal multi-omics of host–microbe dynamics in prediabetes[J]. Nature, 2019, 569(7758): 663-671. [14] Begley M, Hill C, Gahan C G M. Bile salt hydrolase activity in probiotics[J]. Applied and environmental microbiology, 2006, 72(3): 1729. [15] Piovani D, Danese S, Peyrin-Biroulet L, Nikolopoulos G K, Lytras T, Bonovas S. Environmental risk factors for inflammatory bowel diseases: an umbrella review of meta-analyses[J]. Gastroenterology, 2019, 157(3): 647-659. [16] Gao X, Cao Q, Cheng Y, et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response[J]. Proceedings of the National Academy of Sciences, 2018, 115(13): E2960-E2969 |
中图分类号: | S85 |
开放日期: | 2021-06-22 |