- 无标题文档
查看论文信息

中文题名:

 蔷薇属植物特异性扩增基因鉴定及环境适应性分析    

姓名:

 金鑫    

学号:

 2022104097    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0902Z1    

学科名称:

 农学 - 园艺学 - 观赏园艺学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 观赏园艺学    

研究方向:

 分子生物学    

第一导师姓名:

 王长泉    

第一导师单位:

 南京农业大学    

完成日期:

 2025-05-15    

答辩日期:

 2025-05-25    

外文题名:

 Identification, environmental adaptation analysis of specific amplified genes in Rosa    

中文关键词:

 谱系特异性扩增基因家族 ; 物种特异性扩增基因家族 ; IAN基因家族 ; 蛋白激酶基因家族 ; 月季灰霉病    

外文关键词:

 Lineage-specific amplified genes ; Species-specific amplified genes ; IAN gene family ; Protein kinase gene family ; Rosa chinensis gray mold    

中文摘要:

基因的复制与丢失是物种基因组进化的重要途径,基因家族的扩增与物种的适应性进化、特异性状有关。蔷薇科共有124个属,包含花卉、果树等重要的经济作物。研究蔷薇属谱系特异性基因及物种特异性基因对理解蔷薇属的进化、性状产生等方面具有重要意义。本研究通过比较蔷薇属与蔷薇科其他物种的基因组鉴定了蔷薇属谱系特异性扩增的基因家族,分析其中IAN基因家族及RLK-Pelle_DLSV基因家族所在的蛋白激酶超家族的进化、功能,并开展了月季蛋白激酶RcMPK3的功能验证试验。主要研究结果如下:

特异性扩增基因分析:蔷薇属与草莓分化过程中发生扩增和收缩的基因功能富集表明蔷薇属增强了能量代谢及生物胁迫响应,同时降低信号转导及热胁迫响应,说明蔷薇属可能经历了获能途径减少、温度下降等环境变化。14个物种的特异性基因功能富集分析表明,物种特异性基因大多富集于核酸代谢、激素应答、刺激响应等通路。此外,59%的月季特异性基因参与逆境响应,并且更集中于非生物胁迫响应。对8个在蔷薇属特异性扩增的基因家族选择压及功能富集分析表明,大多数谱系特异性扩增基因受到纯化选择,集中于免疫防御、信号转导、生长发育和繁殖等通路。

IAN基因家族分析:对12个物种的IAN基因进行生物信息学分析。结果显示,在蔷薇属物种中IAN基因数量最多,在其余物种中数量较为保守。系统进化树显示拟南芥AtIAN9为蔷薇科所有IAN的同源基因。染色体分布与共线性说明IAN基因大多呈串联重复排列,其扩增与局部复制事件有关。顺式作用元件分析表明昼夜节律调节等元件为拟南芥IAN特有。逆境转录组表明月季IAN基因参与不同逆境的响应,说明月季IAN基因可能发生了功能分化。

蛋白激酶超家族分析:对月季蛋白激酶基因进行生物信息学分析。结果显示,月季中RLK-Pelle_DLSV、RLK-Pelle_LRK10L-2等亚家族的基因数量多于其他物种,其中RLK-Pelle_DLSV在蔷薇属中谱系特异性扩增。转录组及共表达网络说明月季通过不同途径响应不同逆境,其中RLK-Pelle家族介导月季对生物、非生物胁迫的响应,CMGC家族主要参与对非生物胁迫的响应。基于相较于草莓在月季中扩增的蛋白激酶亚家族及月季灰霉病转录组数据,选择可能参与月季对灰霉病的响应的RcMPK3基因验证功能。结果显示,干扰RcMPK3会导致月季花瓣灰霉病斑扩大,说明RcMPK3可能参与月季对灰霉病的响应。

蔷薇属谱系特异性基因主要集中于逆境响应,其中IAN基因家族在蔷薇属植物中扩增,并且可能产生了功能分化,月季蛋白激酶参与响应生物胁迫及非生物胁迫的机制不同,并且RcMPK3可能参与月季对灰霉病的响应。

外文摘要:

Gene duplication and loss are important pathways for the evolution of species genomes, while the expansion of gene families are related to the adaptive evolution and specific traits of species. There are 124 genera in Rosaceae, including important economic crops such as fruit and flowers. The study of lineage-specific genes and species-specific genes in Rosa plays an important role in understanding the evolution and trait generation of Rosa. This study identified lineage-specific gene families and species-specific gene families in Rosa by comparing the genomes of Rosa with other species in Rosaceae, selected IAN gene family and protein kinase superfamily to analyse evolution and function. Rosa chinensis protein kinase RcMPK3 was verified in playing a role in response to gray mold in Rosa chinensis. The main research results are as follows:

Analysis of specific expanded gene: The functional enrichment analysis of expanded and contracted genes during the divergence between Rosa and Fragaria suggested that Rosa have enhanced energy metabolism and biological stress responses, while signal transduction and heat stress responses have been reduced, indicate Rosa may have experienced environmental changes such as reduced energy availability and temperature decline. Functional enrichment analysis of species-specific genes across 14 species showed that these genes were predominantly enriched in pathways related to nucleic acid metabolism, hormone responses, and stimulus responses. 59% of the Rosa chinensis specific genes were involved in stress responses, with a stronger bias toward abiotic stress responses. Selection pressure and functional enrichment analysis of 8 gene families specifically expanded in Rosa revealed that most lineage-specific expanded genes were under purifying selection and were enriched in pathways related to immune defense, signal transduction, growth and development, reproduction.

IAN gene family analysis: Bioinformatics analysis of IAN genes in 12 species was performed. The results showed that the number of IAN genes was the largest in Rosa, and was relatively conservative in the rest of the species. The phylogenetic tree showed that Arabidopsis thaliana AtIAN9 was the homologous gene of all IAN in Rosaceae. Chromosome distribution and colinearity showed that IAN genes were arranged in tandem repeats, indicating that the expansion of IAN genes was formed by local duplication events. Cis-acting element analysis showed that elements such as circadian rhythm regulation were unique to Arabidopsis thaliana IAN. The analysis results of the adversity transcriptome showed that IAN genes mediated responses to different adversities, indicating that Rosa chinensis IAN genes may have undergone functional differentiation.

Protein kinase superfamily analysis: A bioinformatics analysis was conducted on protein kinase genes in Rosa chinensis. The results showed that subfamilies such as RLK-Pelle_DLSV and RLK-Pelle_LRK10L-2 have greater number of genes in Rosa chinensis compared to other species, with RLK-Pelle_DLSV specifically undergoing lineage-specific expansion in the Rosa. Transcriptome data and co-expression network analyses indicated that Rosa chinensis responds to different stresses through distinct pathways. Specifically, the RLK-Pelle family mediates responses to both biotic and abiotic stresses, while the CMGC family is mainly involved in responses to abiotic stress. Based on the expanded protein kinase subfamilies in Rosa chinensis compared to Fragaria and transcriptome data under gray mold infection, the gene RcMPK3 was selected for functional validation due to its potential role in gray mold resistance. Functional analysis showed that silencing RcMPK3 led to an expansion of gray mold lesions on petals, suggesting that RcMPK3 may play a role in the defense response of Rosa chinensis against gray mold.

Lineage specific genes in Rosa were primarily enriched in stress response pathways. Among them, the IAN gene family have undergone expansion in Rosa and may have experienced functional divergence. In addition, protein kinases in Rosa chinensis were involved in responses to biotic and abiotic stresses through distinct mechanisms, and RcMPK3 is likely involved in the defense response of Rosa chinensis against gray mold.

参考文献:

[1] 王思齐, 朱章明. 中国蔷薇属植物物种丰富度分布格局及其与环境因子的关系[J]. 生态学报, 2022, 42(1): 209-219.

[2] 杨洪强, 梁小娥. 蛋白激酶与植物逆境信号传递途径[J]. 植物生理学通讯, 2001, 37(03):185-191.

[3] Albalat R, Cañestro C. Evolution by gene loss[J]. Nature Reviews Genetics, 2016, 17(7): 379-391.

[4] Arendsee Z W, Li L, Wurtele E S. Coming of age: orphan genes in plants[J]. Trends in Plant Science, 2014, 19(11): 698-708.

[5] Armisén D, Lecharny A, Aubourg S. Unique genes in plants: specificities and conserved features throughout evolution[J]. BMC Evolutionary Biology, 2008, 8: 280-300.

[6] Birchler J A, Yang H. The multiple fates of gene duplications: Deletion, hypofunctionalization, subfunctionalization, neofunctionalization, dosage balance constraints, and neutral variation[J]. The Plant Cell, 2022, 34(7): 2466-2474.

[7] Blanc G, Wolfe K H. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes[J]. The Plant Cell, 2004, 16(7): 1667-1678.

[8] Brosius J. Waste not, want not–transcript excess in multicellular eukaryotes[J]. Trends in Genetics, 2005, 21(5): 287-288.

[9] Campbell M A, Zhu W, Jiang N, et al. Identification and characterization of lineage-specific genes within the Poaceae[J]. Plant Physiology, 2007, 145(4): 1311-1322.

[10] Caputi L, Malnoy M, Goremykin V, et al. A genome‐wide phylogenetic reconstruction of family 1 UDP‐glycosyltransferases revealed the expansion of the family during the adaptation of plants to life on land[J]. The Plant Journal, 2012, 69(6): 1030-1042.

[11] Chen F, Fasoli M, Tornielli G B, et al. The evolutionary history and diverse physiological roles of the grapevine calcium-dependent protein kinase gene family[J]. PLoS One, 2013, 8(12): e80818.

[12] Chen X, Ding Y, Yang Y, et al. Protein kinases in plant responses to drought, salt, and cold stress[J]. Journal of Integrative Plant Biology, 2021, 63(1): 53-78.

[13] Chen X, Li J, Cheng T, et al. Molecular systematics of Rosoideae (Rosaceae)[J]. Plant Systematics and Evolution, 2020, 306: 1-12.

[14] Cox S, Radzio-Andzelm E, Taylor S S. Domain movements in protein kinases[J]. Current Opinion in Structural Biology, 1994, 4(6): 893-901.

[15] Dardick C, Chen J, Richter T, et al. The rice kinase database. A phylogenomic database for the rice kinome[J]. Plant Physiology, 2007, 143(2): 579-586.

[16] Das M, Haberer G, Panda A, et al. Expression pattern similarities support the prediction of orthologs retaining common functions after gene duplication events[J]. Plant Physiology, 2016, 171(4): 2343-2357.

[17] Dean R, Van Kan J A L, Pretorius Z A, et al. The Top 10 fungal pathogens in molecular plant pathology[J]. Molecular Plant Pathology, 2012, 13(4): 414-430.

[18] Deighton N, Muckenschnabel I, Colmenares A J, et al. Botrydial is produced in plant tissues infected by Botrytis cinerea[J]. Phytochemistry, 2001, 57(5): 689-692.

[19] Dias S, de Oliveira Bustamante F, do Vale Martins L, et al. Translocations and inversions: major chromosomal rearrangements during Vigna (Leguminosae) evolution[J]. Theoretical and Applied Genetics, 2024, 137(1): 29.

[20] Dissmeyer N, Schnittger A. Plant kinases[M]. Totowa, America: Humana Press, 2011, 779: 7-52.

[21] Donoghue M T A, Keshavaiah C, Swamidatta S H, et al. Evolutionary origins of Brassicaceae specific genes in Arabidopsis thaliana[J]. BMC Evolutionary Biology, 2011, 11: 47-58.

[22] Fayaz F, Singh K, Gairola S, et al. A comprehensive review on phytochemistry and pharmacology of Rosa species (Rosaceae)[J]. Current Topics in Medicinal Chemistry, 2024, 24(4): 364-378.

[23] Fedorova N D, Khaldi N, Joardar V S, et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus[J]. PLoS Genetics, 2008, 4(4): e1000046.

[24] Ferrari S, Savatin D V, Sicilia F, et al. Oligogalacturonides: plant damage-associated molecular patterns and regulators of growth and development[J]. Frontiers in Plant Science, 2013, 4: 49.

[25] Force A, Lynch M, Pickett F B, et al. Preservation of duplicate genes by complementary, degenerative mutations[J]. Genetics, 1999, 151(4): 1531-1545.

[26] Gahlaut V, Kumari P, Jaiswal V, et al. Genetics, genomics and breeding in Rosa species[J]. The Journal of Horticultural Science and Biotechnology, 2021, 96(5): 545-559.

[27] Gu Z, Steinmetz L M, Gu X, et al. Role of duplicate genes in genetic robustness against null mutations[J]. Nature, 2003, 421: 63-66.

[28] Guenoune-Gelbart D, Elbaum M, Sagi G, et al. Tobacco mosaic virus (TMV) replicase and movement protein function synergistically in facilitating TMV spread by lateral diffusion in the plasmodesmal desmotubule of Nicotiana benthamiana[J]. Molecular Plant-Microbe Interactions, 2008, 21(3): 335-345.

[29] Guo L, Wang S, Nie Y, et al. Convergent evolution of AP2/ERF III and IX subfamilies through recurrent polyploidization and tandem duplication during eudicot adaptation to paleoenvironmental changes[J]. Plant Communications, 2022, 3(6): 100420.

[30] Hanks S K, Hunter T. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification 1[J]. The FASEB Journal, 1995, 9(8): 576-596.

[31] Hanks S K. Genomic analysis of the eukaryotic protein kinase superfamily: a perspective[J]. Genome Biology, 2003, 4(5): 1-7.

[32] Hao Y, Wang X F, Guo Y, et al. Genomic and phenotypic signatures provide insights into the wide adaptation of a global plant invader[J]. Plant Communications, 2024, 5(4): 100820.

[33] Hardie D G. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function[J]. Genes & development, 2011, 25(18): 1895-1908.

[34] Henriques R, Magyar Z, Monardes A, et al. Arabidopsis S6 kinase mutants display chromosome instability and altered RBR1–E2F pathway activity[J]. The EMBO Journal, 2010, 29(17): 2979-2993.

[35] Hideki I, Fyodor K. The evolution of gene duplications: classifying and distinguishing between models. Nature Reviews Genetics, 2010, 11(2): 97-108.

[36] Holden S, Bergum M, Green P, et al. A lineage-specific Exo70 is required for receptor kinase–mediated immunity in barley[J]. Science Advances, 2022, 8(27): eabn7258.

[37] Huang L, Gao H, Jiang N, et al. Genome wide characterization of CBL-CIPK family genes and their responsive expression in Rosa chinensis[J]. Phyton-International Journal of Experimental Botany, 2022, 92(2): 349-368.

[38] Hummer K E, Janick J. Genetics and genomics of Rosaceae[M]. New York, America: Springer Press, 2009, 6: 1-17.

[39] Hyodo K, Hashimoto K, Kuchitsu K, et al. Harnessing host ROS-generating machinery for the robust genome replication of a plant RNA virus[J]. Proceedings of the National Academy of Sciences, 2017, 114(7): E1282-E1290.

[40] Jiang L, Li X, Lyu K, et al. Rosaceae phylogenomic studies provide insights into the evolution of new genes[J]. Horticultural Plant Journal, 2025, 11(1): 389-405.

[41] Jordan I K, Makarova K S, Spouge J L, et al. Lineage-specific gene expansions in bacterial and archaeal genomes[J]. Genome Research, 2001, 11(4): 555-565.

[42] Ermolaeva M D, Wu M, Eisen J A, et al. The age of the Arabidopsis thaliana genome duplication[J]. Plant Molecular Biology, 2003, 51: 859-866.

[43] Kabir M, Wenlock S, Doig A J, et al. The essentiality status of mouse duplicate gene pairs correlates with developmental co-expression patterns[J]. Scientific Reports, 2019, 9(1): 3224.

[44] Kalapos B, Hlavová M, Nádai T V, et al. Early evolution of the mitogen-activated protein kinase family in the plant kingdom[J]. Scientific Reports, 2019, 9(1): 4094.

[45] Kars I, Krooshof G H, Wagemakers L, et al. Necrotizing activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris[J]. The Plant Journal, 2005, 43(2): 213-225.

[46] Kennelly P J. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective[J]. FEMS Microbiology Letters, 2002, 206(1): 1-8.

[47] Keshet Y, Seger R. MAP Kinase Signaling Protocols[M]. Totowa, America: Humana Press, 2010, 661: 3-38.

[48] Koide Y, Ogino A, Yoshikawa T, et al. Lineage-specific gene acquisition or loss is involved in interspecific hybrid sterility in rice[J]. Proceedings of the National Academy of Sciences, 2018, 115(9): E1955-E1962.

[49] Krupa A, Srinivasan N. Genome-wide comparative analyses of domain organisation of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa[J]. Gene, 2006, 380(1): 1-13.

[50] Legard D E, Xiao C L, Mertely J C, et al. Effects of plant spacing and cultivar on incidence of Botrytis fruit rot in annual strawberry[J]. Plant Disease, 2000, 84(5): 531-538.

[51] Lehti-Shiu M D, Shiu S H. Diversity, classification and function of the plant protein kinase superfamily[J]. Philosophical Transactions of the Royal Society B, 2012, 367(1602): 2619-2639.

[52] Lehti-Shiu M D, Zou C, Hanada K, et al. Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes[J]. Plant Physiology, 2009, 150(1): 12-26.

[53] Lehti-Shiu M D, Zou C, Shiu S H. Receptor-like kinases in plants[M]. Berlin, Germany: Springer Press, 2012, 13: 1-22.

[54] Lespinet O, Wolf Y I, Koonin E V, et al. The role of lineage-specific gene family expansion in the evolution of eukaryotes[J]. Genome Research, 2002, 12(7): 1048-1059.

[55] Lian S, Zhou Y, Liu Z, et al. The differential expression patterns of paralogs in response to stresses indicate expression and sequence divergences[J]. BMC Plant Biology, 2020, 20: 1-16.

[56] Liebrand TWH, van den Burg HA, Joosten MHAJ. Two for all: receptor-associated kinases SOBIR1 and BAK1[J]. Trends in Plant Science, 2014, 19(2): 123-132.

[57] Lin H, Moghe G, Ouyang S, et al. Comparative analyses reveal distinct sets of lineage-specific genes within Arabidopsis thaliana[J]. BMC Evolutionary Biology, 2010, 10: 1-14.

[58] Liu C, Wang T, Zhang W, et al. Computational identification and analysis of immune-associated nucleotide gene family in Arabidopsis thaliana[J]. Journal of Plant Physiology, 2008, 165(7): 777-787.

[59] Liu J, Chen N, Grant J N, et al. Soybean kinome: functional classification and gene expression patterns[J]. Journal of Experimental Botany, 2015, 66(7): 1919-1934.

[60] Lu S, Zhu T, Wang Z, et al. Arabidopsis immune-associated nucleotide-binding genes repress heat tolerance at the reproductive stage by inhibiting the unfolded protein response and promoting cell death[J]. Molecular Plant, 2021, 14(2): 267-284.

[61] Luna S K, Chain F J J. Lineage-specific genes and family expansions in dictyostelid genomes display expression bias and evolutionary diversification during development[J]. Genes, 2021, 12(10): 1628.

[62] Lynch M, Conery J S. The evolutionary fate and consequences of duplicate genes[J]. Science, 2000, 290(5494): 1151-1155.

[63] MacMurray A J, Moralejo D H, Kwitek A E, et al. Lymphopenia in the BB rat model of type 1 diabetes is due to a mutation in a novel immune-associated nucleotide (Ian)-related gene[J]. Genome Research, 2002, 12(7): 1029-1039.

[64] Ma D, Ding Q, Guo Z, et al. Identification, characterization and expression analysis of lineage-specific genes within mangrove species Aegiceras corniculatum[J]. Molecular Genetics and Genomics, 2021, 296(6): 1235-1247.

[65] Maeda H, Akagi T, Onoue N, et al. Evolution of lineage-specific gene networks underlying the considerable fruit shape diversity in persimmon[J]. Plant and Cell Physiology, 2019, 60(11): 2464-2477.

[66] Maere S, De Bodt S, Raes J, et al. Modeling gene and genome duplications in eukaryotes[J]. Proceedings of the National Academy of Sciences, 2005, 102(15): 5454-5459.

[67] Manning G, Whyte D B, Martinez R, et al. The protein kinase complement of the human genome[J]. Science, 2002, 298(5600): 1912-1934.

[68] Mizoguchi T, Ichimura K, Shinozaki K. Environmental stress response in plants: the role of mitogen-activated protein kinases[J]. Trends in Biotechnology, 1997, 15(1): 15-19.

[69] Moustafa K, AbuQamar S, Jarrar M, et al. MAPK cascades and major abiotic stresses[J]. Plant Cell Reports, 2014, 33(8): 1217-1225.

[70] Movahedi S, Heale J B. The roles of aspartic proteinase and endo-pectin lyase enzymes in the primary stages of infection and pathogenesis of various host tissues by different isolates of Botrytis cinerea Pers ex. Pers[J]. Physiological and Molecular Plant Pathology, 1990, 36(4): 303-324.

[71] Muckenschnabel I, Williamson B, Goodman B A, et al. Markers for oxidative stress associated with soft rots in French beans (Phaseolus vulgaris) infected by Botrytis cinerea[J]. Planta, 2001, 212(3): 376-381.

[72] Nadeem K, Hu C M, Waleed A K, et al. Evolution and expression divergence of E2 gene family under multiple abiotic and phytohormones stresses in Brassica rapa[J]. BioMed research international, 2018, 1: 5206758.

[73] Nafisi M, Stranne M, Zhang L, et al. The endo-arabinanase BcAra1 is a novel host-specific virulence factor of the necrotic fungal phytopathogen Botrytis cinerea[J]. Molecular Plant-Microbe Interactions, 2014, 27(8): 781-792.

[74] Newman M A, Sundelin T, Nielsen J T, et al. MAMP (microbe-associated molecular pattern) triggered immunity in plants[J]. Frontiers in Plant Science, 2013, 4: 139.

[75] Nitta T, Nasreen M, Seike T, et al. IAN family critically regulates survival and development of T lymphocytes[J]. PLoS Biology, 2006, 4(4): e103.

[76] Nitta T, Takahama Y. The lymphocyte guard-IANs: regulation of lymphocyte survival by IAN/GIMAP family proteins[J]. Trends in Immunology, 2007, 28(2): 58-65.

[77] Nocchi G, Whiting J R, Yeaman S. Repeated global adaptation across plant species[J]. Proceedings of the National Academy of Sciences, 2024, 121(52): e2406832121.

[78] Park Y S, Cho H J, Kim S. Identification and expression analyses of B3 genes reveal lineage-specific evolution and potential roles of REM genes in pepper[J]. BMC Plant Biology, 2024, 24(1): 201.

[79] Peek J, Harvey C, Gray D, et al. SUMO targeting of a stress-tolerant Ulp1 SUMO protease[J]. Plos One, 2018, 13(1): e0191391.

[80] Pham J, Liu J, Bennett M H, et al. Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection[J]. New Phytologist, 2012, 194(1): 168-180.

[81] Plissonneau C, Stürchler A, Croll D. The evolution of orphan regions in genomes of a fungal pathogen of wheat[J]. mBio, 2016, 7(5): e01231.

[82] Qi W, Quan M, Fang Y, et al. Genome-wide identification of protein kinase family in Populus tomentosa: Functional evidence for causative protein kinase in secondary cell wall biosynthesis[J]. International Journal of Biological Macromolecules, 2025, 285: 138219.

[83] Rahnama M, Wang B, Dostart J, et al. Telomere roles in fungal genome evolution and adaptation[J]. Frontiers in Genetics, 2021, 12: 676751.

[84] Rasheed H, Shi L, Winarsih C, et al. Plant Growth Regulators: An Overview of WOX Gene Family[J]. Plants, 2024, 13(21): 3108.

[85] Reuber T L, Ausubel F M. Isolation of Arabidopsis genes that differentiate between resistance responses mediated by the RPS2 and RPM1 disease resistance genes[J]. The Plant Cell, 1996, 8(2): 241-249.

[86] Ritchie S, Gilroy S. Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone[J]. Plant Physiology, 1998, 116(2): 765-776.

[87] Sakurai T, Plata G, Rodríguez-Zapata F, et al. Sequencing analysis of 20,000 full-length cDNA clones from cassava reveals lineage specific expansions in gene families related to stress response[J]. BMC Plant Biology, 2007, 7: 66.

[88] Schenk P W, Snaar-Jagalska B E. Signal perception and transduction: the role of protein kinases[J]. Biochimica et Biophysica Acta, 1999, 1449(1): 1-24.

[89] Shiu S H, Karlowski W M, Pan R, et al. Comparative analysis of the receptor-like kinase family in Arabidopsis and rice[J]. The plant cell, 2004, 16(5): 1220-1234.

[90] Shumayla, Tyagi S, Upadhyay S K. Molecular approaches in plant biology and environmental challenges[M]. Singapore: Springer Press, 2019: 79-102.

[91] Sprang S R. G protein mechanisms: insights from structural analysis[J]. Annual review of Biochemistry, 1997, 66(1): 639-678.

[92] Stone J M, Walker J C. Plant protein kinase families and signal transduction[J]. Plant physiology, 1995, 108(2): 451-457.

[93] Su J, Zhang M, Zhang L, et al. Regulation of stomatal immunity by interdependent functions of a pathogen-responsive MPK3/MPK6 cascade and abscisic acid[J]. The Plant Cell, 2017, 29(3): 526-542.

[94] Tautz D, Domazet-Lošo T. The evolutionary origin of orphan genes[J]. Nature Reviews Genetics, 2011, 12(10): 692-702.

[95] Taylor J S, Raes J. Duplication and divergence: the evolution of new genes and old ideas[J]. Annual Review Genetics, 2004, 38(1): 615-643.

[96] Taylor S S, Radzio-Andzelm E. Three protein kinase structures define a common motif[J]. Structure, 1994, 2(5): 345-355.

[97] Teekas L, Sharma S, Vijay N. Lineage-specific protein repeat expansions and contractions reveal malleable regions of immune genes[J]. Genes & Immunity, 2022, 23(7): 218-234.

[98] Tekaia F, Dujon B. Pervasiveness of gene conservation and persistence of duplicates in cellular genomes[J]. Journal of Molecular Evolution, 1999, 49(5): 591-600.

[99] Tenberge K B, Beckedorf M, Hoppe B, et al. In situ localization of AOS in host-pathogen interactions[J]. Microscopy and Microanalysis, 2002, 8(S02): 250-251.

[100]Van Kan J A L, Van't Klooster J W, Wagemakers C A M, et al. Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato[J]. Molecular Plant-Microbe Interactions, 1997, 10(1): 30-38.

[101]Van Kan J A L. Licensed to kill: the lifestyle of a necrotrophic plant pathogen[J]. Trends in Plant Science, 2006, 11(5): 247-253.

[102]Vo K T X, Kim C Y, Chandran A K N, et al. Molecular insights into the function of ankyrin proteins in plants[J]. Journal of Plant Biology, 2015, 58: 271-284.

[103]Wang D, Harper J F, Gribskov M. Systematic trans-genomic comparison of protein kinases between Arabidopsis and Saccharomyces cerevisiae[J]. Plant Physiology, 2003, 132(4): 2152-2165.

[104]Wang Y, Li Y, Rosas-Diaz T, et al. The IMMUNE-ASSOCIATED NUCLEOTIDE-BINDING 9 protein is a regulator of basal immunity in Arabidopsis thaliana[J]. Molecular Plant-Microbe Interactions, 2019, 32(1): 65-75.

[105]Wang Y, Wang X, Paterson A H. Genome and gene duplications and gene expression divergence: a view from plants[J]. Annals of the New York Academy of Sciences, 2012, 1256(1): 1-14.

[106]Wang Z, Li X. IAN/GIMAPs are conserved and novel regulators in vertebrates and angiosperm plants[J]. Plant Signaling & Behavior, 2009, 4(3): 165-167.

[107]Wang Z, Wang Y W, Kasuga T, et al. Origins of lineage‐specific elements via gene duplication, relocation, and regional rearrangement in Neurospora crassa[J]. Molecular Ecology, 2024, 33(24): e17168.

[108]Weisman C M, Murray A W, Eddy S R, et al. Lineage-specific genes can be explained by homology detection failure[J]. PLoS Biology, 2020, 18(11): e3000862.

[109]Weisman C M, Murray A W, Eddy S R. Mixing genome annotation methods in a comparative analysis inflates the apparent number of lineage-specific genes[J]. Current Biology, 2022, 32(12): 2632-2639.

[110]Weiss Y, Forêt S, Hayward D C, et al. The acute transcriptional response of the coral Acropora millepora to immune challenge: expression of GiMAP/IAN genes links the innate immune responses of corals with those of mammals and plants[J]. BMC Genomics, 2013, 14: 1-13.

[111]Williamson B, Tudzynski B, Tudzynski P, et al. Botrytis cinerea: the cause of gray mould disease[J]. Molecular Plant Pathology, 2007, 8(5): 561-580.

[112]Windram O, Madhou P, McHattie S, et al. Arabidopsis defense against Botrytis cinerea: chronology and regulation deciphered by high-resolution temporal transcriptomic analysis[J]. The Plant Cell, 2012, 24(9): 3530-3557.

[113]Wingerter C, Eisenmann B, Weber P, et al. Grapevine Rpv3-, Rpv10-and Rpv12-mediated defense responses against Plasmopara viticola and the impact of their deployment on fungicide use in viticulture[J]. BMC Plant Biology, 2021, 21(1): 1-17.

[114]Wong V W, Saunders A E, Hutchings A, et al. The autoimmunity-related GIMAP5 GTPase is a lysosome-associated protein[J]. Self/Nonself, 2010, 1(3): 259-268.

[115]Xu J, Meng J, Meng X, et al. Pathogen-responsive MPK3 and MPK6 reprogram the biosynthesis of indole glucosinolates and their derivatives in Arabidopsis immunity[J]. The Plant Cell, 2016, 28(5): 1144-1162.

[116]Xu Y, Wu G, Hao B, et al. Identification, characterization and expression analysis of lineage-specific genes within sweet orange (Citrus sinensis)[J]. Bmc Genomics, 2015, 16: 1-10.

[117]Yan J, Su P, Meng X, et al. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses[J]. BMC Genomics, 2023, 24(1): 224.

[118]Yang X, Jawdy S, Tschaplinski T J, et al. Genome-wide identification of lineage-specific genes in Arabidopsis, Oryza and Populus[J]. Genomics, 2009, 93(5): 473-480.

[119]Zenz T, Roessner A, Thomas A, et al. hIan5: the human ortholog to the rat Ian4/Iddm1/lyp is a new member of the Ian family that is overexpressed in B-cell lymphoid malignancies[J]. Genes & Immunity, 2004, 5(2): 109-116.

[120]Zhang J, Li W, Xiang T, et al. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector[J]. Cell Host & Microbe, 2010, 7(4): 290-301.

[121]Zhang T, Huang W, Zhang L, et al. Phylogenomic profiles of whole-genome duplications in Poaceae and landscape of differential duplicate retention and losses among major Poaceae lineages[J]. Nature Communications, 2024, 15(1): 3305.

[122]Zhang W, Fraiture M, Kolb D, et al. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi[J]. The Plant Cell, 2013, 25(10): 4227-4241.

[123]Zhang Y, Yang H, Turra D, et al. The genome of opportunistic fungal pathogen Fusarium oxysporum carries a unique set of lineage-specific chromosomes[J]. Communications Biology, 2020, 3(1): 50.

[124]Zheng Z, Qamar S A, Chen Z, et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. The Plant Journal, 2006, 48(4): 592-605.

[125]Zhu S Y, Yu X C, Wang X J, et al. Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis[J]. The Plant Cell, 2007, 19(10): 3019-3036.

[126]Zong D, Liu H, Gan P, et al. Chromosomal‐scale genomes of two Rosa species provide insights into genome evolution and ascorbate accumulation[J]. The Plant Journal, 2024, 117(4): 1264-1280.

中图分类号:

 S68    

开放日期:

 2025-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式