- 无标题文档
查看论文信息

中文题名:

 β-羟基膦酰基衍生物和芳基硫苷的电化学合成    

姓名:

 朱丽    

学号:

 2022811036    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 085600    

学科名称:

 工学 - 材料与化工    

学生类型:

 硕士    

学位:

 材料与化工硕士    

学校:

 南京农业大学    

院系:

 理学院    

专业:

 材料与化工(专业学位)    

研究方向:

 药物分子设计合成    

第一导师姓名:

 吴磊    

第一导师单位:

 南京农业大学    

完成日期:

 2024-03-20    

答辩日期:

 2024-05-25    

外文题名:

 The Electrochemical Synthesis of β-Hydroxyphosphoryl Derivatives And Arylthioglycosides    

中文关键词:

 电催化合成 ; 1 ; 3-共轭烯炔 ; 羟基膦酰化 ; C-P键构筑 ; 芳基硫苷    

外文关键词:

 electrochemical synthesis ; 1 ; 3-conjugated enynes ; hydroxyphosphorylation ; C-P bond formation ; aryl thioglycoside    

中文摘要:

有机合成在化学工业中占据着重要地位,但往往工艺流程复杂,且环境污染问题较为严重。随着环保和节能标准的提高,现代工业对可持续合成方法的需求急剧增长。这一趋势使得洁净技术、绿色工艺以及环境友好工艺成为化学工业发展的关键方向。在这些领域中,有机电化学合成技术作为一种新兴且高效的化学合成方法,因其具有绿色化学的特性受到广泛关注。

基于有机电化学合成的巨大优势,结合课题组已有的研究基础,本文尝试利用电化学催化手段来合成β-羟基膦酰基衍生物以及芳基硫苷衍生物。具体研究工作包括以下两部分:

1、电催化合成β-羟基膦酰基衍生物。本论文通过电化学催化恒流电解,以1,3-烯炔和二苯基膦氧为模板底物合成了一系列羟基膦酰化产物。通过对溶剂、反应时间、电解质、电流、电极的筛选,确定了最优反应条件,并在该条件下制备了28个化合物,其中包括15个未见文献报道的新化合物。该反应在常温常压下进行,不需要额外加入外部金属催化剂以及氧化剂,不仅操作简单、绿色环保、反应条件温和,而且原子经济性高。 

2、电催化合成芳基硫苷。本论文以1-硫糖和N, N-二甲基对甲苯胺作为模板底物,用电催化的方法以高选择性和中等至良好的收率获得了一系列硫苷产物。通过对溶剂、反应时间、电解质、电流、电极进行筛选,确定最优反应条件,在该条件下制备了8个化合物,均为未见文献报道过的新化合物。该方法通过反应物在电极上得失电子来实现,不需要额外添加氧化还原试剂,反应体系后处理简单,条件温和。

外文摘要:

Organic synthesis plays a significant role in chemical industry, but meanwhile, complex operations, and serious environmental pollution issues are often accompanied. With the increasing concern for environmental protection and energy efficiency, there is a growing demand for sustainable synthetic methods in modern industry. Given this, clean and environmental benign process has been established to meet the prevailing trends in chemical industry. In this regime, organic electrochemistry, a new and efficient synthetic tool for redox transformations, has attracted receiving widespread attention due to its green and sustainable properties.

Considering the great advantages of organic electrochemical synthesis as well as the existing research foundation of our research group, this paper attempts to synthesize β-hydroxyphosphonyl derivatives and aryl glucosinolates through electrochemical catalysis, with the following two parts mainly involved:

1. Electrocatalytic synthesis of β-hydroxyphosphonyl derivatives. In this paper, a series of hydroxyphosphonylation products were synthesized under constant current electrocatalysis using 1,3-enyne and diphenylphosphine oxide as template substrates. After the thorough screening of solvent, reaction time, electrolyte, current and electrode, the optimal reaction conditions were determined based on which 33 compounds were prepared,including 15 new compounds which have not been reported in the literature.The reaction could be carried out at room temperature and atmospheric pressure without additional addition of external metal catalysts and oxidants. The strategy was distinguished by its simple operation, mild reaction conditions, eco-friendly and high atom economy.

2. Electrocatalytic synthesis of aryl glucosinolates. In this paper, with 1-thiosugar and N, N-dimethyl-p-toluidine as template substrates, a series of glucosinolate products were selectively obtained with moderate to good yields by electrocatalytic method. Optimal reaction conditions were established by screening the solvent, reaction time, electrolyte, current, and electrode. 8 compounds were prepared under standard reaction conditions, all of them are new compounds that have not been reported in the literature.This method offers a green and general strategy to access aryl glucosinolates through the gain and loss of electrons on electrode without additional redox reagents. The reaction conditions are mild with simple post-processing involved.

参考文献:

雷建军,陈长明,陈国菊,等.硫苷及其生物合成分子生物学机理研究进展[J].华南农业大学学报,2019, 40(5):59-70.

李进军,吴峰.绿色化学导论: Introduction to green chemistry[M].武汉:武汉大学出版社,2015.

林海鸣,郑晓鹤,周军,等.硫代葡萄糖苷及异硫氰酸酯的抗癌和抗氧化作用进展[J].中国现代应用药学,2015,32(04):513-520.

修丽丽,钮昆亮.十字花科植物中的硫代葡萄糖苷及其降解产物[J].浙江科技学院学报,2004,(03):187-189.

严楠,王瑞奇,蒋清辉,等.一种合成硫苷的方法[P].江西省:CN11434980A,2022-4-15.

张青山,王卓,孔铭,等.芥子中芥子碱类和硫代葡萄糖苷类成分化学稳定性和质量评价研究进展[J].中草药,2015,46(01):148-156.

Alonso E, Alonso E, Solis A, et al. Synthesis of N-alkyl-(α-aminoalkyl) phosphine oxides and phosphonic esters as potential HIV-protease inhibitors, starting from α-aminoacids[J]. Synlett, 2000, 2000(05): 0698-0700.

Annamalai P, Liu K C, Singh Badsara S, et al. Carbon‐sulfur bond constructions: from transition‐metal catalysis to sustainable catalysis[J]. The Chemical Record, 2021, 21(12): 3674-3688.

Badsara S S, Chan C C, Lee C F. Transition‐metal‐free syntheses of pyridine‐containing thioethers through two‐fold C-S bond formation[J]. Asian Journal of Organic Chemistry, 2014, 3(11): 1197-1203.

Beletskaya I P, Ananikov V P. Transition-metal-catalyzed C−S, C−Se, and C−Te bond formation via cross-coupling and atom-economic addition reactions[J]. Chemical reviews, 2011, 111(3): 1596-1636.

Beletskaya I P, Ananikov V P. Unusual influence of the structures of transition metal complexes on catalytic C–S and C–Se bond formation under homogeneous and heterogeneous conditions[J]. European Journal of Organic Chemistry, 2007, 2007(21): 3431-3444.

Budnikova Y H , Khrizanforova V V .Synthetic models of hydrogenases based on framework structures containing coordinating P, N-atoms as hydrogen energy electrocatalysts–from molecules to materials[J].Pure and Applied Chemistry, 2020, 92(8):1305-1320.

Budnikova Y H. Recent advances in metal–organic frameworks for electrocatalytic hydrogen evolution and overall water splitting reactions[J]. Dalton Transactions, 2020, 49(36): 12483-12502.

Cao X, Cao L, Zhang W, et al. Therapeutic potential of sulfur-containing natural products in inflammatory diseases[J]. Pharmacology & Therapeutics, 2020, 216: 107687.

Chen Y, Zhu K, Huang Q, et al. Regiodivergent sulfonylarylation of 1, 3-enynes via nickel/photoredox dual catalysis[J]. Chemical Science, 2021, 12(40): 13564-13571.

Cheng J H, Ramesh C, Kao H L, et al. Synthesis of aryl thioethers through the N-chlorosuccinimide-promoted cross-coupling reaction of thiols with Grignard reagents[J]. The Journal of organic chemistry, 2012, 77(22): 10369-10374.

Chin-Fa L, Sidick B R , Singh B S. Engineered C–S bond construction[J].Topics in Current Chemistry, 2018, 376(3):25.

Clercq E D .ChemInform Abstract: The next ten stories on antiviral drug discovery. Part E. Advents, Advances, and Adventures[J]. ChemInform, 2011, 42(16):118-160.

Dang, Q., Kasibhatla, S. R., Jiang, T., Fan, K., Liu, Y., Taplin, F., et al. Discovery of phosphonic diamide prodrugs and their use for the oral delivery of a series of fructose 1,6-bisphosphatase inhibitors[J]. Journal of Medicinal Chemistry, 2008, 51(14):4331-9.

David,J,Procter.The synthesis of thiols, selenols, sulfides, selenides, sulfoxides, selenoxides, sulfones and selenones[J].Journal of the Chemical Society, 2001(4):335-354.

De Martino G, Edler M C, La Regina G,et al. New arylthioindoles: potent inhibitors of tubulin polymerization. 2. Structure-activity relationships and molecular modeling studies[J]. Journal of Medicinal Chemistry, 2006, 49(3):947-954.

Ding Y N, Huang Y C, Shi W Y, et al. Modular synthesis of aryl thio/selenoglycosides via the Catellani strategy[J]. Organic Letters, 2021, 23(15): 5641-5646.

Dondoni A. The emergence of thiol–ene coupling as a click process for materials and bioorganic chemistry[J]. Angewandte Chemie International Edition, 2008, 47(47): 8995-8997.

Eichman C C, Stambuli J P. Transition metal catalyzed synthesis of aryl sulfides[J]. Molecules, 2011, 16(1): 590-608.

Escopy S, Demchenko A V. Transition‐metal‐mediated glycosylation with thioglycosides[J]. Chemistry–A European Journal, 2022, 28(14): e202103747.

Escopy S, Singh Y, Demchenko A V. Triflic acid-mediated synthesis of thioglycosides[J]. Organic & Biomolecular Chemistry, 2019, 17(36): 8379-8383.

Feng G J, Luo T, Guo Y F, et al. Concise synthesis of 1-thioalkyl glycoside donors by reaction of per-O-acetylated sugars with sodium alkanethiolates under solvent-free conditions[J]. The Journal of Organic Chemistry, 2022, 87(5): 3638-3646.

Feng M, Tang B, Liang S, et al. Sulfur containing scaffolds in drugs: synthesis and application in medicinal chemistry[J]. Current topics in medicinal chemistry, 2016, 16(11): 1200-1216.

Fuchigami T. Special issue: Recent advances in organic electrochemistry[J]. The Chemical Record, 2021, 21(9) : 2079.

Hou H, Zhou B, Wang J, et al. Stereo-and regioselective cis-hydrophosphorylation of 1, 3-enynes enabled by the visible-light irradiation of NiCl2(PPh3)2[J]. Organic Letters, 2021, 23(8): 2981-2987.

Hu Y L, Gou B B, Wang J, et al. N-heterocyclic carbene catalyzed stereoselective synthesis of 2-nitro-thiogalactosides[J]. Synthesis, 2019, 51(18): 3451-3461.

Hu Z, Shen Z, Yu J C. Phosphorus containing materials for photocatalytic hydrogen evolution[J].Green Chemistry, 2016, 19(3) : 588-613.

Huang J, Jia Y, Li X, et al. Halotrifluoromethylation of 1, 3-enynes: Access to tetrasubstituted allenes[J]. Organic Letters, 2021, 23(6): 2314-2319.

Hutton J, Jones R D, Lee S A ,et al. Use of a titanium thienyl anion and a simple procedure for introducing a thiol group into thiophene in the development of a manufacturing route to the 5-lipoxygenase inhibitor ZD4407[J].Organic Process Research & Development, 1997, 1(1) : 61-67.

Ilardi E A, Vitaku E, Njardarson J T .Data-mining for sulfur and fluorine: An evaluation of pharmaceuticals to reveal opportunities for drug design and discovery[J].Journal of Medicinal Chemistry, 2013, 57(7): 2832–2842.

Ji P, Zhang Y, Gao F, et al. Direct, stereoselective thioglycosylation enabled by an organophotoredox radical strategy[J]. Chemical science, 2020, 11(48): 13079-13084.

Jiang Y Y, Liang S, Zeng C C, et al. Electrochemically initiated formation of sulfonyl radicals: synthesis of oxindoles via difunctionalization of acrylamides mediated by bromide ion[J]. Green chemistry, 2016, 18(23): 6311-6319.

Jiang Y, Xu K, Zeng C. Use of electrochemistry in the synthesis of heterocyclic structures[J]. Chemical reviews, 2017, 118(9): 4485-4540.

Jutand A. Contribution of electrochemistry to organometallic catalysis[J]. Chemical reviews, 2008, 108(7): 2300-2347.

Kaldor S W, Kalish V J, Davies J F, et al. Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease[J]. Journal of medicinal chemistry, 1997, 40(24): 3979-3985.

Kärkäs M D. Electrochemical strategies for C–H functionalization and C–N bond formation[J]. Chemical Society Reviews, 2018, 47(15): 5786-5865.

Khrizanforova V V, Karasik A A, Budnikova Y H. Synthetic organometallic models of iron-containing hydrogenases as molecular electrocatalysts for hydrogen evolution or oxidation[J]. Russian Chemical Reviews, 2017, 86(4): 298.

Kim H, Lee H, Lee D, et al. Asymmetric total syntheses of (+)-3-(Z)-laureatin and (+)-3-(Z)-isolaureatin by “lone pair lone pair interaction-controlled” isomerization[J]. Journal of the American Chemical Society, 2007, 129(8): 2269-2274.

Kingston C, Palkowitz M D, Takahira Y, et al. A survival guide for the “electro-curious”[J]. Accounts of chemical research, 2019, 53(1): 72-83.

Kondo T, Mitsudo T. Metal-catalyzed carbon− sulfur bond formation[J]. Chemical reviews, 2000, 100(8): 3205-3220.

Kosugi M, Shimizu T, Migita T. Reactions of aryl halides with thiolate anions in the presence of catalytic amounts of tetrakis (triphenylphosphine) palladium preparation of aryl sulfides[J]. Chemistry Letters, 1978, 7(1): 13-14.

Lee C F, Liu Y C, Badsara S S. Transition‐metal‐catalyzed C-S bond coupling reaction[J]. Chemistry – An Asian Journal, 2014, 9(3):706-722.

Ley S V, Thomas A W. Modern synthetic methods for copper‐mediated C (aryl)-O, C (aryl)-N, and C (aryl)- S Bond Formation[J]. Angewandte Chemie International Edition, 2003, 42(44): 5400-5449.

Li D, Li S, Peng C, et al. Electrochemical oxidative C-H/S-H cross-coupling between enamines and thiophenols with H2 evolution[J]. Chemical Science, 2019, 10(9): 2791-2795.

Liang S, Zeng C C , Tian H Y ,et al. Electrochemical C-S bond formation by a dual catalytic system[J].Advanced Synthesis & Catalysis, 2018, 360(7) : 4266.

Liu D, Ma H X, Fang P, et al. Nickel‐catalyzed thiolation of aryl halides and heteroaryl halides through electrochemistry[J]. Angewandte Chemie International Edition, 2019, 58(15): 5033-5037.

Liu G, Huth J R, Olejniczak E T, et al. Novel p-arylthio cinnamides as antagonists of leukocyte function-associated antigen-1/intracellular adhesion molecule-1 interaction. 2. Mechanism of inhibition and structure-based improvement of pharmaceutical properties[J]. Journal of medicinal chemistry, 2001, 44(8): 1202-1210.

Liu H, Yang J , Yang Q ,et al. Hydrothermally stable thioether-bridged mesoporous materials with void defects in the pore walls[J].Advanced Functional Materials, 2005, 15(8): 1297-1302.

Liu H, Jiang X. Transfer of sulfur: from simple to diverse[J]. Chemistry–An Asian Journal, 2013, 8(11): 2546-2563.

Liu K, Song C, Lei A. Recent advances in iodine mediated electrochemical oxidative cross-coupling[J]. Organic & biomolecular chemistry, 2018, 16(14): 2375-2387.

Liu Y, Yu X B, Zhang X M, et al. Transition-metal-free synthesis of aryl 1-thioglycosides with arynes at room temperature[J]. RSC advances, 2021, 11(43): 26666-26671.

Long H, Huang C, Zheng Y T, et al. Electrochemical C–H phosphorylation of arenes in continuous flow suitable for late-stage functionalization[J]. Nature Communications, 2021, 12(1): 6629.

Lowe A B. Thiolene “click” reactions and recent applications in polymer and materials synthesis[J]. Polymer Chemistry, 2010, 1(1): 17-36.

Lu F, Zhang K, Wang X, et al. Electrochemical oxidative cross‐coupling of enaminones and thiophenols to construct C−S bonds[J]. Chemistry–An Asian Journal, 2020, 15(23): 4005-4008.

Lu L, Fu N, Lin S. Three-component chlorophosphinoylation of alkenes via anodically coupled electrolysis[J]. Synlett, 2019, 30(10): 1199-1203.

Meyer B. Elemental sulfur[J]. Chemical Reviews, 1976, 76(3):367-388.

Migita T, Shimizu T, Asami Y, et al. The palladium catalyzed nucleophilic substitution of aryl halides by thiolate anions[J]. Bulletin of the Chemical Society of Japan, 1980, 53(5) : 1385-1389.

Moeller K D. Using physical organic chemistry to shape the course of electrochemical reactions[J]. Chemical reviews, 2018, 118(9): 4817-4833.

Petr,Zuman.J. Heyrovsk, Japan, and organic polarography[J].The Chemical Record, 2012, 12(1):46-62.

Reddy R J, Kumari A H. Synthesis and applications of sodium sulfinates (RSO2Na): a powerful building block for the synthesis of organosulfur compounds[J]. RSC advances, 2021, 11(16): 9130-9221.

Sperry J B, Wright D L. The application of cathodic reductions and anodic oxidations in the synthesis of complex molecules[J]. Chemical Society Reviews, 2006, 35(7): 605-621.

Staunton J, Weissman K J .Polyketide biosynthesis: a millennium review[J].Natural Product Reports, 2001, 18(4):380-416.

Sundaravelu N, Sangeetha S, Sekar G. Metal-catalyzed C–S bond formation using sulfur surrogates 1[J].Organic & Biomolecular Chemistry, 2021, 19(7):1459-1482.

Tang S, Liu Y, Lei A. Electrochemical oxidative cross-coupling with hydrogen evolution: a green and sustainable way for bond formation[J]. Chem, 2018, 4(1): 27-45.

Venkatesh R, Tiwari V, Kandasamy J. Copper (I)-catalyzed sandmeyer-type S-arylation of 1-thiosugars with aryldiazonium salts under mild conditions[J]. The Journal of Organic Chemistry, 2022, 87(17): 11414-11432.

Viswanatharaju Ruddraraju K, Parsons Z D, Lewis C D, et al. Allylation and alkylation of biologically relevant nucleophiles by diallyl sulfides[J]. The Journal of Organic Chemistry, 2017, 82(1): 776-780.

Waldvogel S R, Lips S, Selt M, et al. Electrochemical arylation reaction[J]. Chemical reviews, 2018, 118(14): 6706-6765.

Wang J H, Lei T, Wu H L, et al. Thiol activation toward selective thiolation of aromatic C–H bond[J]. Organic Letters, 2020, 22(10): 3804-3809.

Wang M, Dai Z, Jiang X. Design and application of α-ketothioesters as 1, 2-dicarbonyl-forming reagents[J]. Nature Communications, 2019, 10(1): 2661.

Wang N, Saidhareddy P, Jiang X. Construction of sulfur-containing moieties in the total synthesis of natural products[J]. Natural Product Reports, 2020, 37(2): 246-275.

Wang R Q, Jiang Q H, Wang H X, et al. Electrochemically mediated S-glycosylation of 1-thiosugars with xanthene derivatives[J]. Organic Letters, 2023, 25(23): 4252-4257.

Wang S, Xue Q, Guan Z, et al. Mn-catalyzed electrooxidative undirected C–H/P–H cross-coupling between aromatics and diphenyl phosphine oxides[J]. ACS Catalysis, 2021, 11(7):4295-4300.

Wessig P, Müller G. The dehydro-diels-alder reaction[J]. Chemical reviews, 2008, 108(6): 2051-2063.

Wu Z J, Su F, Lin W, et al. Scalable rhodium (III)‐catalyzed aryl C-H phosphorylation enabled by anodic oxidation induced reductive elimination[J]. Angewandte Chemie, 2019, 131(47): 16926-16930.

Xu Z, Li Y, Mo G, et al. Electrochemical oxidative phosphorylation of aldehyde hydrazones[J]. Organic Letters, 2020, 22(10): 4016-4020.

Yan M, Kawamata Y, Baran P S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance[J]. Chemical Reviews, 2017, 117(21): 13230-13319.

Yang S N, Sun S H, Liu C H, et al. Ni-catalyzed regiodivergent hydrophosphorylation of enynes[J]. Chinese Chemical Letters, 2023, 34(6): 107914.

Yonova I M, Osborne C A, Morrissette N S, et al. Diaryl and heteroaryl sulfides: Synthesis via sulfenyl chlorides and evaluation as selective anti-breast-cancer agents[J]. The Journal of Organic Chemistry, 2014, 79(5): 1947-1953.

Yoshida J, Kataoka K, Horcajada R, et al. Modern strategies in electroorganic synthesis[J]. Chemical reviews, 2008, 108(7): 2265-2299.

Yuan Y, Qiao J, Cao Y, et al. Exogenous-oxidant-free electrochemical oxidative C-H phosphonylation with hydrogen evolution[J]. Chemical communications, 2019, 55(29): 4230-4233.

Yuan Y, Cao Y, Qiao J, et al. Electrochemical oxidative C-H sulfenylation of imidazopyridines with hydrogen evolution[J]. Chinese Journal of Chemistry, 2019, 37(1): 49-52.

Zhang W, Zheng S, Liu N, et al. Enantioselective bromolactonization of conjugated (Z)-enynes[J]. Journal of the American Chemical Society, 2010, 132(11): 3664-3665.

Zhang Y Q, Han X Y, Wu Y, et al. Ni-catalyzed asymmetric hydrophosphinylation of conjugated enynes and mechanistic studies[J]. Chemical Science, 2022, 13(14): 4095-4102.

Zhao F, Tan Q, Wang D, et al. Metal-and solvent-free direct C–H thiolation of aromatic compounds with sulfonyl chlorides[J]. Green chemistry, 2020, 22(2): 427-432.

Zhu F, Miller E, Zhang S, et al. Stereoretentive C(sp3)-S cross-coupling[J]. Journal of the American Chemical Society, 2018, 140(51): 18140-18150.

Zhu M, Alami M, Messaoudi S. Electrochemical nickel-catalyzed Migita cross-coupling of 1-thiosugars with aryl, alkenyl and alkynyl bromides[J]. Chemical communications, 2020, 56(32): 4464-4467.

Zhu M, Ghouilem J, Messaoudi S. Visible-light-lediated stadler–ziegler arylation of thiosugars with anilines[J]. ACS Organic & Inorganic Au, 2022, 2(4): 351-358.

Zhu S, Wang J, Zhou B, et al. Copper/di-tert-butyl peroxide-catalyzed regioselective hydroxyphosphorylation of 1, 3-enynes[J]. Synthesis, 2021, 53(20): 3751-3759.

中图分类号:

 O62    

开放日期:

 2024-06-05    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式