- 无标题文档
查看论文信息

中文题名:

 森林草莓NBS-LRR基因遗传变异分析及FvNLR2基因调控抗灰霉病研究    

姓名:

 张甜    

学号:

 2020104046    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090201    

学科名称:

 农学 - 园艺学 - 果树学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 园艺学院    

专业:

 果树学    

研究方向:

 果树分子生物学    

第一导师姓名:

 仲岩    

第一导师单位:

  南京农业大学    

完成日期:

 2023-06-17    

答辩日期:

 2023-05-26    

外文题名:

 Genetic Variation Analysis of NBS-LRR Genes and Study of FvNLR2 Gene Resistance to Gray Mold in Woodland Strawberry    

中文关键词:

 森林草莓 ; NBS-LRR抗病基因 ; 遗传变异 ; 灰霉病 ; PR基因    

外文关键词:

 Fragaria vesca ; NBS-LRR disease resistance gene ; Genetic variation ; Botrytis cinerea ; PR genes    

中文摘要:

草莓(Fragaria spp.)是蔷薇科(Rosaceae)小型浆果植物,果实香甜,营养丰富,深受人们的喜爱。灰霉病(Botrytis cinerea)是影响草莓生长发育的主要病害之一,能够感染草莓植株的所有组织,最终导致植株的死亡。草莓感染灰霉病后不仅品质会受到严重的影响,而且产量会减少10%~50%,在生产上带来巨大的经济损失。NBS-LRR(Nucleotide binding site-leucine rich repeats)基因是植物体内最重要的一类抗病基因,介导植物产生防御反应,在应对自然界的病虫害侵扰中发挥着重要作用。森林草莓(F. vesca)是草莓属中的二倍体野生种,分布范围较广,遗传变异性较高。根据已构建的森林草莓NBS-LRR基因家族系统进化树,发现3个抗病候选基因FvNLR1FvNLR2FvNLR3均分布于较短的进化枝上,推测它们属于快速进化模式。本文主要研究这3个抗病候选基因的结构特点以及在欧洲不同生态型森林草莓中发生的遗传变异,其次对抗灰霉病候选基因FvNLR2进行了功能验证,并且分析了转基因植物中病程相关基因的表达模式以及过表达FvNLR2基因后对其产生的影响,研究结果如下:

1. 分别比较了FvNLR1、​​FvNLR2FvNLR3基因在不同欧洲森林草莓生态型中的基因及其编码的蛋白质序列差异,结果显示FvNLR3基因的遗传变异程度最大,FvNLR1基因的遗传变异程度最小,且3个基因的遗传变异部分发生在其编码的结构域中。系统进化树显示取样自同一国家的生态型,其NBS-LRR基因更偏向于聚类在同一个进化枝上,说明它们之间核苷酸差异度较小。分析这3个基因所受到的选择压力,发现FvNLR1FvNLR3基因及大部分结构域的平均Ka/Ks均小于1,揭示了纯化选择在基因进化过程中的重要作用。3个NBS-LRR基因中内含子数量不同且数量均偏少。在蛋白保守基序分析中,3个NBS-LRR基因中均预测出了NBS结构域保守基序激酶1(P-loop)、激酶-2、GLPL以及LRR基序。在3个NBS-LRR基因启动子中共预测到了32个顺式作用元件,包括大量防御和应激等作用元件,推测这3个NBS-LRR基因在植物抗病过程中发挥重要作用。

2. 在灰霉菌侵染草莓后96h发现,FvNLR2基因表达量显著高于FvNLR1FvNLR3基因,提示FvNLR2基因具有潜在抗灰霉病功能。亚细胞定位结果显示FvNLR2基因定位在细胞膜,这与RPW8-NBS-LRR基因编码跨膜转运蛋白,具有传递抗病信号等功能相印证。通过农杆菌介导的瞬时转化,成功在森林草莓和凤梨草莓中对FvNLR2基因进行了过表达和沉默,接种灰霉菌5天后观察病斑大小均发现:过表达FvNLR2基因植物材料中病斑小于对照,而沉默FvNLR2基因植物材料中病斑大于对照,说明FvNLR2基因能够正调控草莓对灰霉病的抗性。通过叶盘法在烟草中进行稳定遗传转化,成功鉴定出8株FvNLR2基因过表达转基因烟草,接种灰霉菌5天后,过表达植株叶片病斑显著小于对照植株叶片,这与在草莓中瞬时转化的结果一致,再次验证FvNLR2基因具有抗灰霉病功能。对接种灰霉菌24 h后的转基因烟草叶片进行DAB(3,3N-Diaminobenzidine Tertrahydrochloride)染色后发现转基因烟草叶片中积累了大量的活性氧。

3. 植物病程相关蛋白(Pathogenesis-related Protein,PRs)在植物抵御病原菌侵染以及应对非生物胁迫时发挥着重要作用,且PR基因会响应抗病基因的过表达,提高植物抵抗病原菌侵染的能力。研究转基因草莓和烟草中PR基因的表达水平,结果显示FvNLR2抗病基因在植物体内过表达后能够促进大部分PR基因的上调。在对照植物中PR1PRH1PR4基因表现了出对灰霉菌的强烈响应,在转基因植株中,FvNLR2基因的过表达加强了这种响应,推测FvNLR2基因可能通过调节抗病相关蛋白的表达水平从而使植物产生防御反应。

外文摘要:

Strawberry (Fragaria spp.) is a small berry plant of the Rosaceae, which is sweet, nutritious and loved by people. Gray mold (Botrytis cinerea), one of the main diseases affecting the growth and development of strawberries, can infect all tissue parts of strawberry, and eventually lead to the death. After strawberries are infected with B. cinerea, not only the quality will be seriously affected, but also the yield will be reduced by 10%~50%, which will bring huge economic losses in production. NBS-LRR (Nucleotide binding site-leucine rich repeats) gene is one of the most important resistance genes in plants, which mediates the disease resistance response of plants and plays an important role in coping with pest and disease infestation in nature. Woodland strawberry (F. vesca) is a diploid wild species in the genus, which is widely distributed, high genetic variability. According to the phylogenetic tree of the NBS-LRR gene family of woodland strawberry, the three disease resistance candidate genes FvNLR1, FvNLR2 and FvNLR3 were distributed on shorter clades, and it is speculated that they are in a mode of rapid evolution. In this paper, the structural characteristics of these three disease resistance candidate genes and the genetic variation in different ecological woodland strawberries in Europe were studied. Secondly, the function of the candidate gene FvNLR2 on gray mold was verified. Finally, the expression pattern of disease-related genes in transgenic plants and the effects of overexpression of FvNLR2 genes were analyzed, and the results were as follows:

1. The gene and the protein sequence of FvNLR1, FvNLR2 and FvNLR3 genes in different European woodland strawberry ecotypes were compared, and the results showed that the genetic variation of FvNLR3 gene was the largest, the genetic variation of FvNLR1 gene was the smallest, and the genetic variation of the three genes occurred in the domain they encoded. The phylogenetic tree shows that NBS-LRR genes sampled from the same country are more inclined to cluster on the same clade, indicating that there is less nucleotide difference between them. The selection pressure of these three genes was analyzed, and it was found that the average Ka/Ks of FvNLR1 and FvNLR3 genes and most domains were less than 1, revealing the important role of purification selection in gene evolution. The number of introns in the three NBS-LRR genes was different and the number was small. In the protein conserved motif analysis, NBS domain conserved motif kinase 1 (P-loop), kinase-2, GLPL and LRR motifs were predicted in all three NBS-LRR genes. A total of 32 cis-acting elements were predicted in the promoters of the three NBS-LRR genes, including a large number of action elements such as defense and stress, and it was speculated that these three NBS-LRR genes played an important role in the process of plant disease resistance.

2. 96 h after B. cinerea infestation F. vesca, it was found that the expression of FvNLR2 gene was significantly higher than that of FvNLR1 and FvNLR3 genes, indicating that FvNLR2 gene had potential function that resistance to gray mold. The results of subcellular localization showed that the FvNLR2 gene was localized in the cell membrane, which was confirmed by the RPW8-NBS-LRR gene encoding a transmembrane transporter and transmitting disease resistance signals. Through the transient transformation mediated by arobacterium, FvNLR2 gene was successfully overexpressed and silenced in F. vesca and F. ananassa, and the size of disease spots was observed after 5 days of inoculation with B. cinerea and found that the results were similar: the disease spots in the overexpressed FvNLR2 gene plant material were smaller than the control, while the disease spots in the silenced FvNLR2 gene plant material were larger than the control, indicating that the FvNLR2 gene could positively regulate the resistance to gray mold. Eight overexpression transgenic tobacco strains of FvNLR2 gene were successfully identified by stable genetic transformation in tobacco by leaf method, and the leaf disease spots of overexpressed plants were significantly smaller than those of control plants after 5 days of inoculation with B. cinerea. This is consistent with the results of transient transformation in strawberries, and once again verifies that the FvNLR2 gene has function that resistance to gray mold. DAB (3,3N-Diaminobenzidine Tertrahydrochloride) staining of transgenic tobacco leaves after 24 h inoculation with B. cinerea found that a large amount of reactive oxygen species accumulates in transgenic tobacco leaves.

3. Plant pathogenesis-related proteins (PRs) play an important role in plants resisting pathogenic bacteria infection and abiotic stress, moreover, PR genes will respond to the overexpression of disease resistance genes and improve the ability of plants to resist pathogenic bacteria The expression levels of PR genes in transgenic strawberries and tobacco were studied, and it was found that FvNLR2 disease resistance genes could promote the upregulation of most PR genes after overexpression in plants. The PR1PRH1and PR4 genes showed a strong response to B. cinerea in control plants, and in transgenic plants, overexpression of the FvNLR2 gene enhanced this response, and it was speculated that the FvNLR2 gene may cause a defensive response in plants by regulating the expression level of disease-related proteins.

参考文献:

[1]曹娴,高清华,聂京涛,等.草莓灰霉病抗性遗传分析和分子标记初定位[J].上海交通大学学报(农业科学版),2011,29(04):75-78.

[2]曹依静,孙共明.设施草莓灰霉病发生规律与综合防治技术[J].山西果树,2015(02):49-50.

[3]草莓灰霉病的发生与防控技术[J].吉林蔬菜,2018(04):32.

[4]草莓营养与功效[J].吉林蔬菜,2014(07):31.

[5]陈阳.甘蔗属割手密种NBS-LRR家族基因的演化与表达分析[D].[硕士学位论文].福建师范大学,2017.

[6]程爱红,郝红艳,李静,等.西安市长安区设施草莓灰霉病的发生与综合防治[J].现代农业科技,2015(12):136-138.

[7]代玲敏.葡萄遗传转化体系与转抗病相关基因研究[D].[博士学位论文].西北农林科技大学,2015.

[8]冯艳芳,耿丽丽,韩榕,等.花生NBS-LRR类基因的克隆及表达特性分析[J].生物技术通报,2016,32(08):90-95.

[9]侯丽媛,董艳辉,聂园军,等.世界草莓属种质资源种类与分布综述[J].山西农业科学,2018,46(01):145-149.

[10]黄代青,王平,吕柳新.柚cDNA中NBS-LRR类R基因同源序列的分离[J].中国农业科学,2004(10):1580-1584.

[11]季军,杨四海,田大成.水稻基因组中抗病基因正选择方式及基因转换的研究[J].中国农业科学,2007(09):1856-1863.

[12]李安达,易萌,张传博.贵阳市草莓灰霉病的发生及综合防治措施[J].陕西农业科学,2013,59(02):267-268.

[13]李海霞,张志毅,张谦,等.毛白杨TIR-NBS-LRR基因转化烟草的研究[J].北京林业大学学报,2009,31(01):73-78.

[14]李连华.植物病程相关蛋白的研究进展[J].福建农业,2015(02):100.

[15]李楠洋.棉花抗黄萎病基因筛选及NBS-LRR类抗病基因GbaNA1功能研究[D].[博士学位论文].中国农业科学院,2017.

[16]李生萍.核桃PR1与PR4基因的克隆及表达分析[D].[硕士学位论文].西北农林科技大学,2017.

[17]李廷刚.棉花抗黄萎病全基因组关联分析及TIR-NBS-LRR类抗病基因GhTNL1功能研究[D].[博士学位论文].中国农业科学院,2018.

[18]李玉林,王玉环,何艳军,等.ClPHD23基因正调控西瓜枯萎病抗性[J].分子植物育种,2022:1-16.

[19]栗小英.PR1、PR2和PR5基因参与小麦TcLr35成株抗叶锈病反应的表达分析[D].[硕士学位论文].河北农业大学,2015.

[20]梁凤山,周春江,孔凡娜,等.桃基因组中R类抗病基因同源序列的克隆与序列分析[J].河北农业大学学报,2005(01):44-48.

[21]刘金江.草莓灰霉病发生危害及防治技术研究[J].中国农村小康科技,2009(02):59-60.

[22]刘金灵,刘雄伦,戴良英,等.植物抗病基因结构、功能及其进化机制研究进展(英文)[J].遗传学报,2007(09):765-776.

[23]刘云飞,万红建,李志邈,等.植物NBS-LRR抗病基因的结构、功能、进化起源及其应用[J].分子植物育种,2014,12(02):377-389.

[24]罗昌国,王三红,袁启凤,等.抗白粉病基因RPW8的抗性作用研究进展[J].贵州农业科学,2020,48(01):52-58.

[25]牛吉山,刘瑞,郑磊.小麦PR-1、PR-2、PR-5基因的白粉菌和水杨酸诱导表达分析及白粉病抗性研究(英文)[J].麦类作物学报,2007(06):1132-1137.

[26]棚室草莓灰霉病的症状识别与防治[J].北方园艺,2019(09):97.

[27]钱吉,马玉虹,任文伟,等.不同地理种群羊草分子水平上生态型分化的研究[J].生态学报,2000(03):440-443.

[28]邱礽,陶刚,李奇科,等.农杆菌渗入法介导的基因瞬时表达技术及应用[J].分子植物育种,2009,7(05):1032-1039.

[29]阙友雄,许莉萍,张木清,等.甘蔗中一个NBS-LRR类基因的全长克隆与表达分析[J].作物学报,2009,35(06):1161-1166.

[30]邵玉涛,刘丹,郭磊,等.高粱病程相关蛋白基因的鉴定及荧光定量PCR引物筛选[J].分子植物育种,2020,18(19):6392-6398.

[31]孙彩玉,李春苗,孙梅青,等.不同生态型拟南芥FLC基因的序列分析[J].安徽农业科学,2010,38(32):18054-18055.

[32]谭明谱.水稻白叶枯病抗性基因Xa22(t)的克隆[D].[博士学位论文].华中农业大学,2004.

[33]唐宜,李凌飞,王小菁.非洲菊花瓣瞬时表达和病毒诱导的基因沉默(VIGS)系统的建立[J].植物生理学报,2017,53(03):505-512.

[34]王华忠,陈雅平,陈佩度.植物瞬间表达系统与功能基因组学研究[J].生物工程学报,2007(03):367-374.

[35]武冲,姜莉莉,宗晓娟,等.中国草莓育种研究进展[J].落叶果树,2022,54(02):28-30.

[36]杨海艳,王洪玲,钟国跃,等.草莓属植物资源分布、化学成分、药理活性研究进展[J].中成药,2022,44(02):510-518.

[37]杨金宝.H2S信号通过PR基因提高黄瓜抗灰霉病的研究[D].[硕士学位论文].山西大学,2021.

[38]杨涛,王艳.植物病程相关蛋白PR-10的研究进展[J].植物生理学报,2017,53(12):2057-2068.

[39]杨泽峰.基于生物信息学方法的水稻TLP、SBP-box、CPP-like、Cystatin和HAK基因家族的分子进化研究[D].[博士学位论文].扬州大学,2008.

[40]尹大芳.浙江省草莓灰霉病菌抗药性检测及抗性机制的研究[D].[硕士学位论文].浙江大学,2015.

[41]张国珍,钟珊.草莓灰霉病研究进展[J].植物保护,2018,44(02):1-10.

[42]张衡, 贺学勤. 农杆菌介导的中国石竹基因瞬时过表达体系建立[J]. 北方园艺, 2022(23):68-73.

[43]张洪磊,张朝红,王跃进.早酥梨抗黑星病相关新基因Vnp1的克隆及其表达分析[J].农业生物技术学报,2010,18(02):239-245.

[44]张佳.中国草莓主产区灰霉病菌的多样性研究[D].[博士学位论文].中国农业大学,2015.

[45]张宁.花生RIL群体抗青枯病鉴定与抗病基因AhqBW3的克隆和功能鉴定[D].[硕士学位论文].福建农林大学,2015.

[46]张姗姗.甘蓝型油菜菌核病抗性基因BnTNLR1功能研究[D].[硕士学位论文].山西大学,2020.

[47]张艳俊.基于转录组测序的小麦TaNAC069基因抗叶锈性分析与功能解析[D].[博士学位论文].河北农业大学,2020.

[48]张玉,杨爱国,冯全福,等.植物病程相关蛋白及其在烟草中的研究进展[J].生物技术通报,2012(05):20-24.

[49]赵慧霞.草莓灰葡萄孢菌生物防治的研究现状及发展前景[J].农业科技与信息,2008(19):29-31.

[50]赵敬,万红建,杨悦俭,等.辣椒NBS-LRR类型抗病基因同源序列的克隆及分析[J].江苏农业学报,2012,28(03):611-616.

[51]赵宁.基于SINEs分子标记的拟南芥不同生态型的鉴定与划分[D].[硕士学位论文].西藏大学,2015.

[52]周丹丹,俞嘉宁.植物细胞中瞬时表达系统的建立及研究进展[J].中国农学通报,2013,29(24):151-156.

[53]周鹤莹,张玮,张卿,等.森林草莓‘Hawaii4’高效遗传转化系统的建立[J].北京农学院学报,2015,30(01):10-14.

[54]朱薇,杨明挚.中国野生草莓资源研究及利用进展[J].中国南方果树,2012,41(04):50-52.

[55]庄滢玉.蓝星睡莲中NBS-LRR基因家族的进化特征及其多样性研究[D].[硕士学位论文].福建农林大学,2019.

[56]Abe H, Yamaguchi-Shinozaki K, Urao T, et al. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression[J]. Plant Cell, 1997,9(10):1859-1868.

[57]Alexander D, Goodman R M, Gut-Rella M, et al. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a[J]. PNAS, 1993,90(15):7327-7331.

[58]Andersen E J, Ali S, Reese R N, et al. Diversity and evolution of disease resistance genes in barley (Hordeum vulgare L.) [J]. Evol Bioinform Online, 2016,12:99-108.

[59]Arya P, Kumar G, Acharya V, et al. Genome-wide identification and expression analysis of NBS-encoding genes in Malus x domestica and expansion of NBS genes family in Rosaceae[J]. Plos One, 2014,9(9): e107987.

[60]Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Research, 2009,37(Web Server issue): W202-W208.

[61]Bonardi V, Tang S, Stallmann A, et al. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors[J]. PNAS, 2011,108(39):16463-16468.

[62]Caplan J L, Mamillapalli P, Burch-Smith T M, et al. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector[J]. Cell, 2008,132(3):449-462.

[63]Chisholm S T, Coaker G, Day B, et al. Host-microbe interactions: shaping the evolution of the plant immune response[J]. Cell, 2006,124(4):803-814.

[64]Dangl J L, Jones J D. Plant pathogens and integrated defence responses to infection[J]. Nature, 2001,411(6839):826-833.

[65]DeYoung B J, Innes R W. Plant NBS-LRR proteins in pathogen sensing and host defense[J]. Nature Immunology, 2006,7(12):1243-1249.

[66]Edgar R C. MUSCLE: multiple sequence alignment with high accuracy and high throughput[J]. Nucleic Acids Research, 2004,32(5):1792-1797.

[67]Eulgem T, Rushton P J, Robatzek S, et al. The WRKY superfamily of plant transcription factors[J]. Trends in Plant Science, 2000,5(5):199-206.

[68]Fernandez-Pozo N, Menda N, Edwards J D, et al. The Sol Genomics Network (SGN)-from genotype to phenotype to breeding[J]. Nucleic Acids Research, 2015,43(Database issue): D1036-D1041.

[69]Fujita M, Fujita Y, Noutoshi Y, et al. Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks[J]. Current Opinion in Plant Biology, 2006,9(4):436-442.

[70]Godge M R, Purkayastha A, Dasgupta I, et al. Virus-induced gene silencing for functional analysis of selected genes[J]. Plant Cell Reports, 2008,27(2):209-219.

[71]Goodstein D M, Shu S, Howson R, et al. Phytozome: a comparative platform for green plant genomics[J]. Nucleic Acids Research, 2012,40(Database issue): D1178-D1186.

[72]Guo L, You C, Zhang H, et al. Genome-wide analysis of NBS-LRR genes in Rosaceae species reveals distinct evolutionary patterns[J]. Frontiers in Genetics, 2022,13:1052191.

[73]Habachi-Houimli Y, Khalfallah Y, Mezghani-Khemakhem M, et al. Genome-wide identification, characterization, and evolutionary analysis of NBS-encoding resistance genes in barley[J]. 3 Biotech, 2018,8(11):453.

[74]Hao W, Collier S M, Moffett P, et al. Structural basis for the interaction between the potato virus X resistance protein (Rx) and its cofactor Ran GTPase-activating protein 2 (RanGAP2) [J]. Journal of Biological Chemistry, 2013,288(50):35868-35876.

[75]Hou M, Xu W, Bai H, et al. Characteristic expression of rice pathogenesis-related proteins in rice leaves during interactions with Xanthomonas oryzae pv. [J]. Plant Cell Reports, 2012,31(5):895-904.

[76]Hu B, Jin J, Guo A Y, et al. GSDS 2.0: an upgraded gene feature visualization server[J]. Bioinformatics, 2015,31(8):1296-1297.

[77]Hwang C F, Williamson V M. Leucine-rich repeat-mediated intramolecular interactions in nematode recognition and cell death signaling by the tomato resistance protein Mi[J]. Plant Journal, 2003,34(5):585-593.

[78]Ilag L L, Yadav R C, Huang N, et al. Isolation and characterization of disease resistance gene homologues from rice cultivar IR64[J]. Gene, 2000,255(2):245-255.

[79]Jia S, Wang Y, Zhang G, et al. Strawberry FaWRKY25 transcription factor negatively regulated the resistance of strawberry fruits to Botrytis cinerea[J]. Genes (Basel), 2020,12(1).

[80]Jia Y, Yuan Y, Zhang Y, et al. Extreme expansion of NBS-encoding genes in Rosaceae[J]. BMC Genetics, 2015,16:48.

[81]Jiang Y, Yu D. The WRKY57 transcription factor affects the expression of jasmonate ZIM-Domain genes transcriptionally to compromise Botrytis cinerea Resistance[J]. Plant Physiology, 2016,171(4):2771-2782.

[82]Jung S, Lee T, Cheng C H, et al. 15 years of GDR: New data and functionality in the Genome Database for Rosaceae[J]. Nucleic Acids Research, 2019,47(D1): D1137-D1145.

[83]Jupe F, Pritchard L, Etherington G J, et al. Identification and localisation of the NBS-LRR gene family within the potato genome[J]. BMC Genomics, 2012,13:75.

[84]Keen N T. Gene-for-gene complementarity in plant-pathogen interactions[J]. Annual Review of Genetics, 1990,24:447-463.

[85]Knight H, Knight M R. Abiotic stress signalling pathways: specificity and cross-talk[J]. Trends in Plant Science, 2001,6(6):262-267.

[86]Kohler A, Rinaldi C, Duplessis S, et al. Genome-wide identification of NBS resistance genes in Populus trichocarpa[J]. Plant Molecular Biology, 2008,66(6):619-636.

[87]Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system[J]. International Reviews of Immunology, 2011,30(1):16-34.

[88]Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets[J]. Molecular Biology and Evolution, 2016,33(7):1870-1874.

[89]Lai G, Fu P, Liu Y, et al. Molecular characterization and overexpression of VpRPW8s from vitis pseudoreticulata enhances resistance to phytophthora capsici in Nicotiana benthamiana[J]. International Journal of Molecular Sciences, 2018,19(3).

[90]Lamesch P, Berardini T Z, Li D, et al. The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools[J]. Nucleic Acids Research, 2012,40(Database issue): D1202-D1210.

[91]Lescot M, Dehais P, Thijs G, et al. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences[J]. Nucleic Acids Research, 2002,30(1):325-327.

[92]Li R, Zhu F, Duan D. Function analysis and stress-mediated cis-element identification in the promoter region of VqMYB15[J]. Plant Signal Behav, 2020,15(7):1773664.

[93]Li T G, Wang B L, Yin C M, et al. The Gossypium hirsutum TIR-NBS-LRR gene GhDSC1 mediates resistance against Verticillium wilt[J]. Molecular Plant Pathology, 2019,20(6):857-876.

[94]Li Y, Zhang Y, Wang Q X, et al. RESISTANCE TO POWDERY MILDEW8.1 boosts pattern-triggered immunity multiple pathogens in Arabidopsis and rice[J]. Plant Biotechnology Journal, 2018,16(2):428-441.

[95]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods, 2001,25(4):402-408.

[96]Lu B, Wang Y, Zhang G, et al. Genome-wide identification and expression analysis of the strawberry FvbZIP gene family and the role of key gene FabZIP46 in fruit resistance to gray mold[J]. Plants (Basel), 2020,9(9).

[97]Martin G B, Bogdanove A J, Sessa G. Understanding the functions of plant disease resistance proteins[J]. Annual Review of Plant Biology, 2003,54:23-61.

[98]McGinnis S, Madden T L. BLAST: at the core of a powerful and diverse set of sequence analysis tools[J]. Nucleic Acids Research, 2004,32(Web Server issue): W20-W25.

[99]McHale L, Tan X, Koehl P, et al. Plant NBS-LRR proteins: adaptable guards[J]. Genome Biology, 2006,7(4):212.

[100]Meyers B C, Kozik A, Griego A, et al. Genome-wide Analysis of NBS-LRR–encoding genes in Arabidopsis[W][J]. The Plant Cell, 2003,15(4):809-834.

[101]Micali C, Göllner K, Humphry M, et al. The powdery mildew disease of Arabidopsis: a paradigm for the interaction between plants and biotrophic fungi[J]. The Arabidopsis Book, 2008,6: e115.

[102]Mondragon-Palomino M, Meyers B C, Michelmore R W, et al. Patterns of positive selection in the complete NBS-LRR gene family of Arabidopsis thaliana[J]. Genome Research, 2002,12(9):1305-1315.

[103]Nguyen L T, Schmidt H A, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Molecular Biology and Evolution, 2015,32(1):268-274.

[104]Nimchuk Z, Eulgem T, Holt B R, et al. Recognition and response in the plant immune system[J]. Annual Review of Genetics, 2003,37:579-609.

[105]Niu H, Wang H, Zhao B, et al. Exogenous auxin-induced ENHANCER OF SHOOT REGENERATION 2 (ESR2) enhances femaleness of cucumber via activating CsACS2 gene[J]. Horticulture Research, 2022,9.

[106]Nurnberger T, Brunner F, Kemmerling B, et al. Innate immunity in plants and animals: striking similarities and obvious differences[J]. Immunological Reviews, 2004,198:249-266.

[107]Park C H, Kim S, Park J Y, et al. Molecular characterization of a pathogenesis-related protein 8 gene encoding a class III chitinase in rice[J]. Moleculers and Cells, 2004,17(1):144-150.

[108]Pereira M S, de Andrade S E, Matos L E, et al. The pathogenesis-related protein PR-4b from Theobroma cacao presents RNase activity, Ca (2+) and Mg (2+) dependent-DNase activity and antifungal action on Moniliophthora perniciosa[J]. BMC Plant Biology, 2014,14:161.

[109]Petrasch S, Knapp S J, van Kan J, et al. Grey mould of strawberry, a devastating disease caused by the ubiquitous necrotrophic fungal pathogen Botrytis cinerea[J]. Molecular Plant Pathology, 2019,20(6):877-892.

[110]Rairdan G J, Collier S M, Sacco M A, et al. The coiled-coil and nucleotide binding domains of the potato Rx disease resistance protein function in pathogen recognition and signaling[J]. The Plant Cell, 2008,20(3):739-751.

[111]Rairdan G J, Moffett P. Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation[J]. Plant Cell, 2006,18(8):2082-2093.

[112]Ren H, Bai M, Sun J, et al. RcMYB84 and RcMYB123 mediate jasmonate-induced defense responses against Botrytis cinerea in rose (Rosa chinensis) [J]. Plant Journal, 2020,103(5):1839-1849.

[113]Richards S, Rose L E. The evolutionary history of LysM-RLKs (LYKs/LYRs) in wild tomatoes[J]. BMC Evolutionary Biology, 2019,19(1):141.

[114]Rushton P J, Somssich I E. Transcriptional control of plant genes responsive to pathogens[J]. Current Opinion in Plant Biology, 1998,1(4):311-315.

[115]Sacco M A, Mansoor S, Moffett P. A Ran GAP protein physically interacts with the NBS-LRR protein Rx, and is required for Rx-mediated viral resistance[J]. The Plant Journal, 2007,52(1):82-93.

[116]Sarowar S, Kim Y J, Kim E N, et al. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses[J]. Plant Cell Reports, 2005,24(4):216-224.

[117]Schroeder A B, Dobson E, Rueden C T, et al. The ImageJ ecosystem: Open-source software for image visualization, processing, and analysis[J]. Protein Science, 2021,30(1):234-249.

[118]Sinha M, Singh R P, Kushwaha G S, et al. Current overview of allergens of plant pathogenesis related protein families[J]. Scientific World Journal, 2014,2014:543195.

[119]Sorek R. The birth of new exons: mechanisms and evolutionary consequences[J]. RNA, 2007,13(10):1603-1608.

[120]Takken F L, Albrecht M, Tameling W I. Resistance proteins: molecular switches of plant defence[J]. Current Opinion in Plant Biology, 2006,9(4):383-390.

[121]Tameling W I, Vossen J H, Albrecht M, et al. Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation[J]. Plant Physiology, 2006,140(4):1233-1245.

[122]Tian S N, Liu D D, Zhong C L, et al. Silencing GmFLS2 enhances the susceptibility of soybean to bacterial pathogen through attenuating the activation of GmMAPK signaling pathway[J]. Plant Science, 2020,292:110386.

[123]Wan H, Yuan W, Bo K, et al. Genome-wide analysis of NBS-encoding disease resistance genes in Cucumis sativus and phylogenetic study of NBS-encoding genes in Cucurbitaceae crops[J]. BMC Genomics, 2013,14:109.

[124]Wang W, Devoto A, Turner J G, et al. Expression of the membrane-associated resistance protein RPW8 enhances basal defense against biotrophic pathogens[J]. Molecular Plant-Microbe Interactions, 2007,20(8):966-976.

[125]Warren R F, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat domain of the Arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes[J]. Plant Cell, 1998,10(9):1439-1452.

[126]Williams S J, Sornaraj P, DeCourcy-Ireland E, et al. An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M protein binds ADP[J]. Molecular Plant-Microbe Interactions, 2011,24(8):897-906.

[127]Wu D, Luo J, Chen J, et al. Selection pressure causes differentiation of the SPL gene family in the Juglandaceae[J]. Molecular Genetics and Genomics, 2019,294(4):1037-1048.

[128]Wu K, Xu T, Guo C, et al. Heterogeneous evolutionary rates of Pi2/9 homologs in rice[J]. BMC Genetics, 2012,13:73.

[129]Wu L, Chen H, Curtis C, et al. Go in for the kill: How plants deploy effector-triggered immunity to combat pathogens. [Corrected][J]. Virulence, 2014,5(7):710-721.

[130]Xiao S, Emerson B, Ratanasut K, et al. Origin and maintenance of a broad-spectrum disease resistance locus in Arabidopsis[J]. Molecular Biology and Evolution, 2004,21(9):1661-1672.

[131]Xu W, Yu Y, Ding J, et al. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata[J]. Planta, 2010,231(2):475-487.

[132]Yang S, Gu T, Pan C, et al. Genetic variation of NBS-LRR class resistance genes in rice lines[J]. Theoretical and Applied Genetics, 2008,116(2):165-177.

[133]Yang S, Li J, Zhang X, et al. Rapidly evolving R genes in diverse grass species confer resistance to rice blast disease[J]. PNAS, 2013,110(46):18572-18577.

[134]Yang S, Zhang X, Yue J X, et al. Recent duplications dominate NBS-encoding gene expansion in two woody species[J]. Molecular Genetics and Genomics, 2008,280(3):187-198.

[135]Yang Z. PAML 4: phylogenetic analysis by maximum likelihood[J]. Molecular Biology and Evolution, 2007,24(8):1586-1591.

[136]Yin X, Fu Q, Shang B, et al. An RxLR effector from Plasmopara viticola suppresses plant immunity in grapevine by targeting and stabilizing VpBPA1[J]. Plant Journal, 2022,112(1):104-114.

[137]Yu W, Zhao R, Sheng J, et al. SlERF2 is associated with methyl jasmonate-mediated defense response against Botrytis cinerea in tomato fruit[J]. Journal of Agricultural and Food Chemistry, 2018,66(38):9923-9932.

[138]Zhang H, Ye Z, Liu Z, et al. The cassava NBS-LRR genes confer resistance to cassava bacterial blight[J]. Frontiers in Plant Science, 2022,13:790140.

[139]Zheng H Q, Zhang Q, Li H X, et al. Over-expression of the triploid white poplar PtDrl01 gene in tobacco enhances resistance to tobacco mosaic virus[J]. Plant Biology, 2011,13(1):145-153.

[140]Zheng Z, Qamar S A, Chen Z, et al. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens[J]. Plant Journal, 2006,48(4):592-605.

[141]Zhong Y, Yin H, Sargent D J, et al. Species-specific duplications driving the recent expansion of NBS-LRR genes in five Rosaceae species[J]. BMC Genomics, 2015,16(1):77.

[142]Zhong Y, Zhang X, Cheng Z M. Lineage-specific duplications of NBS-LRR genes occurring before the divergence of six Fragaria species[J]. BMC Genomics, 2018,19(1):128.

[143]Zhou T, Wang Y, Chen J Q, et al. Genome-wide identification of NBS genes in japonica rice reveals significant expansion of divergent non-TIR NBS-LRR genes[J]. Molecular Genetics and Genomics, 2004,271(4):402-415.

[144]Zhu X, Xiao K, Cui H, et al. Overexpression of the Prunus sogdiana NBS-LRR subgroup gene PsoRPM2 promotes resistance to the root-knot nematode meloidogyne incognita in Tobacco[J]. Frontiers in Microbiology, 2017,8.

中图分类号:

 S66    

开放日期:

 2023-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式