中文题名: | 手性杀菌剂氯氟醚菌唑对映选择性生物效应及降解行为研究 |
姓名: | |
学号: | 2019102124 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090403 |
学科名称: | 农学 - 植物保护 - 农药学(可授农学、理学学位) |
学生类型: | 硕士 |
学位: | 理学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 农药残留与环境毒理 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2022-05-27 |
答辩日期: | 2022-05-29 |
外文题名: | Studies on Enantioselective Biological Effects and Degradation Behavior of the Chiral Fungicide Mefentrifluconazole |
中文关键词: | |
外文关键词: | mefentrifluconazole ; enantioselectivity ; biological activity ; ecotoxicity ; degradation and metabolism |
中文摘要: |
手性农药氯氟醚菌唑是广谱高效的新型三唑类杀菌剂,具有广阔的应用前景,但目前就其对映体水平上的研究甚少,缺乏系统和全面的研究,限制了其高效低毒的光学纯农药的开发与应用。本论文以氯氟醚菌唑对映选择性生物效应及降解行为研究为切入点,建立了氯氟醚菌唑手性对映体的分离检测方法并明确其绝对构型,进而研究了其靶标生物活性、非靶标生物生态毒性对映选择性及其在田间蔬菜和天然水体中的对映选择性降解行为;此外,以大鼠肝微粒体和斑马鱼为模型从药物代谢水平阐释了氯氟醚菌唑在生物体中的对映选择性生物富集及代谢行为。研究结果可为氯氟醚菌唑对映体水平的风险评估提供数据支撑,对氯氟醚菌唑高效、低风险、低残留异构体的开发及其科学、合理使用提供科学指导作用。主要研究结果如下: 1、利用超高效液相色谱串联质谱(UPLC-MS/MS)技术建立了在Chiralpak IG-3手性柱上氯氟醚菌唑对映体分离的方法:当流动相为0.1%甲酸水溶液/乙腈=10/90(v/v)、流速0.5 mL/min、柱温35 ℃时,氯氟醚菌唑对映体可在10 min内实现基线分离,分离度为1.82。通过旋光检测器和电子圆二色光谱仪确定了对映体的旋光性和绝对构型,明确了氯氟醚菌唑对映体在Chiralpak IG-3手性柱上的洗脱顺序为R-(-)-氯氟醚菌唑和S-(+)-氯氟醚菌唑。 2、利用菌丝生长速率抑制法研究了氯氟醚菌唑对映体对6种靶标真菌的生物活性。结果表明,R-氯氟醚菌唑为高效体,其抑菌活性为S-氯氟醚菌唑的5.3~473.1倍,为外消旋体的1.5~2.1倍。与S-氯氟醚菌唑相比,R-氯氟醚菌唑可以更加有效地抑制番茄灰霉病菌麦角甾醇的生物合成。通过同源建模技术结合分子对接技术研究了氯氟醚菌唑对映体与番茄灰霉病菌靶标蛋白(CYP51B)之间的结合亲和力差异,结果表明R-氯氟醚菌唑能与CYP51B蛋白形成更稳定的结合构象,结合能更低,对靶标酶的抑制作用更强,可能是导致氯氟醚菌唑产生对映选择性生物活性的主要因素。 3、以斑马鱼、蛋白核小球藻和紫背浮萍为供试非靶标生物,研究了氯氟醚菌唑对映体对水生生物的急性毒性差异。结果表明,氯氟醚菌唑对不同发育时期的斑马鱼的毒性顺序均表现为S-氯氟醚菌唑>Rac-氯氟醚菌唑>R-氯氟醚菌唑,且S-氯氟醚菌唑对斑马鱼胚胎、仔鱼和成鱼的毒性分别是R-氯氟醚菌唑的2.5、2.4和2.0倍。氯氟醚菌唑对蛋白核小球藻和紫背浮萍的生长抑制限度试验结果表明,其对水生植物蛋白核小球藻和紫背浮萍不存在明显的毒副作用。 4、通过田间试验研究了氯氟醚菌唑在黄瓜、辣椒和土壤中的对映选择性降解行为。结果表明,氯氟醚菌唑对映体在植物中的降解遵循一级动力学方程,在黄瓜样品中,S-氯氟醚菌唑优先发生降解,其对映体分数(EF)值由初始的0.50显著增加到0.53,而在辣椒样品中,氯氟醚菌唑两对映体之间不存在选择性降解。田间土壤中的氯氟醚菌唑在施药后35 d内未发生显著性降解行为。此外,开展了长江、黄河、巢湖和黄海水域水样在好氧和灭菌条件下的室内孵育实验。结果表明,灭菌条件下,氯氟醚菌唑在四种水体中均未发生显著性降解行为;而在好氧条件下,氯氟醚菌唑在4种水体中的降解遵循一级动力学方程,降解速率大小为黄海水>巢湖水>长江水>黄河水,且对映体之间不存在对映选择性降解,表明微生物可能是其发生降解的重要因素。 5、利用体外代谢模型大鼠肝微粒体探究了氯氟醚菌唑对映体在动物中的代谢行为差异。结果表明,氯氟醚菌唑对映体在大鼠肝微粒体中的代谢遵循一级动力学方程,S-氯氟醚菌唑具有较短的半衰期而优先被代谢。其酶反应动力学实验结果进一步表明S-氯氟醚菌唑与底物酶具有更好的结合而促进其代谢的发生。此外,以斑马鱼为模式动物,研究了氯氟醚菌唑在斑马鱼体内的对映选择性富集及代谢行为。结果表明,在富集阶段,高浓度下R-氯氟醚菌唑和S-氯氟醚菌唑富集系数分别为8.38和3.41,低浓度下分别为1.02和0.62,均表现为R-氯氟醚菌唑优先在斑马鱼体内被富集;在清除阶段,低浓度处理组中R-氯氟醚菌唑具有较快的代谢速率和较短的半衰期而优先被代谢排出体外,而高浓度条件下则未表现出对映选择性代谢行为。同时,氯氟醚菌唑两对映体均会在一定程度上引起斑马鱼体内CAT酶活性显著下调和MDA含量显著上调,从而诱导其氧化应激反应。进一步通过高分辨质谱技术鉴定了氯氟醚菌唑在动物体内和体外代谢相关的9种代谢产物,推测氯氟醚菌唑在斑马鱼体内主要代谢途径是通过羟基化反应生成Ⅰ相代谢物,进而在磺基转移酶的作用下与硫酸基团结合生成硫酸酯化合物,此外也能与葡萄糖醛基结合生成葡萄糖醛基络合物;但是在大鼠肝微粒体的体外代谢过程中,未发现Ⅱ相代谢产物。 |
外文摘要: |
The chiral pesticide mefentrifluconazole is a new type of triazole fungicide with broad spectrum and high efficiency, which has been used widely over the world. At present, there were few studies at the enantiomer level and lacked of systematic and comprehensive researches, which hindered the development and application of optically pure pesticides with high efficiency and low toxicity. In this papper, starting from the enantioselective biological effects and degradation behavior of mefentrifluconazole, we established a method for the separation and clarify the absolute configuration of mefentrifluconazole enantiomers. On this basis, two enantiomers of mefentrifluconazole were prepared for the study on enantioselective bioactivity, ecotoxicity and degradation in vegetables and water. In addition, rat liver microsomes and zebrafish were used to study enantioselective bioaccumulation and metabolism of mefentrifluconazole in organisms based on pharmacokinetics. Results in this study not only provide reference datas for the risk assessment of mefentrifluconazole at the enantiomer level, but also provide scientific guidance for the development of new pesticides products with high efficiency, low risk and low residual as well as its scientific and rational application. The main findings of this study are as follows: 1. A method for the separation of mefentrifluconazole enantiomers on Chiralpak IG-3 chiral column was established by ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). When the composition of mobile phasethe was 0.1% formic acid aqueous solution/acetonitrile=10/90 (v/v), the flow rate was 0.5 mL/min, and the column temperature was 35 ℃, enantiomers of mefentrifluconazole could achieve the baseline separated completely within 10 minutes, and resolution was 1.82. The optical rotation and absolute configuration of the enantiomers were determined by optical rotation detector and electron circular dichroism spectrometer. Finally, it was clarified that the elution order of the enantiomers of mefentrifluconazole on the Chiralpak IG-3 chiral column was R- (-) -mefentrifluconazole and S- (+) -mefentrifluconazole. 2. The bioactivities of mefentrifluconazole enantiomers against six target fungi were determined by the growth rate method. The results showed that R-mefentrifluconazole had more effectively antibacterial activity, which was 5.3~473.1 times than that of S-mefentrifluconazole and 1.5~2.1 times than that of Rac-mefentrifluconazole. Compared with S-mefentrifluconazole, R-mefentrifluconazole can more effectively inhibit the biosynthesis of ergosterol in Botrytis cinerea. The binding affinity between the enantiomers of mefentrifluconazole and the target protein (CYP51B) of Botrytis cinerea were studied by homology modeling technology combined with molecular docking technology. The results showed that R-mefentrifluconazole could form a more stable binding conformation, lower binding energy and stronger inhibition with CYP51B, which may be the main factor leading to the enantioselective bioactivity of mefentrifluconazole enantiomers. 3. The acute toxicity difference of mefentrifluconazole to aquatic organisms was studied towards zebrafish, Chlorella pyrenoides and Spirodela polyrrhiza. The results showed that the order of the toxicity of mefentrifluconazole to zebrafish at different growth stages was as follows: S-mefentrifluconazole > Rac-mefentrifluconazole > R-mefentrifluconazole. The toxicity of S-mefentrifluconazole to zebrafish embryos, larve and adults is 2.5, 2.4 and 2.0 times higher than that of R-mefentrifluconazole, respectively. However, the results of limiting test on Chlorella pyrenoides and Spirodela polyrrhiza exposure to mefentrifluconazole showed that there was no toxicity on the two species of aquatic plants . 4. The enantioselective degradation behavior of mefentrifluconazole in cucumber, cowpea, pepper and soil were studied with field trials. The results showed that the degradation of the enantiomers of mefentrifluconazole in plants followed a first-order kinetic equation. In cucumber samples, S-mefentrifluconazole showed the behavior of priority degradation, and the EF value increased significantly from the initial 0.50 to 0.53. While in cowpea and pepper samples, there was no significant difference in selective degradation between the two enantiomers. There was no significant degradation of mefentrifluconazole in soil within 35 days. In addition, the incubation experiments of water samples from the Yangtze River, Yellow River, Chaohu Lake and Yellow Sea under aerobic and sterilizing conditions were carried out indoor. The results showed that there was no significant degradation behavior of mefentrifluconazole occurred in any of the four water samples under sterilization conditions, while the degradation followed the first-order kinetic equation under aerobic conditions. The datas of half-life showed that the degradation rates were in the order of Yellow Sea > Chaohu Lake > Yangtze River > Yellow River, and there was no enantioselective degradation between the two enantiomers in these four types of water. Which may indicate that microbial activity is an important factor in promoting the degradation of pesticide compounds. 5. The enantioselective metabolic behavior of mefentrifluconazole enantiomers in animals was investigated with the in vitro metabolic model—rat liver microsomes. The results showed that the metabolism of mefentrifluconazole enantiomers followed a first-order kinetic equation in rat liver microsomes, S-mefentrifluconazole had a shorter half-life and was preferentially metabolized. The experimental results of the enzyme reaction kinetics further showed that S-mefentrifluconazole had better binding with the substrate enzyme to promote its metabolism. In addition, the enantioselective absorption and metabolism of mefentrifluconazole in zebrafish were also studied. The BCFs of R-mefentrifluconazole and S-mefentrifluconazole were 8.38 and 3.41 while 1.02 and 0.62 exposed to high and low concentration of mefentrifluconazole, respectively. And the results showed that there was a significant enantioselective absorption behavior in zebrafish, indicated that R- mefentrifluconazole was preferentially enriched in zebrafish during the exposure stage. Only in the low-concentration treatment group that R-mefentrifluconazole can discharge from the body preferentially with a faster metabolic rate and a shorter half-life during the clean-up stage. While in the high-concentration condition, there was no enantioselective metabolic behavior. At the same time, both enantiomers of mefentrifluconazole can significantly down-regulate the activities of CAT enzymes and up-regulate the content of MDA in zebrafish to some extent, thereby induced oxidative stress reaction. Further, nine metabolites related to the metabolism of mefentrifluconazole in vivo and in vitro were identified by LC-Q-TOF-MS/MS. It was speculated that the main metabolic pathways of mefentrifluconazole were through hydroxylation reaction for phase Ⅰ, and then combined with sulfate groups to generate sulfate compounds under the action of sulfotransferase. In addition, it can also combine with glucuronic group to form glucuronic complex. However, no metabolites for phase Ⅱ were found in rat liver microsomes. |
参考文献: |
[1] 农药管理条例[J]. 中华人民共和国国务院公报, 2017(11): 5-14. [2] 马悦, 张晨辉, 杜凤沛. 农药制剂发展趋势及前沿技术概况[J]. 现代农药, 2022(1): 1-8. [3] 严端祥, 吴厚斌, 曲甍甍, 等. 疫情对我国农药产业发展影响的思考[J]. 农药科学与管理, 2020, 41(7): 1-3+10. [4] 秦萌, 任宗杰, 张帅, 等. 从“农药零增长行动”看“农药减量化”发展[J]. 中国植保导刊, 2021, 41(11): 89-94. [5] 董志鹏. 世界农药市场发展趋势与中国农药研发生产现状[J]. 化工管理, 2021(26): 35-36. [6] 李云贵, 李冲, 刘奕训, 等. 新手模型法命名手性分子R/S构型[J]. 广州化工, 2012, 40(22): 49-50+69. [7] Konwick BJ, Garrison AW, Black MC, et al. Bioaccumulation, biotransformation, and metabolite formation of fipronil and chiral legacy pesticides in rainbow trout[J]. Environmental Science & Technology, 2006, 40(9): 2930-2936. [8] 王鸣华, 宋宝安. 《农药立体化学》[M]. 北京: 化学工业出版社, 2016. [9] 王大伟, 曹会兰. 手性分子研究与手性技术发展[J]. 渭南师范学院学报, 2002(2): 30-32. [10] 周子燕, 李昌春, 高同春, 等. 三唑类杀菌剂的研究进展[J]. 安徽农业科学, 2008(27): 11842-11844. [11] 董丰收, 李晶, 李远播, 等. 手性三唑类杀菌剂立体生物活性、生态毒性及选择性富集研究进展[J]. 中国科学:生命科学, 2016, 46(5): 613-618. [12] Zhao Y, Zhu XC, Jiang W, et al. Chiral recognition for chromatography and membrane-based separations: recent developments and future prospects[J]. Molecules, 2021, 26(4): 1145. [13] 张艳川, 李朝阳, 李巧玲, 等. 三唑类农药手性分离的研究进展[J]. 农药, 2009, 48(9): 629-632. [14] Zhou Y, Li L, Lin KD, et al. Enantiomer separation of triazole fungicides by high-performance liquid chromatography[J]. Chirality, 2009, 21(4): 421-427. [15] 孙艳伟, 梁晓梅, 周志强, 等. 新型纤维素衍生物手性固定相的制备及其对几种对映异构体的高效液相色谱分离[J]. 分析化学, 2006(S1): 257-259. [16] Wang P, Liu D, Jiang S, et al. The chiral separation of triazole pesticides enantiomers by amylose-tris(3,5-dimethylphenylcarbamate) chiral stationary phase[J]. Journal of Chromatographic Science, 2008, 46(9): 787-792. [17] 陈茜茜. 戊唑醇手性杀菌剂在拟南芥中的选择性降解及其机制研究[D]. 北京: 中国农业科学院硕士学位论文, 2016. [18] 唐守英, 王飞, 孟秀柔, 等. 含两个手性中心的三唑类杀菌剂色谱分离研究进展[J]. 农药学学报, 2021, 23(4): 617-627. [19] Zhang H, Rong QM, Quan WX, et al. HPLC-MS/MS enantioseparation of triazole fungicides using polysaccharide-based stationary phases[J]. Journal of Separation Science, 2012, 35(7): 773-777. [20] 程有普. 手性农药丙环唑立体异构体稻田环境行为及其生物活性、毒性研究[D]. 沈阳: 沈阳农业大学博士学位论文, 2014. [21] He RJ, Fan J, Tan Q, et al. Enantioselective determination of metconazole in multi matrices by high-performance liquid chromatography[J]. Talanta, 2018, 178: 980-986. [22] 贺敏. 苯醚甲环唑手性异构体活性差异及其在稻田的立体环境行为[D]. 北京: 中国农业科学院博士学位论文, 2016. [23] Merino MED, Echevarría RN, Lubomirsky E, et al. Enantioseparation of the racemates of a number of pesticides on a silica-based column with immobilized amylose tris (3-chloro-5-methylphenylcarbamate)[J]. Microchemical Journal, 2019, 149: 103970. [24] Li LS, Gao BB, Wen Y, et al. Stereoselective bioactivity, toxicity and degradation of the chiral triazole fungicide bitertanol[J]. Pest Management Science, 2020, 76(1): 343-349. [25] Roy D, Wahab MF, Talebi M, et al. Replacing methanol with azeotropic ethanol as the co-solvent for improved chiral separations with supercritical fluid chromatography (SFC)[J]. Green Chemistry, 2020, 22(4): 1249-1257. [26] West C, Lemasson E, Bertin S, et al. Interest of achiral-achiral tandem columns for impurity profiling of synthetic drugs with supercritical fluid chromatography[J]. Journal of Chromatography A, 2018, 1534: 161-169. [27] Plachka K, Khalikova M, Babicova B, et al. Ultra-high performance supercritical fluid chromatography in impurity control II: method validation[J]. Analytica Chimica Acta, 2020, 1117: 48-59. [28] 林春绵, 郑夏琼, 俞游, 等. 四种三唑类杀菌剂的超临界色谱手性分离[J]. 浙江工业大学学报, 2013, 41(5): 473-477. [29] 缪叶隆, 徐明仙, 郑夏琼, 等. 六种手性三唑类杀菌剂对映体的超临界流体色谱法分离[J]. 农药学学报, 2015, 17(4): 432-438. [30] Cheng YP, Zheng YQ, Dong FS, et al. Stereoselective analysis and dissipation of propiconazole in wheat, grapes, and soil by supercritical fluid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2017, 65(1): 234-243. [31] Yang F, Zhang XT, Shao JM, et al. A rapid method for the simultaneous stereoselective determination of the triazole fungicides in tobacco by supercritical fluid chromatography-tandem mass spectrometry combined with pass-through cleanup[J]. Journal of Chromatography A, 2021, 1642: 462040. [32] Kenneke JF, Ekman DR, Mazur CS, et al. Integration of metabolomics and in vitro metabolism assays for investigating the stereoselective transformation of triadimefon in rainbow trout[J]. Chirality, 2010, 22(2): 183-192. [33] Li J, Dong FS, Xu J, et al. Enantioselective determination of triazole fungicide simeconazole in vegetables, fruits, and cereals using modified QuEChERS (quick, easy, cheap, effective, rugged and safe) coupled to gas chromatography/tandem mass spectrometry[J]. Analytica Chimica Acta, 2011, 702(1): 127-135. [34] 赵敬丹, 刘浩. 超临界流体色谱法测定利福昔明及其制剂的杂质谱[J]. 药物分析杂志, 2021, 41(10): 1806-1811. [35] 齐艳丽, 李春勇, 李晋栋, 等. 腈菌唑在番茄果实中的立体选择性降解[J]. 农药学学报, 2020, 22(4): 660-665. [36] Perez-Mayan L, Ramil M, Cela R, et al. Supercritical fluid chromatography-mass spectrometric determination of chiral fungicides in viticulture-related samples[J]. Journal of Chromatography A, 2021, 1644: 462124. [37] 韩小茜, 温晓光, 管永红, 等. 流动相组成及温度对4种1,2,4-三唑类农药对映体手性拆分的影响[J]. 应用化学, 2004(2): 140-143. [38] 李远播. 几种典型手性三唑类杀菌剂对映体的分析、环境行为及其生物毒性研究[D]. 北京: 中国农业科学院博士学位论文, 2013. [39] 李也. 手性农药戊菌唑的生物活性、生态毒性和苹果中降解行为[D]. 北京: 中国农业科学院硕士学位论文, 2021. [40] Liu H, Ding W. Enantiomeric separation of prothioconazole and prothioconazole-desthio on chiral stationary phases[J]. Chirality, 2019, 31(3): 219-229. [41] 张召贤. 手性杀菌剂丙硫菌唑及其代谢物立体选择性研究[D]. 南京: 南京农业大学博士学位论文, 2020. [42] Toribio L, del Nozal MJ, Bernal JL, et al. Chiral separation of some triazole pesticides by supercritical fluid chromatography[J]. Journal of Chromatography A, 2004, 1046(1-2): 249-253. [43] Metselaar GA, Adams PJHM, Nolte RJM, et al. Polyisocyanides derived from tripeptides of alanine[J]. Chemistry-a European Journal, 2007, 13(3): 950-960. [44] Sophon K, Akihiro I, Tasuku I, et al. Preparation of p-nitrophenyl β-l-arabinofuranoside as a substrate of β-l-arabinofuranosidase[J]. Carbohydrate Research, 2013, 382: 95-100. [45] Yan B, Li J, Li HY, et al. Crystal structure and thermodynamic properties of myclobutanil[J]. The Journal of Chemical Thermodynamics, 2016, 101: 44-48. [46] Li LS, Gao BB, Zhang ZX, et al. Stereoselective separation of the fungicide bitertanol stereoisomers by high-performance liquid chromatography and their degradation in cucumber[J]. Journal of Agricultural and Food Chemistry, 2018, 66(50): 13303-13309. [47] Song QM, Wang Y, Tang SY, et al. Enantioselective analysis and degradation studies of four stereoisomers of difenoconazole in citrus by chiral liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2021, 69(1): 501-510. [48] 李陈宗, 朱园园, 古双喜. 手性药物及其中间体光学纯度的测定方法与应用[J]. 分析试验室, 2022, 41(5): 588-599. [49] Ren J, Mistry TL, Su PC, et al. Determination of absolute configuration and binding efficacy of benzimidazole-based FabI inhibitors through the support of electronic circular dichroism and MM-GBSA techniques[J]. Bioorganic & Medicinal Chemistry Letters, 2018, 28(11): 2074-2079. [50] Dong FS, Li J, Bezhan C, et al. Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil[J]. Environmental Science & Technology, 2013, 47(7): 3386-3394. [51] Calcaterra A, D'acquarica I. The market of chiral drugs: chiral switches versus de novo enantiomerically pure compounds[J]. Journal of Pharmaceutical and Biomedical Analysis, 2018, 147: 323-340. [52] Jiang Y, Fan J, He RJ, et al. High-fast enantioselective determination of prothioconazole in different matrices by supercritical fluid chromatography and vibrational circular dichroism spectroscopic study[J]. Talanta, 2018, 187: 40-46. [53] Dong FS, Cheng L, Liu XG, et al. Enantioselective analysis of triazole fungicide myclobutanil in cucumber and soil under different application modes by chiral liquid chromatography/tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2012, 60(8): 1929-1936. [54] Luo M, Liu DH, Zhou ZQ, et al. A new chiral residue analysis method for triazole fungicides in water using dispersive liquid-liquid microextraction (DLLME)[J]. Chirality, 2013, 25(9): 567-574. [55] Ben OY, Monceaux K, Karoui A, et al. Tebuconazole induces ROS-dependent cardiac cell toxicity by activating DNA damage and mitochondrial apoptotic pathway[J]. Ecotoxicology and Environmental Safety, 2020, 204: 111040. [56] Tombo GMR, Blaser HU. Chirality in agrochemistry: an established technology and its impact on the development of industrial stereoselective catalysis[C]. 9th International Congress of Pesticide Chemistry, 1998: 33-54. [57] Burden RS, Carter GA, Clark T, et al. Comparative activity of the enantiomers of triadimenol and paclobutrazol as inhibitors of fungal growth and plant sterol and gibberellin biosynthesis[J]. Pesticide Science, 1987, 21(4): 253-267. [58] Zhang ZX, Gao BB, He ZZ, et al. Stereoselective bioactivity of the chiral triazole fungicide prothioconazole and its metabolite[J]. Pesticide Biochemistry and Physiology, 2019, 160(C): 112-118. [59] Yang XF, Gong RG, Chu YQ, et al. Mechanistic insights into stereospecific antifungal activity of chiral fungicide prothioconazole against fusarium oxysporum F. sp. cubense[J]. International Journal of Molecular Sciences 2022, 23(4): 2352. [60] Zhai WJ, Zhang LL, Cui JN, et al. The biological activities of prothioconazole enantiomers and their toxicity assessment on aquatic organisms[J]. Chirality, 2019, 31(6): 468-475. [61] Kaziem AE, Gao BB, Li LS, et al. Enantioselective bioactivity, toxicity, and degradation in different environmental mediums of chiral fungicide epoxiconazole[J]. Journal of Hazardous Materials, 2020, 386: 121951. [62] Sun MJ, Liu DH, Qiu XX, et al. Acute toxicity, bioactivity, and enantioselective behavior with tissue distribution in rabbits of myclobutanil enantiomers[J]. Chirality, 2014, 26(12): 784-789. [63] Li YB, Dong FS, Liu XG, et al. Environmental behavior of the chiral triazole fungicide fenbuconazole and its chiral metabolites: enantioselective transformation and degradation in soils[J]. Environmental Science & Technology, 2012, 46(5): 2675-2683. [64] Stehmann C, Dewaard MA. Relationship between chemical-structure and biological-activity of triazole fungicides against Botrytis cinerea[J]. Pesticide Science, 1995, 44(2): 183-195. [65] Crowell SR, Henderson WM, Kenneke JF, et al. Development and application of a physiologically based pharmacokinetic model for triadimefon and its metabolite triadimenol in rats and humans[J]. Toxicology Letters, 2011, 205(2): 154-162. [66] Goetz AK, Rockett JC, Ren HZ, et al. Inhibition of rat and human steroidogenesis by triazole antifungals[J]. Systems Biology in Reproductive Medicine, 2009, 55(5-6): 214-226. [67] 刘永霞, 戈扬, 李岩, 等. 苯醚甲环唑原药的亚慢性毒性研究[J]. 中国职业医学, 2007(1): 67-68. [68] Hans WL. The biology and use of zebrafish, Brachydanio rerio in fisheries research[J]. Journal of Fish Biology, 1977, 10(2): 121-173. [69] Cheng C, Huang LD, Diao JL, et al. Enantioselective toxic effects and degradation of myclobutanil enantiomers in scenedesmus obliquus[J]. Chirality, 2013, 25(12): 858-864. [70] Deng Y, Zhang WJ, Qin YN, et al. Stereoselective toxicity of metconazole to the antioxidant defenses and the photosynthesis system of Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2019, 210: 129-138. [71] Li Y, Nie JY, Zhang J, et al. Chiral fungicide penconazole: absolute configuration, bioactivity, toxicity, and stereoselective degradation in apples[J]. Science of the Total Environment, 2022, 808: 152061. [72] Chang WX, Nie JY, Yan Z, et al. Systemic stereoselectivity study of etoxazole: stereoselective bioactivity, acute toxicity, and environmental behavior in fruits and soils[J]. Journal of Agricultural and Food Chemistry, 2019, 67(24): 6708-6715. [73] 王达明, 黄曦泽, 曾耿狄. 手性农药对非靶标生物毒性研究进展[J]. 热带农业科学, 2018, 38(11): 63-69. [74] 梁宏武. 几种典型手性农药对映体的环境行为及水生生物毒性研究[D]. 北京: 中国农业大学博士学位论文, 2014. [75] Zhang WJ, Lu YL, Huang LD, et al. Comparison of triadimefon and its metabolite on acute toxicity and chronic effects during the early development of Rana nigromaculata tadpoles[J]. Ecotoxicology and Environmental Safety, 2018, 156: 247-254. [76] Tully DB, Bao WJ, Goetz AK, et al. Gene expression profiling in liver and testis of rats to characterize the toxicity of triazole fungicides[J]. Toxicology and Applied Pharmacology, 2006, 215(3): 260-273. [77] 闫冬艳. 两种新型手性农药对HepG2细胞的对映体选择性毒性研究[D]. 呼和浩特: 内蒙古大学硕士学位论文, 2018. [78] Zhang ZX, Du GZ, Gao BB, et al. Stereoselective endocrine-disrupting effects of the chiral triazole fungicide prothioconazole and its chiral metabolite[J]. Environmental Pollution, 2019, 251: 30-36. [79] 章伟光, 张仕林, 郭栋, 等. 关注手性药物:从“反应停事件”说起[J]. 大学化学, 2019, 34(9): 1-12. [80] 杨丽萍, 李树正, 李煜昶, 等. 三种三唑类杀菌剂对映体生物活性的研究[J]. 农药学学报, 2002(2): 67-70. [81] Zhang Q, Hua XD, Shi HY, et al. Enantioselective bioactivity, acute toxicity and dissipation in vegetables of the chiral triazole fungicide flutriafol[J]. Journal of Hazardous Materials, 2015, 284: 65-72. [82] Li YB, Dong FS, Liu XG, et al. Enantioselectivity in tebuconazole and myclobutanil non-target toxicity and degradation in soils[J]. Chemosphere, 2015, 122: 145-153. [83] He RJ, Guo D, Huang Z, et al. Systematic investigation of stereochemistry, stereoselective bioactivity, and antifungal mechanism of chiral triazole fungicide metconazole[J]. Science of the Total Environment, 2021, 784: 147194. [84] Li CF, Fan S, Zhang YR, et al. Toxicity, bioactivity of triazole fungicide metconazole and its effect on mycotoxin production by fusarium verticillioides: new perspective from an enantiomeric level[J]. Science of the Total Environment, 2022, 828: 154432. [85] Deng Y, Zhang WJ, Qin YN, et al. Stereoselective toxicity of metconazole to the antioxidant defenses and the photosynthesis system of Chlorella pyrenoidosa[J]. Aquatic Toxicology, 2019, 210: 129-138. [86] EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance tebuconazole[J]. EFSA Journal, 2014, 12(1): 3485. [87] EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance ipconazole[J]. EFSA Journal, 2013, 11(4): 3181. [88] EFSA. Conclusion on the peer review of the pesticide risk assessment of the active substance fenbuconazole[J]. EFSA Journal, 2010, 8(4): 1558. [89] De Geus HJ, Wester PG, De Boer Jacob, et al. Enantiomer fractions instead of enantiomer ratios[J]. Chemosphere, 2000, 41(5): 725-727. [90] Kahle M, Buerge IJ, Hauser A, et al. Azole fungicides: occurrence and fate in wastewater and surface waters[J]. Environmental Science & Technology, 2008, 42(19): 7193-7200. [91] Huang QX, Yu YY, Tang CM, et al. Determination of commonly used azole antifungals in various waters and sewage sludge using ultra-high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A, 2010, 1217(21): 3481-3488. [92] Dong SY, Huang GQ, Lu JS, et al. Determination of fungicides in sediments using a dispersive liquid-liquid microextraction procedure based on solidification of floating organic drop[J]. Journal of Separation Science, 2014, 37(11): 1337-1342. [93] 刘园, 杨卫萍, 魏琛, 等. 枯水期贵阳市饮用水源农药污染特征及健康风险[J]. 地球与环境, 2015, 43(6): 653-659. [94] Fu Y, Yang T, Zhao J, et al. Determination of eight pesticides in Lycium barbarum by LC-MS/MS and dietary risk assessment[J]. Food Chemistry, 2017, 218: 192-198. [95] 刘娜, 金小伟, 薛荔栋, 等. 太湖流域药物和个人护理品污染调查与生态风险评估[J]. 中国环境科学, 2017, 37(9): 3515-3522. [96] 游明华. 天然水中9种三唑类农药的检测方法及其非生物降解研究[D]. 厦门: 厦门大学硕士学位论文, 2008. [97] 曹巧, 董丰收, 刘新刚, 等. 手性农药三唑醇不同对映体在水体中的光解行为研究[J]. 农业环境科学学报, 2008, 27(6): 2475-2477. [98] 李朝阳, 张艳川, 李巧玲, 等. 三唑农药的手性拆分及对映体的转化[J]. 分析化学, 2010, 38(2): 237-240. [99] Huang QX, Wang ZF, Wang CW, et al. Chiral profiling of azole antifungals in municipal wastewater and recipient rivers of the Pearl River Delta, China[J]. Environmental Science And Pollution Research International, 2013, 20(12): 8890-8899. [100] Wang ZK, Wang X, Li S, et al. Magnetic solid-phase extraction based on carbon nanosphere@Fe3O4 for enantioselective determination of eight triazole fungicides in water samples[J]. Electrophoresis, 2019, 40(9): 1306-1313. [101] Li LS, Wang Z, Gao YY, et al. Stereoselective environmental behavior and biological effects of the chiral bitertanol[J]. Science of the Total Environment, 2020, 728: 138867. [102] Cui N, Xu HY, Yao SJ, et al. Chiral triazole fungicide tebuconazole: enantioselective bioaccumulation, bioactivity, acute toxicity, and dissipation in soils[J]. Environmental Science and Pollution Research International, 2018, 25(25): 25468-25475. [103] Zhang ZX, Gao BB, Li LS, et al. Enantioselective degradation and transformation of the chiral fungicide prothioconazole and its chiral metabolite in soils[J]. Science of the Total Environment, 2018, 634: 875-883. [104] 梁翰林. 丙硫菌唑及其代谢物在几种生态系统中对映体选择性降解行为研究[D]. 呼和浩特: 内蒙古大学硕士学位论文, 2021. [105] Guo HM, Zhao Y, Ouyang MN, et al. Different degradation patterns of chiral contaminant enantiomers: paclobutrazol as a case study[J]. Journal of the Brazilian Chemical Society, 2021, 32(6): 1137-1142. [106] Lin CM, Zhang LJ, Zhang H, et al. Enantioselective degradation of myclobutanil and famoxadone in grape[J]. Environmental Science and Pollution Research, 2018, 25(3): 2718-2725. [107] Wang XQ, Wang XS, Zhang H, et al. Enantioselective degradation of tebuconazole in cabbage, cucumber, and soils[J]. Chirality, 2012, 24(2): 104-111. [108] Chang WX, Nie JY, Yan Z. Enantioselective behavior of chiral difenoconazole in apple and field soil[J]. Bulletin of Environmental Contamination Toxicology, 2019, 103(3): 501-505. [109] Guo HM, Zhao Y, Yang MN, et al. The enantioselective effects and potential risks of paclobutrazol residue during cucumber pickling process[J]. Journal of Hazardous Materials, 2020, 386: 121882. [110] Guo HM, Zhao Y, Yang MNO, et al. Enantiomeric effect of paclobutrazol on the microorganism composition during wine fermentation[J]. Chirality, 2020, 32(4): 489-499. [111] Mackay D, Celsie AD, Powell DE, et al. Bioconcentration, bioaccumulation, biomagnification and trophic magnification: a modelling perspective[J]. Environmental Science. Processes & Impacts, 2018, 20(1): 72-85. [112] Howe K, Clark MD, Torroja CF, et al. The zebrafish reference genome sequence and its relationship to the human genome[J]. Nature, 2013, 496(7446): 498-503. [113] Liu N, Dong FS, Xu J, et al. Chiral bioaccumulation behavior of tebuconazole in the zebrafish (Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2016, 126: 78-84. [114] Wang Y, Xu L, Li DZ, et al. Enantioselective bioaccumulation of hexaconazole and its toxic effects in adult zebrafish (Danio rerio)[J]. Chemosphere, 2015, 138: 798-805. [115] 王瑶. 三种三唑类手性农药在斑马鱼体内的生物富集行为和毒性效应研究[D]. 北京: 中国农业大学博士学位论文, 2017. [116] Wang Y, Zhu WT, Wang DZ, et al. H-1 NMR-based metabolomics analysis of adult zebrafish (Danio rerio) after exposure to diniconazole as well as its bioaccumulation behavior[J]. Chemosphere, 2017, 168: 1571-1577. [117] Zhang ZX, Zhang J, Zhao XJ, et al. Stereoselective uptake and metabolism of prothioconazole caused oxidative stress in zebrafish (Danio rerio)[J]. Journal of Hazardous Materials, 2020, 396: 122756. [118] Hao WY, Hu X, Zhu FL, et al. Enantioselective distribution, degradation, and metabolite formation of myclobutanil and transcriptional responses of metabolic-related genes in rats[J]. Environmental Science & Technology, 2018, 52(15): 8830-8837. [119] 吴淑春. 手性农药糠菌唑的立体选择性行为及毒理研究[D]. 杭州: 浙江工商大学博士学位论文, 2021. [120] 王新茹. 两种酰胺类手性农药在动物体内及体外的代谢及毒性研究[D]. 北京: 中国农业大学博士学位论文, 2016. [121] Jennette KW. Chromate metabolism in liver microsomes[J]. Biological Trace Element Research, 1979, 1(1): 55-62. [122] Zhang ZX, Gao BB, He ZZ, et al. Enantioselective metabolism of four chiral triazole fungicides in rat liver microsomes[J]. Chemosphere, 2019, 224: 77-84. [123] 申志刚. 五种手性农药在动物体内的选择性代谢行为研究[D]. 北京: 中国农业大学博士学位论文, 2014. [124] Shen ZG, Zhu WT, Liu DH, et al. Stereoselective degradation of tebuconazole in rat liver microsomes[J]. Chirality, 2012, 24(1): 67-71. [125] Yan J, Zhang P, Wang XR, et al. Stereoselective degradation of chiral fungicide myclobutanil in rat liver microsomes[J]. Chirality, 2014, 26(1): 51-55. [126] 刘鹏飞, 兰杰, 李志念, 等. 氯氟醚菌唑(Mefentrifluconazole)的合成及生物活性[J]. 农药, 2020, 59(4): 256-257+269. [127] 刘子琪, 呼啸, 袁龙飞, 等. 新型三唑类杀菌剂氯氟醚菌唑[J]. 农药, 2021, 60(3): 211-214. [128] Ishii H, Bryson PK, Kayamori M, et al. Cross-resistance to the new fungicide mefentrifluconazole in DMI-resistant fungal pathogens[J]. Pesticide Biochemistry and Physiology, 2021, 171: 104737. [129] Ma DC, Jiang JG, Zhu JM, et al. Evaluation of sensitivity and resistance risk of corynespora cassiicola to Isopyrazam and mefentrifluconazole[J]. Plant Disease, 2020, 104(11): 2779-2785. [130] 石凌波. 巴斯夫新型杀菌剂Belanty(氯氟醚菌唑)在哥伦比亚上市[J]. 现代农药, 2019, 18(5): 37. [131] 王晓岚. 巴斯夫在新西兰申请登记杀菌剂Revystar[J]. 现代农药, 2019, 18(5): 29. [132] 王晓岚. 氯氟醚菌唑和Inpyrfluxam有望获准美国登记[J]. 现代农药, 2019, 18(2): 16. [133] 顾林玲, 柏亚罗. 全球四大跨国公司的15强农药产品及最新研发上市产品(下)[J]. 世界农药, 2020, 42(9): 31-39. [134] 张强, 王胜翔, 黄伟, 等. 240 g/L氯氟醚菌唑·吡唑醚菌酯乳油高效液相色谱分析方法研究[J]. 农药科学与管理, 2018, 39(4): 29-32. [135] Zhang Y, Wu XH, Li XB, et al. A fast and sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method for determining mefentrifluconazole in plant- and animal-derived foods[J]. Food Additives & Contaminants. Part A, Chemistry, Analysis, Control, Exposure & Risk Assessment, 2019, 36(9): 1348-1357. [136] Chelovechkova VV, Komarova AS, Chermenskaya TD. Degradation of mefentrifluconazole and fluxapyroxad in cereals[J]. Agrohimia, 2021(12): 69-74. [137] Arena M, Auteri D, Barmaz S, et al. Peer review of the pesticide risk assessment of the active substance BAS 750 F (mefentrifluconazole)[J]. EFSA Journal, 2018, 16(7): 5379. [138] Tesh SA, Tesh JM, Fegert I, et al. Innovative selection approach for a new antifungal agent mefentrifluconazole (Revysol®) and the impact upon its toxicity profile[J]. Regulatory Toxicology and Pharmacology, 2019, 106: 152-168. [139] Li J, Dong C, An WJ, et al. Simultaneous enantioselective determination of two new isopropanol-triazole fungicides in plant-origin foods using multiwalled carbon nanotubes in reversed-dispersive olid-phase extraction and ultrahigh-performance liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2020, 68(21): 5969-5979. [140] Juan JH, Xin H, Yue XH, et al. Switchable deep eutectic solvent-based homogenous liquid-liquid microextraction combined with high-performance liquid chromatography-diode-array detection for the determination of the chiral fungicide mefentrifluconazole in water, fruit juice, and fermented liquor[J]. Chirality, 2022. (prepublished, DOI: 10.1002/chir.23445) [141] Xu SJ, Shen F, Song JL, et al. Enantioselectivity of new chiral triazole fungicide mefentrifluconazole: Bioactivity against phytopathogen, and acute toxicity and bioaccumulation in earthworm (Eisenia fetida)[J]. Science of the Total Environment, 2022, 815: 152937. [142] Li YH, Ren B, Zhao TT, et al. Enantioselective toxic effects of mefentrifluconazole in the early life stage of zebrafish (Danio rerio)[J]. Environmental Toxicology, 2022. (prepublished, DOI: 10.1002/tox.23515) [143] Li YH, Liang HW, Ren B, et al. Enantioselective toxic effects of mefentrifluconazole in the liver of adult zebrafish (Danio rerio) based on transcription level and metabolomic profile[J]. Toxicology, 2022, 467: 153095. [144] Liu ZQ, Cheng YP, Yuan LF, et al. Enantiomeric profiling of mefentrifluconazole in watermelon across China: enantiochemistry, environmental fate, storage stability, and comparative dietary risk assessment[J]. Journal of Hazardous Materials, 2021, 417: 125985. [145] An XK, Pan XL, Li RN, et al. Enantioselective monitoring chiral fungicide mefentrifluconazole in tomato, cucumber, pepper and its pickled products by supercritical fluid chromatography tandem mass spectrometry[J]. Food Chemistry, 2022, 376: 131883. [146] Li XC, Ferreira D, Ding YQ. Determination of absolute configuration of natural products: theoretical calculation of electronic circular dichroism as a tool[J]. Current Organic Chemistry, 2010, 14(16): 1678-1697. [147] 朱效刚, 陶冠军, 陈蕴, 等. 高效液相色谱法测定功能性红曲中的麦角甾醇[J]. 食品与发酵工业, 2004. (9): 104-107. [148] Vyas VK, Ukawala RD, Ghate, M, et al. Homology modeling a fast tool for drug discovery: current perspectives[J]. Indian Journal of Pharmaceutical Sciences, 2012, 74(1): 1-17. [149] Bohnuud T, Luo LQ, Wodak SJ, et al. A benchmark testing ground for integrating homology modeling and protein docking[J]. Proteins, 2017, 85(1): 10-16. [150] Li BH, Wang CC, Dong XL, et al. Acremonium brown spot, a new disease caused by acremonium sclerotigenum on bagged apple fruit in China[J]. Plant Disease, 2014, 98(7): 1012. [151] 杨森. 三唑类杀菌剂作用机理和残留检测技术分析研究[J]. 农药科学与管理, 2020, 41(6): 27-32. [152] Kurihara N, Miyamoto J, Paulson G, et al. Chirality in synthetic agrochemicals: bioactivity and safety considerations[J]. Pesticide Science, 1999, 55(2): 219. [153] Wang Y, Zhao M. Chiral separation of enantiomers of a plant growth regulator, abscisic acid, by capillary electrophoresis with cyclodextrin additives[J]. Journal of Liquid Chromatography & Related Technologies, 2003, 26(11): 1709-1717. [154] Zhang Q, Wang C, Zhang XF, et al. Enantioselective aquatic toxicity of current chiral pesticides[J]. Journal of Environmental Monitoring : JEM, 2012, 14(2): 465-472. [155] Lin CY, Chiang CY, Tsai HJ. Zebrafish and Medaka: new model organisms for modern biomedical research[J]. Journal of Biomedical Science, 2016, 23(1): 1-11. [156] 李红燕, 谢倩, 王成, 等. 斑马鱼在药物毒理学评估中应用及机制的研究进展[J]. 中草药, 2021. 52(1): 278-288. [157] 齐艳丽, 李春勇, 李晋栋, 等. 小球藻水环境毒理学研究进展及应用前景[J]. 农学学报, 2022. 12(2): 65-72. [158] 张彤, 金洪钧. 用浮萍试验检测4种污染物的植物毒性[J]. 中国环境科学, 1995(4): 266-271. [159] Roland N. DarT: the embryo test with the zebrafish Danio rerio—a general model in ecotoxicology and toxicology[J]. Altex, 2002, 19(S1): 38-48. [160] 李艳红. 氯氟醚菌唑对斑马鱼的对映体选择性毒性效应研究[D]. 呼和浩特: 内蒙古大学硕士学位论文, 2021. [161] 葛婧. 两种三唑类杀菌剂对斑马鱼(Danio rerio)生态毒理效应的研究[D]. 乌鲁木齐: 新疆农业大学硕士学位论文, 2018. [162] 穆希岩. 苯醚甲环唑对斑马鱼毒性及作用机制研究[D]. 北京: 中国农业大学博士学位论文, 2015. [163] 温勇. 手性杀虫剂七氟菊酯对映体环境行为和生物效应研究[D]. 南京: 南京农业大学硕士学位论文, 2020. [164] 刘少颖. 三唑酮对斑马鱼的胚胎发育和内分泌—生殖毒性[D]. 杭州: 浙江大学博士学位论文, 2011. [165] Gaur RZ, Suthar S. Nutrient scaling of duckweed (Spirodela polyrhiza) biomass in urban wastewater and its utility in anaerobic co-digestion[J]. Process Safety and Environmental Protection, 2017, 107: 138-146. [166] 卢怡, 张无敌. 农药与环境的可持续发展[J]. 农业与技术, 2003(1): 1-5. [167] Matuszewski BK, Constanzer ML, Chavez-Eng CM. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC-MS/MS[J]. Analytical Chemistry, 2003, 75(13): 3019-3030. [168] NY/T 1667.6-2008, 农药登记管理术语.第6部分:农药残留[S]: 农业行业标准, 2008. [169] Dong FS, Liu XG, Zheng YQ, et al. Stereoselective degradation of fungicide triadimenol in cucumber plants[J]. Chirality, 2010, 22(2): 292-298. [170] Li Y, Nie JY, Chang WX, et al. Enantioselective behavior analysis of chiral fungicide tetraconazole in apples with UPLC-MS/MS[J]. Food Control, 2020, 116: 107305. [171] Dong FS, Li J, Bezhan C, et al. Chiral triazole fungicide difenoconazole: absolute stereochemistry, stereoselective bioactivity, aquatic toxicity, and environmental behavior in vegetables and soil[J]. Environmental Science & Technology, 2013, 47(7): 3386-3394. [172] Li RN, Dong FS, Xu J, et al. Enantioseparation of imazalil and monitoring of its enantioselective degradation in apples and soils using ultrahigh-performance liquid chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2017, 65(16): 3260-3268. [173] Arena M, Auteri D, Barmaz S, et al. Peer review of the pesticide risk assessment of the active substance BAS 750 F (mefentrifluconazole)[J]. European Food Safety Authority, 2018, 16(7): 5379. [174] Zhu W, Dang Z, Qiu J, et al. Species differences for stereoselective metabolism of ethofumesate and its enantiomers in vitro[J]. Xenobiotica, 2009, 39(9): 649-655. [175] Wang Y, Teng MM, Wang DZ, et al. Enantioselective bioaccumulation following exposure of adult zebrafish (Danio rerio) to epoxiconazole and its effects on metabolomic profile as well as genes expression[J]. Environmental Pollution, 2017, 229: 264-271. [176] Jia ZQ, Liu D, Sheng CW, et al. Acute toxicity, bioconcentration, elimination and antioxidant effects of fluralaner in zebrafish, Danio rerio[J]. Environmental Pollution, 2018, 232: 183-190. [177] 马玉红. 脂质过氧化反应的研究[J]. 青海畜牧兽医杂志, 2007(5): 38-40. [178] 刘娜. 戊唑醇等3种典型三唑类手性农药在斑马鱼中的选择性生物富集及生物毒性差异[D]. 沈阳: 沈阳农业大学博士学位论文, 2016. [179] Guo D, He RJ, Luo LL, et al. Enantioselective acute toxicity, oxidative stress effects, neurotoxicity, and thyroid disruption of uniconazole in zebrafish (Danio rerio)[J]. Environmental Science and Pollution Research, 2022. (prepublished, DOI: 10.1007/s11356-022-18997-3). |
中图分类号: | S48 |
开放日期: | 2022-06-17 |