中文题名: | 南极磷虾风味特性及其复合调味汁的开发 |
姓名: | |
学号: | 2022808084 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 086003 |
学科名称: | 工学 - 生物与医药 - 食品工程 |
学生类型: | 硕士 |
学位: | 生物与医药硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 食品营养与化学 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2024-05-01 |
答辩日期: | 2024-05-26 |
外文题名: | Development of Flavor Characteristics of Antarctic Krill and Its Compound Sauce |
中文关键词: | |
外文关键词: | Antarctic krill ; Bioenzymatic hydrolysis technology ; Ultrafiltration technology ; Maillard reaction ; Volatile flavor substance ; Sauce |
中文摘要: |
南极磷虾广泛分布于南极海域,营养价值丰富,被誉为人类未来的“蛋白资源库”和“海上人参”,并且富含多种活性多肽、氨基酸、核苷酸等呈鲜物质,是开发健康调味品的良好资源。然而,由于体积小、去壳难、易腐烂等原因,导致目前市场上的南极磷虾加工产品种类较为有限,主要包括南极磷虾油、南极磷虾干、南极磷虾酱和南极磷虾粉。南极磷虾以其独特的风味和高蛋白含量而闻名,适合用来开发各种调味品,因此,探究南极磷虾在调味品方面的应用,对其精深加工和综合利用具有重要意义。本研究在比较不同热处理条件下南极磷虾风味变化的基础上,以105℃热风干燥后的虾粉为原料,采用生物酶解及超滤技术实现风味物质的释放和鲜味成分的富集,同时以风味为导向筛选复配原料并通过美拉德反应工艺的优化实现调味汁的提鲜增香,开发了风味柔和、鲜味突出的南极磷虾复合调味汁产品。主要研究成果如下: 1. 分析了南极磷虾肉的基本营养及风味指标,蛋白质含量为79.69%、脂肪为1.38%、总糖为2.62%,游离氨基酸为52.16 mg/g db,呈味核苷酸为15.82 mg/g db。采用GC-MS技术结合相对气味活性值(ROAV)确定了南极磷虾中关键风味化合物是1-辛烯-3-醇、苯甲醛、壬醛、2,3-二乙基-5-甲基吡嗪,它们赋予南极磷虾肉香味、脂肪味、咸肉汤味,但同时由于三甲胺、乙硫醇等化合物的存在会使南极磷虾肉带有腥味等异味。 采用GC-IMS技术比较分析了60℃、80℃、105℃三种温度下干燥虾粉以及蒸制南极磷虾肉的风味特征。结果表明:热处理后南极磷虾风味都得到一定程度的改善,其中,经105℃热风干燥后的虾粉中挥发性风味物质的种类最多、浓度最高且含有较多吡嗪类等具有烘烤香气的特有物质。因此,选用105℃热风干燥后的虾粉作为后续产品开发的原料。 2. 以水解度、可溶性固形物含量、电子舌、游离氨基酸含量及感官得分为综合评价指标,对四种外源酶(中性蛋白酶、复合蛋白酶、风味蛋白酶、木瓜蛋白酶)进行筛选,结果表明:风味蛋白酶酶解液水解度及可溶性固形物含量显著(p < 0.05)高于其他三种酶解液,并且酶解液的鲜味感较强、苦味感较弱。因此,确定风味蛋白酶为水解用酶并结合单因素实验和Box-Behnken响应面优化确定了最佳酶解工艺:料液比为1:25(g/mL),酶解时间为2.0 h,加酶量为1.50%,该条件下得到的酶解液水解度可达16.28%。采用超滤技术分离酶解液得到四个不同分子量的多肽组分( > 10 kDa、5-10 kDa、3-5 kDa、< 3 kDa ),以电子鼻、电子舌传感器响应值为指标,结合聚类分析法对组分进行了比较分析,筛选确定鲜味突出、苦涩味少、风味最佳的为分子量< 3 kDa的多肽组分。 3. 结合南极磷虾的风味特性,对蟹味菇、双孢菇、杏鲍菇、海鲜菇、鸡腿菇、香菇六种食用菌酶解液进行筛选,采用电子舌、电子鼻构建风味轮廓,选用气味相似,鲜味最强的海鲜菇酶解液进行复配,并采用描述性感官评价确定谷氨酸作为外源氨基酸参与反应,通过正交实验优化确定了美拉德反应工艺参数:南极磷虾酶解浓缩液和海鲜菇酶解液配比为1:4、反应初始pH为8.0、温度为100℃、时间为1.5 h。 4. 对复合调味汁的营养、感官、理化及卫生指标进行测定,符合GB 10133-2014《食品安全国家标准 水产调味品》相关标准要求。并利用GC-MS、电子舌和电子鼻与市售海鲜汁、白灼汁、鱼露、虾油进行风味比较分析,结果表明:本产品主体风味为蘑菇味、鲜味、咸味肉汤味、脂肪味以及烘烤香味,滋味与虾油相似。开发的产品在不额外添加增鲜剂情况下,具有较强咸鲜味感、含盐量较低、风味佳等优势。 |
外文摘要: |
The Antarctic krill, widely distributed in the Antarctic Sea, is renowned for its rich nutritional value and is often referred to as the “ protein resource bank ” and “ sea ginseng ” of the future. It contains a diverse range of active peptides, amino acids, nucleotides, and other fresh substances, making it an excellent resource for developing healthy condiments. However, due to small size, difficult to remove the shell, perishable and other reasons, the common types of Antarctic krill processing products on the market are less, mainly including Antarctic krill oil, Antarctic krill dry, Antarctic phosphorus shrimp sauce and Antarctic krill powder. Antarctic krill has unique flavor and high protein content, which is suitable for making various condiments. It is of great significance to explore the application of Antarctic krill in condiment for its deep processing and comprehensive utilization. Therefore, based on comparing the flavor changes of Antarctic krill under different heat treatment conditions, this study took the shrimp powder dried by hot air at 105℃ as raw material, integrated enzymatic hydrolysis and ultrafiltration technology to realize the release of flavor substances and the separation and extraction of umami components. Meanwhile, the flavor oriented screening of compound raw materials and the optimization of the Maillard reaction process realized the freshness and flavor enhancement of the sauce. It provides a theoretical basis for the development of Antarctic krill compound sauce soft and outstanding umami taste. The main findings are as follows: 1. The basic nutrition and flavor profiles of shrimp meat were analyzed. The protein content was 79.69%, fat was 1.38%, total sugar was 2.62%, free amino acid content was 52.16 mg/g db, and flavor nucleotide content was 15.82 mg/g db. The key flavor compounds in shrimp meat were identified as 1-octene-3-ol, benzaldehyde, nonylaldehyde, and 2,3-diethyl-5-methylpyrazine using GC-MS technology combined with relative odor activity value (ROAV). These compounds contributed to the flavors of shrimp meat, fat, and salty meat soup flavor. However, the presence of trimethylamine, ethyl mercaptan, and other compounds also resulted in a fishy odor. The flavor characteristics of dried shrimp powder and steamed shrimp meat at 60℃, 80℃, and 105℃ were compared by GC-IMS technique. The results showed that the flavor of Antarctic krill improved to some extent after heat treatment. Among them, the shrimp powder dried by hot air at 105℃ had the most volatile flavor substances, the highest concentration, and more unique substances with a baking aroma, such as pyrazines. Therefore, shrimp powder dried by hot air at 105℃ is selected as the raw material for subsequent product development. 2. According to the hydrolysis degree, soluble solid content, electronic tongue analysis, free amino acid content, and sensory score, four exogenous enzymes (neutral protease, complex protease, flavor protease, and papain) were selected. The results showed that the degree of hydrolysis and soluble solid content of the flavor protease hydrolysate were significantly higher than those of the other three hydrolysates (p < 0.05). Additionally, the taste of the hydrolysate was stronger, while the bitterness was weaker. Therefore, the flavor protease was identified as the hydrolysis enzyme, and the optimal enzymatic hydrolysis process was determined through single-factor experiments and Box-Behnken response surface optimization. The ratio of solid to liquid was 1:25, the enzymatic hydrolysis time was 2.0 h, and the enzyme amount was 1.50%. Under these conditions, the hydrolysis degree of the enzymatic hydrolysis solution could reach 16.28%. Four polypeptide components with different molecular weights ( > 10 kDa, 5-10 kDa, 3-5 kDa, < 3 kDa ) were obtained from the enzymolysis solution using ultrafiltration technology. The response values of electronic nose and electronic tongue sensors were used as indices, and the components were compared using principal component analysis and cluster analysis. The polypeptide components with a molecular weight < 3 kDa, exhibiting exceptional umami taste, minimal bitterness, and superior flavor, were chosen. 3. According to the flavor characteristics of Antarctic krill, the enzymolysis solution of six edible fungi was screened, and the flavor profile was constructed using an electronic tongue and an electronic nose. The enzymolysis solution of sea mushroom with a similar aroma and the most intense umami flavor was selected for blending. Descriptive sensory evaluation was used to determine glutamic acid as the exogenous amino acid participating in the reaction. The optimum parameters of Maillard reaction were determined by orthogonal experiment: the ratio of Krill concentrate and sea mushrooms enzymolysis solution was 1:4, the initial pH of the reaction was 8.0, the temperature was 100℃, and the time was 1.5 h. 4. The nutritional, sensory, physical, and chemical, as well as health indicators of the products, were determined, meeting the relevant standards of GB 10133-2014 "National Standard for Food Safety Aquatic Condiments". The flavors of GC-MS, electronic tongue, and electronic nose were compared with those of similar products such as seafood juice, boiled sauce, fish sauce, and shrimp oil. The results showed that the main flavors of this product are mushroom, umami, salty meat soup, fat, and baking flavors. The taste is similar to that of shrimp oil. It has the advantages of no need for additional freshening agents, a strong salty and umami flavor, low salt content, and good overall taste. |
参考文献: |
[1] 边昊,陈柏宇,杜金晶,等. 罗非鱼加工副产物速酿鱼露发酵过程中呈味物质分析[J]. 食品与发酵工业, 2020, 46(13): 255-261. [2] 蔡施平,李静蕊,易沄昕,等. 热反应肉味香精风味特性及形成机理[J]. 中国食品添加剂, 2023, 34(11): 229-235. [3] 曹荣,赵玲,孙慧慧,等. 南极磷虾 (Euphausia superba) 与脊尾白虾 (Exopalaemon carinicauda) 营养学特征分析及鲜味评价[J]. 食品科学, 2018, 39(04): 149-153. [4] 陈瑶,朱凯悦,张玉莹,等. 基于气相-离子迁移谱分析不同品种鱼子酱挥发性成分差异[J]. 食品与发酵工业, 2021, 47(24): 235-241. [5] 陈丽兰,陈祖明,袁灿. 郫县豆瓣炒制后挥发性风味物质的分析[J]. 中国调味品, 2020, 45(4): 177-180. [6] 陈瑜,马剑锋,许丹,等. 基于两步水解法制备三疣梭子蟹调味品的酶解工艺优化研究[J]. 浙江大学学报(农业与生命科学版), 2022, 48(3): 321-335. [7] 程玉. 酶解法制备海鲜菇调味料的研究[D]. 浙江大学, 2013. [8] 崔亚菲. 南极磷虾酶解工艺优化及风味成分分析[D]. 山东农业大学, 2018. [9] 丁浩宸,李栋芳,张燕平,等. 南极磷虾虾仁与4种海虾虾仁挥发性风味成分对比[J]. 食品与发酵工业, 2013, 39(10): 57-62. [10] 都荣强,王天泽,杜文斌,等. 猪肉不同蛋白酶解呈味组分及热反应风味物质比较[J]. 中国食品学报, 2017, 17(10): 211-219. [11] 段静瑶,王禹,王志龙,等. 美拉德反应在水产制品中的应用[J]. 中国调味品, 2024, 49(02): 199-202. [12] 付雪媛,郭晓华,董浩,等. 不同工艺下北极甜虾头调味基料的特征风味分析[J]. 中国调味品, 2023, 48(4): 90-95. [13] 高娟,杜佳馨,吴限,等. 羊肚菌酶解液制备美拉德反应肉味调味基料[J]. 食品科学, 2020, 41(24): 242-250. [14] 盖雪蕾. 南极磷虾抗菌肽的挖掘及活性研究[D]. 齐鲁工业大学, 2023. [15] 桂海佳,任丽蓉,王晓华,等. 基于SPME-GC-MS和电子鼻技术对牛肉蛋白肽美拉德反应产物风味成分分析[J]. 中国调味品, 2023, 48(5): 160-166. [16] 郭帆. 南极磷虾营养评价及其脱氟研究[D]. 上海海洋大学, 2017. [17] 郭家刚,杨松,丁思年,等. 基于气相离子迁移谱的不同产地生姜挥发性有机物指纹图谱分析[J]. 食品科学, 2021, 42(24): 236-241. [18] 侯钰柯,陆逸峰,蒋宇飞,等. 肉杂鸡鸡骨架酶解工艺优化及其分析评价[J]. 食品工业科技, 2022, 43(9): 232-242. [19] 胡龙腾. 芝麻籽粕酶解美拉德反应制备风味物及其在低钠调味盐中的应用[D]. 合肥工业大学, 2022. [20] 金子双,陈姣,马之倩,等. 超高压结合微冻对鸡汤贮藏品质的影响[J]. 食品工业科技, 2023, .24(22): 24-29. [21] 姜璐,宫璇,郭梦雪,等. 不同加工方式对水产品挥发性风味物质影响的研究现状[J]. 广州化工, 2020, 48(5): 37-41. [22] 阚翡翡. 微生物发酵南极磷虾及其副产物综合利用的研究[D]. 中国海洋大学, 2013. [23] 刘丹. 传统发酵鲍鱼内脏低盐鱼酱油的研究[D]. 福建农林大学, 2012. [24] 刘文营,臧明伍,李享,等. 宁夏滩羊肉质量属性及与内蒙古羊肉品质差异分析[J]. 中国食品学报, 2021, 21(09): 314-327. [25] 刘云,宫向红,徐英江,等. 烟台近海3种贝类中呈味核苷酸和氨基酸的测定及比较分析[J]. 中国水产科学, 2014, (2): 351-360. [26] 李苗苗,王玉,薛勇,等. 南极磷虾虾糜热加工过程中的风味变化[J]. 食品工业科技, 2018, 39(20): 35-40. [27] 李婉君. 南极磷虾与南美白对虾营养与滋味成分比较[D]. 上海海洋大学, 2015. [28] 李文,陈万超,马海乐,等. 大球盖菇风味肽高效制备及其ACE抑制活性[J]. 中国食品学报, 2023, 23(8): 229-240. [29] 李鑫,辛松林. 响应面优化复合酶酶解罗非鱼下脚料制备海鲜风味调味液[J]. 中国调味品, 2023, 48(7): 88-90, 110. [30] 李学鹏,刘晏玮,谢晓霞,等. 热预处理对蓝蛤酶解及酶解液呈味特性的影响[J]. 食品科学, 2020, 41(2): 133-140. [31] 李玉,于海龙,姜宁,等. 不同产地香菇非挥发性滋味成分含量分析及评价[J]. 食用菌学报, 2022, 29(3): 67-80. [32] 律诗,代晹鑫,刘野,等. 食用菌鲜味强度评价及鲜味氨基酸和核苷酸提取工艺优化[J]. 食品科学技术学报, 2022, 40(1): 100-108. [33] 林钦淋,黄焰峰,方焕新,等. 海鲜菇美拉德肽的制备及其风味特性研究[J]. 食品研究与开发, 2024, 45(03): 146-155. [34] 刘莹,傅宝尚,姜鹏飞,等. 羟丙基木薯淀粉对南极磷虾混合虾糜3D打印特性及凝胶特性的影响[J]. 食品与发酵工业, 2022, 48(21): 180-187. [35] 罗岸峰,黎海彬,刘勃,等. 特色螺蛳风味调味基料的开发及其应用研究进展[J]. 轻工科技, 2023, 39(04): 26-30. [36] 罗一颖,奚艺珺,唐海霞,等. 蛋白酶种类对牡蛎酶解液挥发性风味成分的影响研究[J]. 食品工业, 2024, 45(01): 269-274. [37] 吕传萍,李学英,杨宪时,等. 南极磷虾海鲜酱油的品质评价[J]. 食品工业科技, 2012, 33(11): 161-164. [38] 马淑慧,李学军,都兴范,等. 脱脂柞蚕蛹蛋白用复合中性蛋白酶水解制备多肽的工艺条件优化试验[J]. 蚕业科学, 2017, 43(06): 991-997. [39] 宁梦华,王文利,陈高乐,等. 养殖暗纹东方鲀中7种醇提鲜味肽的鉴定及其呈鲜特性[J]. 食品科学, 2021, 42(22): 16-23. [40] 欧阳宇,赵扩权,冯莹娜,等. 美拉德反应产物的生物学活性和潜在健康风险[J]. 食品科学, 2021, 42(17): 350-362. [41] 蓬桂华,李文馨,殷勇,等. 电子鼻和电子舌在分析桑果汁风味上的应用[J]. 食品工业科技, 2020, 41(12): 234-237, 244. [42] 祁岩龙,冯怀章,于洋,等. 美拉德反应研究进展及在食品工业中的应用[J]. 食品工业, 2018, 39(03): 248-252. [43] 强宇,姜薇,刘成江,等. 风冷与冷藏过程中酱卤牛肉风味逸散行为研究[J]. 中国农业科学, 2022, 55(16): 3224-3241. [44] 秦雨,张彩凤,辛梦茹,等. 高盐稀态发酵法制作扇贝裙边海鲜酱油的工艺研究[J]. 中国酿造, 2021, 40(4): 122-126. [45] 阮秋凤. 鱼糜及鱼糜制品的特征风味成分与指纹图谱[D]. 华中农业大学, 2022. [46] 邵晨,施文正,曲映红,等. 脊尾白虾蒸制过程中品质和滋味的变化[J]. 水产科学, 2023, 42(6): 1006-1014. [47] 粟立丹,唐丹,熊得全,等. 猴头菇冬菜香辣酱配方优化及挥发性风味物质分析[J]. 中国调味品, 2023, 48(4): 176-182. [48] 孙雷,周德庆,盛晓风. 南极磷虾营养评价与安全性研究[J]. 海洋水产研究, 2008, 29(2): 57-64. [49] 孙梦,包清彬,陈晓刚,等. 还原糖和氨基酸体系制备牛肉香精的优化研究[J]. 中国调味品, 2017, 42(9): 19-25. [50] 孙翰昌,游玉明,蔡明成,等. 蒸制对斑点叉尾鮰肉挥发性风味物质的影响[J]. 重庆师范大学学报(自然科学版), 2022, 39(02): 128-134. [51] 孙梦,包清彬,彭奇,等. 天然牛肉调味品制备及其呈味氨基酸变化研究[J]. 食品科技, 2016, 41(10): 234-239. [52] 王林果,贾溅琳,张鹏程,等. 鱼味香精的制作工艺优化及风味分析[J]. 中国调味品, 2023, 48(7): 175-180, 185. [53] 王梦娟. 南极磷虾源鲜味物的研究[D]. 江苏海洋大学, 2022. [54] 王清,陈舜胜. 油爆工艺对上海熏鱼风味物质的影响[J]. 食品科学, 2019, 40(2): 171-179. [55] 王羽桐,赵银,李健,等. 植物蛋白水解及在热反应肉味基料中应用进展[J]. 食品工业科技, 2021, 42(10): 396-409. [56] 王裕玉,赵璐,郭晓华,等. 南极磷虾粉营养特性及其在水产饲料中的应用[J]. 动物营养学报, 2021, 33(12): 6601-6611. [57] 韦磊. 南极磷虾脂质提取及风味品质分析[D]. 上海海洋大学, 2019. [58] 吴丽雯,龙澜,问小龙,等. 四季豆叶富硒肽的酶法制备工艺及抗氧化活性研究[J]. 粮食与油脂, 2023, 36(8): 83-89. [59] 吴日帮,周其洋. 食源性鲜味肽的研究进展[J]. 中国调味品, 2023, 48(11): 210-214, 220. [60] 吴若彤,王兴伟,夏书芹,等. 外源氨基酸对牡蛎肽美拉德反应产物风味特性的调控作用[J]. 食品与生物技术学报, 2023, 42(3): 30-37. [61] 吴文霞,苏长玲,贺芸,等. 复合型小龙虾水煮液调味料制备与风味成分分析[J]. 食品安全质量检测学报, 2023, 14(11): 231-239. [62] 吴文霞,苏长玲,贺芸,等. 复合型小龙虾虾壳酶解液调味品开发与风味成分分析[J]. 中国食品添加剂, 2023, 34(10): 270-278. [63] 辛然,马丽鑫,刘蓉,等. 贻贝酶解液热反应香精在不同热反应条件和干燥方式下的风味变化分析[J]. 现代食品科技, 2022, 38(11): 255-263. [64] 徐静馨,陈静,唐琪,等. 梅鱼内脏酶解液美拉德反应工艺优化及挥发性物质分析[J]. 食品工业科技, 2019, 40(10): 11-17. [65] 徐永霞,李鑫晰,赵洪雷,等. 六种海水鱼类鱼汤的呈味物质比较分析[J]. 食品与发酵工业, 2021, 47(21): 240-245. [66] 许丹,方益,何鹏飞,等. 美拉德反应对南极磷虾酶解液中非挥发性物质的影响[J]. 食品研究与开发, 2019, 40(2): 41-46. [67] 薛东,易宇文,夏翠群,等. 基于电子鼻和气相色谱-质谱法结合相对气味活度值分析植物油对红油辣椒气味的影响[J]. 食品安全质量检测学报, 2023, 14(22): 241-251. [68] 肖群飞,范梦蝶,赵健,等. 猪五花肉炖煮肉汤香气物质的分析鉴定[J]. 食品工业科技, 2017, 38(22): 273-279. [69] 徐晓斌,姜咸彪,滕绘云,等. 鸡骨泥酶解蛋白香精制备工艺研究[J]. 中国食品工业, 2023, (20): 102-105. [70] 王海丽,关鑫,唐源,等. 热反应牛骨香精酶解工艺优化及关键气味化合物鉴定[J]. 食品科学技术学报, 2024, 42(01): 126-142. [71] 王万勇,刘怡锦,谢宁. 南极磷虾捕捞加工船及装备发展现状和趋势[J]. 船舶工程, 2020, 42(07): 33-39. [72] 韦磊,施文正,汪之和,等. 南极海域3~8月份南极磷虾挥发性物质变化[J]. 食品工业科技, 2019, 40(24): 213-218. [73] 杨春华,邢文静,陈凤莲,等. 基于深度酶解花生蛋白制备增咸酶解液的工艺优化[J]. 食品安全质量检测学报, 2023, 14(22): 65-73. [74] 杨凯莹,潘创,郝淑贤,等. 基于LC-MS代谢组学解析凡纳滨对虾在微冻贮藏过程中的代谢变化与品质的相关性[J]. 大连海洋大学学报, 2023, 38(5): 874-884. [75] 杨宁,张沙沙,周锫,等. 兰茂牛肝菌酶解产物调味油美拉德反应增香工艺优化及电子鼻分析[J]. 食品工业科技, 2024, 1-10. [76] 杨肖,孔琰,丁奇,等. 加盐方式对鸡汤中呈味物质的影响分析[J]. 精细化工, 2018, 35(7): 1196-1200, 1260, 1261. [77] 姚梦珂,张绵松,赵福江,等. 南极磷虾蛋白质营养及利用研究进展[J]. 食品研究与开发, 2021, 42(9): 170-175. [78] 姚玉静,杨昭,黄佳佳,等. 乙醇萃取3种酶解产物鲜味肽的研究[J]. 食品与机械, 2018, 34(3): 156-161, 220. [79] 袁灿,何莲,胡金祥,等. 基于电子舌和电子鼻结合氨基酸分析鱼香肉丝调料风味的差异[J]. 食品工业科技, 2022, 43(9): 48-55. [80] 昝博文,王卫,唐丽,等. 调理肉制品风味形成机制及其调控研究进展[J]. 中国食品添加剂, 2023, 34(2): 307-316. [81] 詹炜君,金星鹏,陈俪锟,等. 马鲛鱼黄嘌呤氧化酶抑制肽的制备工艺优化及抗氧化活性研究[J]. 食品安全质量检测学报, 2023, 14(22): 278-287. [82] 张迪. 美拉德反应改良南极磷虾酶解产物风味的研究[D]. 广东海洋大学, 2017. [83] 张浩,邓静,唐英明,等. 基于模糊综合评价法对不同部位牦牛肉特征及挥发性化合物成分分析[J]. 中国调味品, 2023, 48(10): 172-178, 183. [84] 章雪琴,吉宏武,张迪,等. 南极磷虾微生物复合发酵制备呈味基料的工艺优化[J]. 食品与发酵工业, 2018, 44(3): 107-113. [85] 赵永强,王安凤,陈胜军,等. 米曲霉和鲁氏酵母协同发酵优化合浦珠母贝肉酶解液风味[J]. 食品与发酵工业, 2019, 45(15): 115-120. [86] 郑爽,姜晓明,王荟凌,等. 南极磷虾调味粉的研制及其感官评价[J]. 中国调味品, 2018, 43(3): 75-79, 87. [87] 朱清清,马瑞娟,陈剑锋,等. 响应面法优化鱿鱼皮蛋白肽的制备工艺及其理化性质分析[J]. 食品工业科技, 2024, 1-10. [88] 朱亚军,吴浩然,林琳,等. 酶解河蟹边角料制备调味汁的加工工艺研究[J]. 中国酿造, 2021, 40(12): 180-187. [89] 张历. 基于美拉德反应的真姬菇调味品的研究[D]. 福建农林大学, 2015. [90] 张根生,李思锦,田阳,等. 低分子糖对肉制品品质影响研究进展[J]. 中国食品添加剂, 2024, 35(1): 279-286. [91] 张庆春,余晓婉,相兴伟,等. 复配酶法制备南极磷虾鲜味酶解液的工艺优化[J]. 食品工业科技, 2022, 43(2): 195-205. [92] Bai J, Fan Y, Zhu L, et al. Characteristic flavor of Antarctic krill (Euphausia superba) and white shrimp (Penaeus vannamei) induced by thermal treatment[J]. Food Chemistry, 2022, 378, 132074. [93] Camacho C, Correia T, Teixeira B, et al. Nucleotides and free amino acids in sea urchin Paracentrotus lividus gonads: Contributions for freshness and overall taste[J]. Food Chemistry, 2023, 404, 134505. [94] Chang R, Zhou Z, Dong Y, et al. Sensory-guided isolation, identification, and active site calculation of novel umami peptides from ethanol precipitation fractions of fermented grain wine (Huangjiu)[J]. Foods, 2023, 12(18): 3398. [95] Chen D, Chen W, Li W, et al. Effects of continuous enzymolysis on the umami characteristics of Lentinula edodes and the flavor formation mechanism of umami peptides[J]. Food Chemistry, 2023, 420, 136090. [96] Chen K, Yang X, Huang Z, et al. Modification of gelatin hydrolysates from grass carp (Ctenopharyngodon idellus) scales by Maillard reaction: Antioxidant activity and volatile compounds[J]. Food Chemistry, 2019, 29(5): 569-578. [97] Chen P, Xiao X, Wang X, et al. Electronic detection technology combined with sensory analysis reveals the impact of different thermal processing methods on Coix seeds[J]. Journal of Food Measurement and Characterization, 2023, 17(4): 3338-3353. [98] Chen Q, Zhang Y, Jing L, et al. Changes in protein degradation and non-volatile flavor substances of swimming crab (portunus trituberculatus) during steaming[J]. Foods, 2022, 11(21): 3502. [99] Chen Y, Chen H, Cui D, et al. Fast and non-destructive profiling of commercial coffee aroma under three conditions (beans, powder, and brews) using GC-IMS[J]. Molecules, 2022, 27(19): 6262. [100] Cho K, Kim M, Jeong G, et al. Optimization of protease treatment conditions for Chlorella pyrenoidosa protein extraction and investigation of its potential as an alternative protein source[J]. Foods, 2024, 13(3): 366. [101] Choi J, Jang J, Son D, et al. Antarctic krill oil diet protects against lipopolysaccharide-induced oxidative stress, neuroinflammation and cognitive impairment[J]. International Journal of Molecular Sciences, 2017, 18(12): 2554. [102] Cristaldi M, Anfuso C D, Spampinato G, et al. Comparative efficiency of lutein and astaxanthin in the protection of human corneal epithelial cells in vitro from blue-violet light photo-oxidative damage[J]. Applied Sciences, 2022, 12(3): 1268. [103] Dajanta K, Apichartsrangkoon A, Chukeatirote E. Volatile profiles of thua nao, a Thai fermented soy product[J]. Food Chemistry, 2011, 125(2): 464-470. [104] Ding Y, Yan C, Dai W, et al. Flavor improving effects of cysteine in xylose-glycine-fish waste protein hydrolysates (FPHs) Maillard reaction system[J]. Bioresources and Bioprocessing, 2023, 10(1): 95. [105] Du M, Yu W, Ding N, et al. Antioxidant, aroma, and sensory characteristics of Maillard reaction products from Urechis unicinctus hydrolysates: development of food flavorings[J]. Frontiers in Nutrition, 2024, 11, 1325886. [106] Fan Y, Li Z, Xue Y, et al. Identification of volatile compounds in Antarctic krill (Euphausia superba) using headspace solid-phase microextraction and GC-MS[J]. International Journal of Food Properties, 2017, 20(sup1): S820-S829. [107] Fang D, Wang C, Deng Z, et al. Microflora and umami alterations of different packaging material preserved mushroom (Flammulina filiformis) during cold storage[J]. Food Research International, 2021, 147, 110481. [108] Fu B, Xu X, Zhang X, et al. Identification and characterisation of taste-enhancing peptides from oysters (Crassostrea gigas) via the Maillard reaction[J]. Food Chemistry, 2023, 424, 136412. [109] Gan R, He Y, Li Y. Structural characteristics of taste active peptides in protein hydrolysates from tilapia by-products[J]. Journal of Food Measurement and Characterization, 2022, 16(2): 1674-1687. [110] Gao J, Fang D, Muinde Kimatu B, et al. Analysis of umami taste substances of morel mushroom (Morchella sextelata) hydrolysates derived from different enzymatic systems[J]. Food Chemistry, 2021, 362, 130192. [111] Garcia-Hernandez C, Salvo-Comino C, Martin-Pedrosa F, et al. Analysis of red wines using an electronic tongue and infrared spectroscopy. Correlations with phenolic content and color parameters[J]. LWT - Food Science and Technology, 2020, 118, 108785. [112] Geng H, Chen L, Wang S, et al. Analysis of volatile compounds contributing to distinctive odour of silver carp (Hypophthalmichthys molitrix) surimi[J]. International Journal of Food Science & Technology, 2022, 57(12): 7774-7786. [113] Ghasemi-Varnamkhasti M, Mohtasebi S S, Rodríguez-Méndez M L, et al. Electronic and bioelectronic tongues, two promising analytical tools for the quality evaluation of non alcoholic beer[J]. Trends in Food Science & Technology, 2011, 22(5): 245-248. [114] Harada-Padermo S D S, Dias-Faceto L S, Selani M M, et al. Umami Ingredient: Flavor enhancer from shiitake (Lentinula edodes) byproducts[J]. Food Research International, 2020, 137, 109540. [115] He W, Hu X, Zhao L, et al. Evaluation of Chinese tea by the electronic tongue: Correlation with sensory properties and classification according to geographical origin and grade level[J]. Food Research International, 2009, 42(10): 1462-1467. [116] Hou H, Liu C, Lu X, et al. Characterization of flavor frame in shiitake mushrooms (Lentinula edodes) detected by HS-GC-IMS coupled with electronic tongue and sensory analysis: Influence of drying techniques[J]. LWT - Food Science and Technology, 2021, 146, 111402. [117] Hou L, Xie J, Zhao J, et al. Roles of different initial Maillard intermediates and pathways in meat flavor formation for cysteine-xylose-glycine model reaction systems[J]. Food Chemistry, 2017, 23(2): 135-144. [118] Hu M, Wang S, Liu Q, et al. Flavor profile of dried shrimp at different processing stages[J]. LWT - Food Science and Technology, 2021, 146, 111403. [119] Hu M, Xue Y, Zhao L, et al. Comparison of flavor substances in dried shrimp products processed by Litopenaeus Vannamei from two aquaculture patterns[J]. Journal of Ocean University of China, 2022, 21(6): 1682-1690. [120] Huang X, Wang P, Xue W, et al. Preparation of meaty flavor additive from soybean meal through the Maillard reaction[J]. Food Chemistry: X, 2023, 19, 100780. [121] Ji J, Zhang Y, Wang D, et al. Impact of seed-roasting treatment on polycyclic aromatic hydrocarbons, 3-MCPD esters, heterocyclic amines and volatile components formation in sunflower oil[J]. LWT - Food Science and Technology, 2023, 185, 115121. [122] Jiang M, Lan S, Wang Z, et al. Analysis of the volatile components in different parts of three Ferula species via combined DHSA-GC-MS and multivariate statistical analysis[J]. LWT - Food Science and Technology, 2022, 167, 113846. [123] Jiang Q, Li S, Xu Y, et al. Nutrient compositions and properties of Antarctic krill (Euphausia superba) muscle and processing by-products[J]. Journal of Aquatic Food Product Technology, 2016, 25(3): 434-443. [124] Jin W, Fan X, Jiang C, et al. Characterization of non-volatile and volatile flavor profiles of Coregonus peled meat cooked by different methods[J]. Food Chemistry: X, 2023, 17, 100584. [125] Kang M W, Chung S J, Lee H S, et al. The sensory interactions of organic acids and various flavors in ramen soup systems[J]. Journal of Food Science, 2007, 72(9): 112-120.. [126] Kim N. Production of wheat gluten hydrolyzates by enzymatic process at high pressure[J]. Food Science and Biotechnology, 2017, 26(6): 1587-1593. [127] Kim Y, Park J, Park H, et al. Development of reaction flavors with enzymatic hydrolysate of krill Euphausia superba in ramen sauce[J]. Fisheries and Aquatic Sciences, 2014, 17(4): 403-408. [128] Ku S, Kim J, Chun Y, et al. Anti-osteoarthritic effects of Antarctic krill oil in primary chondrocytes and a surgical rat model of knee osteoarthritis[J]. Marine Drugs, 2023, 21(10): 513. [129] Laohakunjit N, Selamassakul O, Kerdchoechuen O. Seafood-like flavour obtained from the enzymatic hydrolysis of the protein by-products of seaweed (Gracilaria sp.)[J]. Food Chemistry, 2014, 15(8): 162-170. [130] Lee G H, Lee S Y, Chae J Y, et al. Antarctic krill oil from Euphausia superba ameliorates carrageenan-induced thrombosis in a mouse model[J]. International Journal of Molecular Sciences, 2023, 24(24): 17440. [131] Lee G, Jung M, Nam J, et al. Preparation and taste profiling of the enzymatic protein hydrolysate from a by-product of red snow crab processing as a natural seasoning compound[J]. Foods, 2022, 11(23): 3911. [132] Li H, Sun J, He X, et al. Study on production technology and volatile flavor analysis of fragrance Zanthoxylum seasoning oil[J]. Foods, 2023, 12(11): 2173. [133] Li J, Ma Y, Xiao F, et al. Formation and conversion of flavour related compounds of thermal cooked Ruditapes philippinarum soup[J]. International Journal of Food Science & Technology, 2023, 58(12): 6421-6431. [134] Li J, Zhang Q, Peng B, et al. Exploration on the quality changes and flavour characteristics of freshwater crayfish (Procambarus clarkia) during steaming and boiling[J]. LWT - Food Science and Technology - Food Science and Technology, 2023, 190, 115582. [135] Li Y, Leng W, Xue J, et al. A multi-omics-based investigation into the flavor formation mechanisms during the fermentation of traditional Chinese shrimp paste[J]. Food Research International, 2023, 166, 112585. [136] Liu C, Meng F, Tang X, et al. Comparison of nonvolatile taste active compounds of wild and cultured mud crab Scylla paramamosain[J]. Fisheries Science, 2018, 84(5): 897-907. [137] Liu L, Zhao Y, Zeng M, et al. Research progress of fishy odor in aquatic products: From substance identification, formation mechanism, to elimination pathway[J]. Food Research International, 2024, 178, 113914. [138] Liu L, Liu C C, Li J L. comparison of biochemical composition and nutritional value of Antarctic krill (Euphausia Superb) with several species of shrimps[J]. Advanced Materials Research, 2011, 361-363,799-803. [139] Marušić N, Vidaček S, Janči T, et al. Determination of volatile compounds and quality parameters of traditional Istrian dry-cured ham[J]. Meat Science, 2014, 96(4): 1409-1416. [140] Mekkes J R, Le Poole I C, Das P K, et al. Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: a double‐blind, placebo‐controlled study in a standardized animal wound model[J]. Wound Repair and Regeneration, 1998, 6(1): 50-57. [141] Ng K L, Ayob M K, Said M, et al. Optimization of enzymatic hydrolysis of palm kernel cake protein (PKCP) for producing hydrolysates with antiradical capacity[J]. Industrial Crops and Products, 2013, 4(3): 725-731. [142] Nishida Y, Nawaz A, Hecht K, et al. Astaxanthin as a novel mitochondrial regulator: a new aspect of carotenoids, beyond antioxidants[J]. Nutrients, 2022, 14(1): 107. [143] Peinado I, Koutsidis G, Ames J. Production of seafood flavour formulations from enzymatic hydrolysates of fish by-products[J]. LWT - Food Science and Technology, 2016, 6(6): 444-452. [144] Pratama A I, Lioe H N, Yuliana N D, et al. Umami compounds present in umami fraction of acid-hydrolyzed Spirulina (Spirulina platensis)[J]. Algal Research (Amsterdam), 2022, 66, 102764. [145] Qian M, Zheng M, Zhao W, et al. Effect of marinating and frying on the flavor of braised pigeon[J]. Journal of Food Processing and Preservation, 2021, 45(3): 71-78. [146] Qiu D, Duan R, Wang Y, et al. Effects of different drying temperatures on the profile and sources of flavor in semi-dried golden pompano (Trachinotus ovatus)[J]. Food Chemistry, 2023, 40(4): 111-113. [147] Qiu D, Gan R, Feng Q, et al. Flavor formation of tilapia byproduct hydrolysates in Maillard reaction[J]. Journal of Food Science, 2024, 89(3): 1554-1566. [148] Qiu J, Li H, Liu Y, et al. Changes in flavor and biological activities of Lentinula edodes hydrolysates after Maillard reaction[J]. Food Chemistry, 2024, 431, 137138. [149] Ren J, Yin B, Guo Z, et al. Astaxanthin alleviates PM(2.5)-induced cardiomyocyte injury via inhibiting ferroptosis[J]. Cellular & Molecular Biology Letters, 2023, 28(1): 95. [150] Ren P, Yue H, Tang Q, et al. Astaxanthin exerts an adjunctive anti-cancer effect through the modulation of gut microbiota and mucosal immunity[J]. International Immunopharmacology, 2024, 128, 111553. [151] Rosa Da Silva L, de Farias Marques A D J, Abreu T L, et al. Effect of thermal processing and enzymatic hydrolysis on the formation of a new industrial flavoring agent from goat bones[J]. Food Science & Technology, 2024, 191, 115613. [152] Saengsuk N, Sangsawad P, Paengkoum P, et al. lipid and volatile profiles of various goat primal cuts: aspects of nutritional value and flavor/taste attributes[J]. Foods, 2024, 13(3): 492. [153] Schlossareck C, Ross C F. Electronic tongue and consumer sensory evaluation of spicy paneer cheese[J]. Journal of Food Science, 2019, 84(6): 1563-1569. [154] Song N, Tan C, Huang M, et al. Transglutaminase cross-linking effect on sensory characteristics and antioxidant activities of Maillard reaction products from soybean protein hydrolysates[J]. Food Chemistry, 2013, 136(1): 144-151. [155] Su D, He J, Zhou Y, et al. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics[J]. Food Chemistry, 2022, 373, 131587. [156] Sun J, Mao X. An environmental friendly process for Antarctic krill (Euphausia superba) utilization using fermentation technology[J]. Journal of Cleaner Production, 2016, 12(7): 618-623. [157] Sun Y, Zhou Y, Ren Y, et al. Preparation and characterization of flavored sauces from Chinese mitten crab processing by-products[J]. Foods, 2023, 12(1): 51. [158] Wang J. Quality evaluation of live eastern oyster (crassostrea virginica) based on textural profiling analysis, free amino acids analysis, and consumer sensory evaluation[J]. ProQuest Dissertations Publishing, 2015, 10(7): 143-156. [159] Wang L, Xue C, Xue Y, et al. Optimization and evaluation of a novel technique for hydrolyzing Antarctic krill (Euphausia superba) proteins[J]. Food and Bioproducts Processing, 2015, 9(4): 629-636. [160] Wang W, Huang Y, Zhao W, et al. Identification and comparison of umami-peptides in commercially available dry-cured Spanish mackerels (Scomberomorus niphonius)[J]. Food Chemistry, 2022, 380, 132175. [161] Wang Y, Cui H, Zhang Q, et al. Proline-glucose Amadori compounds: Aqueous preparation, characterization and saltiness enhancement[J]. Food Research International, 2021, 144, 110319. [162] Wei C, Thakur K, Liu D, et al. Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products[J]. Food Chemistry, 2018, 26(3): 186-193. [163] Weinstein B G, Double M, Gales N, et al. Identifying overlap between humpback whale foraging grounds and the Antarctic krill fishery[J]. Biological Conservation, 2017, 2(10): 184-191. [164] Xiao C, Wu J, Meng X, et al. Study of enzymolysis technology and microwave Maillard preparation of Litopenaeus vannamei[J]. Cyta: Journal of Food, 2019, 17(1): 137-141. [165] Xing H, Yaylayan V. Insight into isomeric diversity of glycated amino acids in Maillard reaction mixtures[J]. International Journal of Molecular Sciences, 2022, 23(7): 3430. [166] Xu W, Wang X, Jia W, et al. Dynamic changes in the major chemical and volatile components during the “Ziyan” tea wine processing[J]. LWT - Food Science and Technology, 2023, 186, 115273. [167] Yan F, Cui H, Zhang Q, et al. Small peptides hydrolyzed from pea protein and their Maillard reaction products as taste modifiers: Saltiness, umami, and kokumi enhancement[J]. Food and Bioprocess Technology, 2021, 14(6): 1132-1141. [168] Yao M, Gai X, Zhang M, et al. Two proteins prepared from defatted Antarctic krill (Euphausia superba) powder: Composition, structure and functional properties[J]. Food Hydrocolloids, 2023, 145, 109009. [169] Yu B, Wu W, Wang B, et al. Maillard-reacted peptides from glucosamine-induced glycation exhibit a pronounced salt taste-enhancing effect[J]. Food Chemistry, 2022, 374, 131776. [170] Yu F, Wang H, Jiang X, et al. A new multistage counter current extraction method of removing fluoride from defatted Antarctic krill powder[J]. Journal of Food Processing and Preservation, 2020, 44(5): 156-162. [171] Zhan S, Liu Z, Su W, et al. Role of roasting in the formation of characteristic aroma of wuyi rock tea[J]. Food Control, 2023, 147, 109614. [172] Zhang B, Guo X, Lin J, et al. Effect and synergy of different exogenous additives on gel properties of the mixed shrimp surimi (Antarctic krill and white shrimp)[J]. International Journal of Food Science & Technology, 2022, 57(8): 5338-5348. [173] Zhang J, Kang D, Zhang W, et al. Recent advantage of interactions of protein-flavor in foods: Perspective of theoretical models, protein properties and extrinsic factors[J]. Trends in Food Science & Technology, 2021, 11(1): 405-425. [174] Zhang J, Tu Z, Hu Z, et al. Efficient preparation of oyster hydrolysate with aroma and umami coexistence derived from ultrasonic pretreatment assisted enzymatic hydrolysis[J]. Food Chemistry, 2024, 437, 137881. [175] Zhang N, Yang Y, Wang W, et al. A potential flavor seasoning from aquaculture by-products: An example of Takifugu obscurus[J]. LWT - Food Science and Technology, 2021, 151, 112160. [176] Zhang Y, Ma X, Dai Z. Comparison of nonvolatile and volatile compounds in raw, cooked, and canned yellowfin tuna (Thunnus albacores)[J]. Journal of Food Processing and Preservation, 2019, 43(10): 90-99. [177] Zheng W, Wang X, Cao W, et al. E-configuration structures of EPA and DHA derived from Euphausia superba and their significant inhibitive effects on growth of human cancer cell lines in vitro[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids, 2017, 11(7): 47-53. [178] Zhu K, Zhu Z, Xu S, et al. Controlled synthesis of α-Fe2O3 nanocubes for gas-sensing applications: Feasibility of assessing crucian carp (Carassius auratus) freshness via trimethylamine levels[J]. Food Chemistry, 2024, 44, 1138361. [179] Zhu W, Zhu L, Yang W, et al. Optimization of the enzymatic hydrolysis assisted by ultra-high pressure processing of Alaska pollock frame for improving flavour[J]. Journal of Aquatic Food Product Technology, 2020, 29(6): 567-576. [180] Zhang L, Sun X, Lu X, et al. Characterization of peanut protein hydrolysate and structural identification of umami-enhancing peptides[J]. Molecules, 2022, 27(9): 172-183 |
中图分类号: | TS2 |
开放日期: | 2024-06-19 |