中文题名: | 江苏句容稻飞虱灯诱种群适合度与细菌群落关联性研究 |
姓名: | |
学号: | 2022102078 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090402 |
学科名称: | 农学 - 植物保护 - 农业昆虫与害虫防治 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 昆虫生态与预测预报 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-05-15 |
答辩日期: | 2025-05-28 |
外文题名: | Study on Fitness of Light-trapped Populations of Rice Planthoppers and Its Association with Bacterial Community in Jurong, Jiangsu Province |
中文关键词: | |
外文关键词: | Rice planthopper ; Light-trapped population ; Fitness ; Microbial diversity ; Monitoring and warning |
中文摘要: |
褐飞虱Nilaparvata lugens与白背飞虱Sogatella furcifera是我国水稻产区重要的迁飞性害虫,其长翅型成虫的远距离迁飞是其扩散危害的关键原因。种群适合度是衡量昆虫对环境的适应能力与危害大小的核心指标。已有研究表明,昆虫体内的微生物与种群的适合度存在密切联系,特定微生物的存在可提高种群的适合度。昆虫体内微生物的组成与其取食的环境条件有关。作为迁飞性的稻飞虱,不同虫源地种群很可能会携带不同的微生物群落,引起不同年份和时段的迁入虫源适合度的差异,从而导致稻飞虱种群数量或发生程度在时空上的显著不同。基于此假设,本文在江苏句容采用高空灯定点监测高空迁飞种群的发生动态,利用地面灯在不同时段诱集稻飞虱进行适合度测定,采用微生物测序分析不同迁入时段稻飞虱体内细菌群落的组成与多样性及其与种群适合度的关系等。研究得到以下结果: 1. 江苏句容不同时段高空灯诱稻飞虱的数量、种群性比存在差异 在2022-2024年利用高空灯诱方法在江苏句容进行了稻飞虱灯诱虫量的连续监测。结果表明,白背飞虱年际间虫量波动较大,主要发生期稳定。2023年虫量最高,白背飞虱每年有3-4个高峰期,主要发生期在7-8月(占总诱虫量94%)。 褐飞虱年际间主要发生期存在波动,2023年虫量最高,褐飞虱每年有1-4个高峰期,2022、2024年主要发生期在9-10月(占总量74%)。但2023年主发生期为7-8月(占总量79%)。 白背飞虱、褐飞虱年际间、月际间灯诱种群性别组成存在显著差异,种群组成呈现雌虫数量更高的特征,2022年各月份间雌性比无显著差异;2023年9月、2024年8月雌虫占比显著低于同年其他月份。褐飞虱种群组成呈现雄虫数量更高的特征,2024年褐飞虱雌性比显著高于2022、2023年,但每年各月际间雌性比均无显著差异。 以小时为单位,对每晚高空灯诱虫量的时间分布进行分析表明:2022年白背飞虱和褐飞虱、2023年8月、9月白背飞虱均表现出明显“晨峰型”:5:00-6:00时段所诱虫量显著高于其他各个时间段。2024年白背飞虱和褐飞虱在各时段的诱虫量差异不显著。
2. 江苏句容不同时期灯诱稻飞虱种群的适合度存在差异 研究结果表明,2023年7月18日灯诱的白背飞虱种群的繁殖力、寿命、存活率均显著低于8月15日、8月23日的;2024年7月6-7日白背飞虱繁殖力、寿命、存活率均显著低于7月14日、9月12日的。2023年8月15和23日诱集的白背飞虱F1代雌性比率显著高于同年7月18日的;2024年7月20日至8月20日诱集成虫所产后代的雌性比率最高,显著高于7月6日至16日和8月2至9月12日的。 2023年7月30日灯诱褐飞虱的存活率、寿命显著低于同年9月12日;2024年9月24日灯诱褐飞虱的存活率、寿命显著低于同年9月25日的。不同时期灯诱褐飞虱的繁殖力、F1代长翅率、性比均无显著差异。 3. 不同时段高空灯诱稻飞虱体内细菌群落多样性及其与适合度的关系 采用16S rRNA 基因测序方法对2022-2024年不同时段的高空灯诱白背飞虱和褐飞虱体内细菌组成和丰度进行了测定和比较,结果表明,白背飞虱体内优势菌门为假单胞菌门Pseudomonadota(平均相对丰度88.1%),占比最高的两个属为沃尔巴克氏体Wolbachia和Cardinium属(平均相对丰度90.8%)。褐飞虱体内优势菌门为变形菌门Proteobacteria(相对丰度92.9%),占比最高两个属为杀雄菌属Arsenophonus(相对丰度54.4%)、沃尔巴克氏体属Wolbachia(相对丰度35.1%)。 2023.7.5-6时期的白背飞虱体内细菌多样性、假单胞菌门Pseudomonadota相对丰度、Cardinium属相对丰度均显著低于其他时期。非度量多维尺度分析(NMDS)表明,2023.7.5-6时期的白背飞虱体内细菌群落结构相似性与其他时期显著分离。不同时期褐飞虱体内细菌丰度无显著差异,非度量多维尺度分析(NMDS)表明,不同时期褐飞虱体内细菌群落结构相似性未显著分离。 不同时期白背飞虱灯诱种群F1代长翅率与体内细菌群落(OTUs)的香农指数呈显著负相关;白背飞虱寿命与其体内Cardinium属相对丰度显著正相关;F1代长翅率与Cardinium属相对丰度显著负相关。 总之,近三年江苏句容不同时期稻飞虱灯诱种群存在数量、性别组成、时间分布、适合度、体内细菌等多方面的差异,并且细菌群落丰度与种群适合度存在一定关联性,研究结果可为建立基于迁入数量、适合度和细菌组成的稻飞虱种群监测预警方法提供参考。 |
外文摘要: |
The brown planthopper Nilaparvata lugens and the white-backed planthopper Sogatella furcifera are important migratory pests in China's rice-growing areas. The long-distance migration of their long-winged adults is the key reason for their spread and damage. Population fitness is the core indicator for measuring the adaptability of insects to the environment and the degree of harm. Existing studies have shown that the microorganisms in insects are closely related to the fitness of the population, and the presence of specific microorganisms can improve the fitness of the population. The composition of microorganisms in insects is related to the environmental conditions in which they feed. As migratory rice planthopper species, populations in different source areas are likely to carry different microbial communities, causing differences in the suitability of migratory sources in different years and periods, thereby resulting in significant differences in the population size or occurrence degree of rice planthopper species in time and space. Based on this assumption, in this paper, high-altitude lamps were used to monitor the occurrence dynamics of high-altitude migratory populations at fixed points in Jurong, Jiangsu Province. Ground lamps were used to trap rice planthoppers at different times for fitness determination. Microbial sequencing was adopted to analyze the composition and diversity of bacterial communities in rice planthoppers at different migration times and their relationship with population fitness, etc. The following results were obtained from the research: 1 The number and population composition of rice planthoppers lured by high-altitude lights in Jurong, Jiangsu Province vary at different times. From 2022 to 2024, continuous monitoring of the amount of rice planthopper lured by high-altitude light traps was conducted in Jurong, Jiangsu Province. The results show that the interannual population of the white-backed planthopper fluctuates greatly, while the main occurrence period is stable. The white-backed planthopper has the highest insect population in 2023. There are 3 to 4 peak periods each year, with the main occurrence period being from July to August (accounting for 94% of the total attracted insects). The main occurrence period of brown planthoppers varies from year to year. The highest number of insects will occur in 2023. Brown planthoppers have 1 to 4 peak periods each year. The main occurrence period in 2022 and 2024 is from September to October (accounting for 74% of the total). However, the main occurrence period in 2023 was July and August (accounting for 79% of the total). There were significant differences in the sex composition of the light-induced populations of the white-backed planthopper and the brown planthopper between years and months. The population composition showed a higher number of female insects. There was no significant difference in the female ratio among different months in 2022. The proportion of female insects in September 2023 and August 2024 was significantly lower than that in other months of the same year. The population composition of brown planthoppers shows a higher number of male insects. The female ratio of brown planthoppers in 2024 was significantly higher than that in 2022 and 2023, but there was no significant difference in the female ratio among the months of each year. The analysis of the time distribution of the amount of insects attracted by high-altitude lights each night on an hourly basis shows that the white-backed planthoppers and brown planthoppers in 2022, as well as the white-backed planthoppers in August and September 2023, all exhibited a distinct "morning peak type" : the amount of insects attracted during the period from 5:00 to 6:00 was significantly higher than that in other time periods. In 2024, there was no significant difference in the amount of insects attracted by white-backed planthoppers and brown planthoppers at different times. The suitability of the population of rice planthoppers lured by lamps varies in different periods in Jurong, Jiangsu Province. The research results show that the reproductive capacity, lifespan and survival rate of the white-backed planthopper population lured by light on July 18, 2023 were significantly lower than those on August 15 and August 23. The reproductive capacity, lifespan and survival rate of the white-backed planthopper on July 6-7, 2024 were significantly lower than those on July 14 and September 12. The proportion of F1 female white-backed planthoppers collected on August 15 and 23, 2023 was significantly higher than that on July 18 of the same year. The female ratio of the offspring produced by the induced integra was the highest from July 20 to August 20, 2024, significantly higher than that from July 6 to 16 and from August 2 to September 12. The survival rate and lifespan of the brown planthopper lured by light on July 30, 2023 were significantly lower than those on September 12 of the same year. The survival rate and lifespan of the brown planthopper lured by light on September 24, 2024 were significantly lower than those on September 25 of the same year. There were no significant differences in the reproductive capacity, F1 generation wing length rate and sex ratio of the light-induced brown planthopper in different periods. The diversity of bacterial communities in high-altitude light-induced rice planthoppers at different times and its relationship with suitability. The bacterial composition and abundance in high-altitude light-induced whiteflies and brown planthoppers at different periods from 2022 to 2024 were determined and compared by using the 16S rRNA gene sequencing method. The results indicated that the dominant bacterial phylum in whiteflies was Pseudomonadota (with an average relative abundance of 88.1%). The two genera with the highest proportions were Wolbachia and Cardinium (with an average relative abundance of 90.8%). The dominant phylum in the brown planthopper is Proteobacteria (relative abundance 92.9%), and the two genera with the highest proportions are Arsenophonus (relative abundance 54.4%) and Wolbachia (relative abundance 35.1%). The microbial diversity, the relative abundance of Pseudomonadota, and the relative abundance of Cardinium in the white-backed planthopper during the period from July 5th to 6th, 2023, were significantly lower than those in other periods. Non-metric multi-dimensional scaling analysis (NMDS) indicated that the microbial community structure similarity in the white-backed planthopper during the period of 7.5-6, 2023, was significantly isolated from that of other periods. There was no significant difference in the microbial abundance of brown planthoppers in different periods. Non-metric multi-dimensional scaling analysis (NMDS) indicated that the similarity of microbial community structure in brown planthoppers in different periods was not significantly separated. The winglength rate of the F1 generation of the white-backed planthopper light-induced population at different periods was significantly negatively correlated with the Shannon index of the in vivo microbial community (OTUs). The lifespan of the white-backed planthopper was significantly positively correlated with the relative abundance of the genus Cardinium in its body. The winglength rate of the F1 generation was significantly negatively correlated with the relative abundance of the genus Cardinium. In conclusion, in the past three years, the light-induced populations of rice planthoppers in Jurong, Jiangsu Province at different periods have shown various differences in terms of quantity, gender composition, temporal distribution, fitness, and microorganisms in the body. Moreover, there is a certain correlation between the abundance of microbial communities and the fitness of the population. The research results can provide a reference for establishing a population monitoring and early warning method for rice planthoppers based on the number of immigrants, fitness, and microbial composition. |
参考文献: |
[1]包云轩, 蒋蓉, 谢晓金, 等. 2014. 近30年气候异常对江苏省褐飞虱灾变性迁入的影响[J]. 生态学报 ,34: 7078-7092. [2]包云轩, 尚洁, 孙思思, 等. 2018. 云南省褐飞虱早期迁入虫源及其发生大气背景分析[J]. 生态学报 , 38: 5621-5635. [3]蔡磊, 贾艺凡, 温洋, 等. 2016. 稻飞虱迁飞种群的上灯行为节律研究. 应用昆虫学报 [J], 53: 604-611. [4]陈建明, 吕仲贤,郑许松,等.2003. 水稻品种对白背飞虱的耐虫性反应及稻株营养成分的变化[J]. 应用生态学报,12 : 2246-2250. [5]陈思妤, 刘丕庆 2021. 2010—2020年广西南宁稻飞虱种群动态分析. 中国植保导刊 [J], 41: 25-30. [6]陈孙杰, 徐海君 2024. 褐飞虱翅型分化调控机制的研究进展. 昆虫学报 [J], 67: 589-594. [7]陈燕, 吴碧球, 黄所生, 等. 2013. 中国南宁和越南褐飞虱不同地理种群比较. 应用生态学报 [J], 24: 190-196. [8]陈宇, 陈洋, 王渭霞, 等. 2014. 褐飞虱杀雄菌属共生菌Arsenophonus的传递方式与生物学意义初探[J]. 中国水稻科学 , 28: 92-96. [9]邓望喜 1981. 褐飞虱及白背飞虱空中迁飞规律的研究[J]. 植物保护学报,02: 73-82. [10]邓望喜, 周小尼, 李绍勤, 等. 2000. 我国褐飞虱不同地理种群的生物学比较[J]. 植物保护学报,02: 131-135. [11]邓钰, 颜克旭, 罗雅利, 等. 2025. 长沙市近3年水稻病虫害发生情况及防治建议[J]. 种子科技, 43: 130-133. [12]邓远华 2024. 常宁市水稻主要病虫害发生情况及防治建议[J]. 种子科技, 42: 114-117. [13]韩海亮, 包斐, 陈斌, 等. 2023. 性比对草地贪夜蛾交配和繁殖能力的影响[J]. 浙江农业学报, 35: 1375-1384. [14]何超, 沈登荣, 尹立红, 等. 2017. 不同性比对井上蛀果斑螟成虫寿命及生殖力的影响[J]. 植物保护, 43: 62-66+118. [15]黄保宏, 罗定荣, 刘师佳, 等. 2020. 褐飞虱趋光性的最佳波长研究[J]. 安徽科技学院学报 , 34: 18-22. [16]黄所生, 黄凤宽, 吴碧球, 等. 2014. 中国与越南褐飞虱和白背飞虱生物型研究[J]. 应用昆虫学报, 51: 525-533. [17]黄所生, 黄凤宽, 吴碧球, 等. 2011. 广西白背飞虱生物型测定[J]. 南方农业学报, 42: 46-49. [18]江曲, 杨国萍, 邓金奇, 等. 2024. 2017—2023年湖南常德水稻“两迁”害虫种群动态监测[J]. 中国植保导刊, 44: 25-32. [19]亢云龙, 田琳, 刘多文, 等. 2016. 白背飞虱研究进展[J]. 现代农业科技,19: 119-120. [20]李波, 何佳春, 万品俊, 等. 2019. 我国褐飞虱若干地理种群致害性的研究[J]. 环境昆虫学报, 41: 9-16. [21]李青,韦素美,黄凤宽 1997. 褐稻虱生物型的监测和控制对策研究简报[J]. 广西植保, 03: 6-8. [22]李威,2024. 辽河三角洲稻田不同管理方式稻飞虱种群动态[J]. 北方水稻, 54: 26-28. [23]李伟兵, 李勇峰, 阳泽民, 等. 2023. 衡阳地区稻飞虱发生特点与预警监测现状初探[J]. 生物灾害科学, 46: 326-334. [24]李香香, 杨焊, 王志伟, 等. 2011. 褐飞虱肠道细菌多样性分析[J]. 江苏农业科学, 01: 126-129. [25]李亚红, 周文文, 罗萍, 等. 2014. 云南省2013年稻飞虱发生特点及防控措施[J]. 云南农业, 09: 15-17. [26]林作晓, 黄成宇, 龙梦玲, 等. 2024. 2023年广西农作物主要病虫害发生实况[J]. 广西植保, 37: 32-44. [27]刘恩龙, 陶玫, 李强 2012. 不同种植环境稻田稻飞虱种群动态研究[J]. 云南农业大学学报(自然科学), 27: 658-664. [28]陆佳浩, 曹慧颖, 周成, 等. 2021. 2015—2020年上海松江稻飞虱发生情况分析[J]. 中国植保导刊, 41: 49. [29]罗琼, 谷云勇, 李志坚, 等. 2023. 耒阳市2000—2022年稻飞虱发生高峰期特点及防控策略[J]. 湖南农业科学, 07: 77-81. [30]罗月越, 张驰, 陶盼盼, 等. 2022. 句容市稻飞虱灯下种群发生情况分析[J]. 农业装备技术, 48: 25-28. [31]吕军, 程琴, 李超, 等. 2024. 南方水稻黑条矮缩病毒对白背飞虱内共生菌群落的影响[J]. 环境昆虫学报, 01: 1-10. [32]吕仲贤,陈建明,郑许松,等. 2000. 不同地理种群褐飞虱的抗逆性[J]. 应用生态学报, 05: 745-748. [33]吕仲贤,陈建明,郑许松,等. 2001. 不同虫源和致害性的褐飞虱体内共生菌的种群动态[J]. 华东昆虫学报,01: 44-49. [34]缪清玲, 吴加伦, 唐启义, 等. 2012. 化学元素用于识别褐飞虱不同地理种群的可行性研究[J]. 昆虫学报, 55: 535-544. [35]齐会会, 张云慧, 王健, 等. 2014. 稻飞虱及黑肩绿盲蝽在探照灯下的扑灯节律[J]. 植物保护学报, 41: 277-284. [36]屈吕宇, 楼怡寒, 黄海剑, 等. 2013. 亚洲不同地理种群褐飞虱内共生菌Wolbachia的分子检测[J]. 应用昆虫学报, 50: 1320-1327. [37]任国敏, 冯小凤, 安智燕, 等. 2024. 2008~2022年芒市稻飞虱发生特点及防治对策[J]. 中国农技推广, 40: 99-103. [38]任素丽, 尹祥杰, 郭秋, 等. 2015. 利福平与高温对Cardinium的灭活效果及其对烟粉虱寄主发育与繁殖的影响[J]. 环境昆虫学报, 37: 467-474. [39]任西明, 向聪, 雷东阳, 等. 2017. 水稻抗褐飞虱育种研究进展与展望[J]. 作物研究, 31: 453-458. [40]沈君辉,刘光杰 2003. 抗虫水稻品种上饲养的白背飞虱种群的致害性变化[J]. 中国水稻科学, s1: 89-93. [41]孙英明, 孙正明, 何恩宝, 等. 2018. 鄂西北山区水稻“两迁”害虫发生特点与防治措施[J]. 湖北植保,04: 41-43. [42]唐旭, 罗玉芳 2021. 全州县2016—2020年稻飞虱发生为害分析与防治技术探索[J]. 广西农学报, 36: 15-17. [43]陶林勇,巫国瑞 1992. 我国褐飞虱生物型监测初报[J]. 中国农业科学, 03: 9-13. [44]陶诗言, 卫捷 2006. 再论夏季西太平洋副热带高压的西伸北跳[J]. 应用气象学报, 05: 513-525. [45]汪金蓉, 赵琴植, 吴岚, 等. 2020. 临沧市2019年稻飞虱发生及防控对策[J]. 云南农业科技, s1: 61-66. [46]王桂荣,傅强, 张志涛, 等.1999. 稻褐飞虱致害性变异的研究[J]. 中国水稻科学, 04: 229-232. [47]王丽, 林作晓, 唐洁瑜, 等. 2017. 近年来广西稻飞虱发生特点及原因分析[J]. 广西植保, 30: 32-34. [48]王清清, 姚艳红, 罗莹, 等. 2022. 长沙市水稻病虫害发生情况及防控建议[J]. 湖南农业科学, 08: 58-62. [49]谢子正, 饶汉宗, 柏超 2018. 浙江省水稻“两迁”害虫发生特点及防控建议[J]. 浙江农业科学, 59: 780-782. [50]谢子正, 王晔青, 王国荣, 等. 2021. 2020年浙江省稻飞虱发生特点及原因分析[J]. 中国植保导刊, 41: 40-43. [51]杨凯, 周俊俏, 杜广祖, 等. 2017. 云南省屏边县稻飞虱发生特点及防治策略[J]. 农业开发与装备, 05: 177-178. [52]姚明勇, 王岚, 周吕, 等. 2019. 性比对叉角厉蝽成虫寿命和繁殖力的影响[J]. 山地农业生物学报, 38: 78-81. [53]俞晓平, 巫国瑞, 张志涛 1991. 褐飞虱若干地理种群的主要为害特性研究[J]. 浙江农业学报, 03: 123-126. [54]张国, 朱凤, 于居龙, 等. 2022. 2020年江苏省稻飞虱虫源地及暴发成因分析[J]. 环境昆虫学报, 44: 658-669. [55]张珏锋, 陈建明, 陈法军, 等. 2009. 褐飞虱内共生菌的分离及其26S rDNA部分序列分析[J]. 中国农业科学, 42: 2211-2216. [56]张珏锋, 吴鸿, 陈建明, 等. 2007. 一株褐飞虱内共生菌的分离及分子鉴定[J]. 中国水稻科学, 12: 551-554. [57]张珏锋, 俞叶飞, 李芳, 等. 2020. 采用MiSeq测序技术分析3种飞虱中肠内容物的菌群结构. 浙江农业学报 [J], 32: 2192-2200. [58]张清璐, 张燕, 杨景芳, 等. 2025. 性比对瓜实蝇成虫交配与繁殖的影响[J]. 环境昆虫学报, 01: 1-10. [59]钟光跃, 汪仁全, 陈辉志, 等. 2020. 抗稻飞虱种质资源研究与应用进展[J]. 农业科技通讯, 01: 211-216. [60]钟振张, 刘佳梁, 颜克旭, 等. 2024. 长沙市“两迁”害虫发生情况及防控建议. 种子科技 [J], 42: 113-115. [61]周建平, 汤露萍, 石磊 2011. 褐飞虱生物型发生情况及其生物学差异[J]. 现代农业科技, 05: 194-195. [62]朱周举 2017. 云南红河县宝华镇水稻稻飞虱发生特点及防治技术[J]. 农业工程技术, 37: 26-32. [63]Cai T, Nadal-Jimenez P, Gao Y, et al. 2024. Insecticide susceptibility in a planthopper pest increases following inoculation with cultured Arsenophonus[J]. ISME J , 12:18-20. [64]Cai T, Zhang Y, Liu Y, et al. 2021. Wolbachia enhances expression of NlCYP4CE1 in Nilaparvata lugens in response to imidacloprid stress[J]. Insect Sci , 28: 355-362. [65]Chapman J W, Nesbit R L, Burgin L E, et al. 2010. Flight orientation behaviors promote optimal migration trajectories in high-flying insects[J]. Science , 327: 682-685. [66]Chen H, Chang X L, Wang Y P, et al. 2019. The Early Northward Migration of the White-Backed Planthopper (Sogatella furcifera) is Often Hindered by Heavy Precipitation in Southern China during the Preflood Season in May and June[J]. Insects , 01:10-13. [67]Chen Y H, Bernal C C, Tan J, et al. 2011. Planthopper "adaptation" to resistant rice varieties: changes in amino acid composition over time[J]. J Insect Physiol , 57: 1375-1384. [68]Cheng D J, Hou R F 2001. Histological observations on transovarial transmission of a yeast-like symbiote in Nilaparvata lugens Stal (Homoptera, Delphacidae)[J]. Tissue Cell , 33: 273-279. [69]Dong S, Pang K, Bai X, et al. 2011. Identification of two species of yeast-like symbiotes in the brown planthopper, Nilaparvata lugens[J]. Curr Microbiol , 62: 1133-1138. [70]Du B, Zhang W, Liu B, et al. 2009. Identification and characterization of Bph14, a gene conferring resistance to brown planthopper in rice[J]. Proc Natl Acad Sci U S A , 106: 22163-22168. [71]Engel P, Moran N A 2013. The gut microbiota of insects - diversity in structure and function[J]. FEMS Microbiol Rev , 37: 699-735. [72]Fan H W, Lu J B, Ye Y X, et al. 2016. Characteristics of the draft genome of "Candidatus Arsenophonus nilaparvatae", a facultative endosymbiont of Nilaparvata lugens[J]. Insect Sci , 23: 478-486. [73]Fast E M, Toomey M E, Panaram K, et al. 2011. Wolbachia enhance Drosophila stem cell proliferation and target the germline stem cell niche[J]. Science , 334: 990-992. [74]Fujii T, Sanada-Morimuras, Matsukura K, et al. 2020. Energy Reserve Compensating for Trade-Off Between Metabolic Resistance and Life History Traits in the Brown Planthopper (Hemiptera: Delphacidae)[J]. J Econ Entomol , 113: 1963-1971. [75]Guerra P A 2011. Evaluating the life-history trade-off between dispersal capability and reproduction in wing dimorphic insects: a meta-analysis[J]. Biol Rev Camb Philos Soc , 86: 813-835. [76]Guo H, Wang N, Niu H, et al. 2021. Interaction of Arsenophonus with Wolbachia in Nilaparvata lugens[J]. BMC Ecol Evol , 21: 31. [77]Hu G, Lu M H, Reynolds D R, et al. 2019. Long-term seasonal forecasting of a major migrant insect pest: the brown planthopper in the Lower Yangtze River Valley[J]. J Pest Sci , 92: 417-428. [78]Hu G, Lu M H, Tuan H A, et al. 2017. Population dynamics of rice planthoppers, Nilaparvata lugens and Sogatella furcifera (Hemiptera, Delphacidae) in Central Vietnam and its effects on their spring migration to China[J]. Bull Entomol Res , 107: 369-381. [79]Hunter M S, Perlman S J, Kelly S E 2003. A bacterial symbiont in the Bacteroidetes induces cytoplasmic incompatibility in the parasitoid wasp Encarsia pergandiella[J]. Proc Biol Sci , 270: 2185-2190. [80]Jena K K, Kim S M 2010. Current status of brown planthopper (BPH) resistance and genetics[J]. Rice , 3: 161-171. [81]Ji H, Kim S R, Kim Y H, et al. 2016. Map-based Cloning and Characterization of the BPH18 Gene from Wild Rice Conferring Resistance to Brown Planthopper (BPH)[J]. Sci Rep , 6: 34376. [82]Ju J F, Bing X L, Zhao D S, et al. 2020. Wolbachia supplement biotin and riboflavin to enhance reproduction in planthoppers[J]. ISME J , 14: 676-687. [83]Juarez M L, Pimper L E, Bachmann G E, et al. 2019. Gut bacterial diversity and physiological traits of Anastrepha fraterculus Brazilian-1 morphotype males are affected by antibiotic treatment[J]. BMC Microbiol , 19: 283. [84]Kim K N, Huang Q Y, Lei C L 2019. Advances in insect phototaxis and application to pest management: a review[J]. Pest Manag Sci , 75: 3135-3143. [85]Lee J, Kim C H, Jang H A, et al. 2019. Burkholderia gut symbiont modulates titer of specific juvenile hormone in the bean bug Riptortus pedestris[J]. Dev Comp Immunol , 99: 103399. [86]Li F, Li P, Hua H, et al. 2020. Diversity, Tissue Localization, and Infection Pattern of Bacterial Symbionts of the White-Backed Planthopper, Sogatella furcifera (Hemiptera: Delphacidae)[J]. Microb Ecol , 79: 720-730. [87]Li J, Chen Q, Wang L, et al. 2011. Biological effects of rice harbouring Bph14 and Bph15 on brown planthopper, Nilaparvata lugens[J]. Pest Manag Sci , 67: 528-534. [88]Ling S, Zhang H, Zhang R 2011. Effect of fenvalerate on the reproduction and fitness costs of the brown planthopper, Nilaparvata lugens and its resistance mechanism[J]. Pesticide Biochemistry and Physiology , 101: 148-153. [89]Lv H, Zhai M Y, Zeng J, et al. 2023. Changing patterns of the East Asian monsoon drive shifts in migration and abundance of a globally important rice pest[J]. Glob Chang Biol , 29: 2655-2668. [90]Noda H, Nakashima N, Koizumi M 1995. Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences[J]. Insect Biochem Mol Biol , 25: 639-646. [91]Ojha A, Zhang W 2019. A comparative study of microbial community and dynamics of Asaia in the brown planthopper from susceptible and resistant rice varieties[J]. BMC Microbiol , 19: 139. [92]Otuka A 2013. Migration of rice planthoppers and their vectored re-emerging and novel rice viruses in East Asia[J]. Front Microbiol , 4: 309. [93]Pang K, Dong S Z, Hou Y, et al. 2012. Cultivation, identification and quantification of one species of yeast‐like symbiotes, Candida , in the rice brown planthopper, Nilaparvata lugens[J]. Insect Science , 19: 477-484. [94]Pang R, Chen M, Yue L, et al. 2018. A distinct strain of Arsenophonus symbiont decreases insecticide resistance in its insect host[J]. PLoS Genet , 14: e1007725. [95]Philipp E, A M N 2013. The gut microbiota of insects - diversity in structure and function[J]. FEMS microbiology reviews , 37: 699-735. [96]Ridley E V, Wong A C, Douglas A E 2013. Microbe-dependent and nonspecific effects of procedures to eliminate the resident microbiota from Drosophila melanogaster[J]. Appl Environ Microbiol , 79: 3209-3214. [97]Ridley E V, Wong A C, Westmiller S, et al. 2012. Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster[J]. PLoS One , 7: e36765. [98]Shin J H, Tillotson G, Mackenzie T N, et al. 2024. Bacteroides and related species: The keystone taxa of the human gut microbiota[J]. Anaerobe , 85: 102819. [99]Sugimoto T N, Kayuka T, Shinoda T, et al. 2015. Misdirection of dosage compensation underlies bidirectional sex-specific death in Wolbachia-infected Ostrinia scapulalis[J]. Insect Biochem Mol Biol , 66: 72-76. Tang M, Lv L, Jing S, et al. 2010. Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae)[J]. Appl Environ Microbiol , 76: 1740-1745. [101]Vijayakumar M M, R P M, Rangasamy A, et al. 2018. Gut Bacterial Diversity of Insecticide-Susceptible and Resistant Nymphs of the Brown Planthopper Nilaparvata lugens Stal (Hemiptera: Delphacidae) and Elucidation of Their Putative Functional Roles[J]. J Microbiol Biotechnol , 28: 976-986. [102]WanP J, Yang L, Wang W X, et al. 2014. Constructing the major biosynthesis pathways for amino acids in the brown planthopper, Nilaparvata lugens Stal (Hemiptera: Delphacidae), based on the transcriptome data[J]. Insect Mol Biol , 23: 152-164. [103]Wang Z L, Pan H B, Wu W, et al. 2021. The gut bacterial flora associated with brown planthopper is affected by host rice varieties[J]. Arch Microbiol , 203: 325-333. [104]Wang Z L, Wang T Z, Zhu H F, et al. 2020. Diversity and dynamics of microbial communities in brown planthopper at different developmental stages revealed by high-throughput amplicon sequencing[J]. Insect Sci , 27: 883-894. [105]Weeks A R, Stouthamer R 2004. Increased fecundity associated with infection by a cytophaga-like intracellular bacterium in the predatory mite, Metaseiulus occidentalis[J]. Proc Biol Sci , 271 Suppl 4: S193-195. [106]Wu Q, Hu G, Tuan H A, et al. 2019. Migration patterns and winter population dynamics of rice planthoppers in Indochina: New perspectives from field surveys and atmospheric trajectories[J]. Agricultural and Forest Meteorology , 265: 99-109. [107]Xue J, Zhou X, Zhang C X, et al. 2014. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation [J]. Genome Biol , 15: 521. [108]Yan L, Luo T, Huang G D, et al. 2023. Recent Advances in Molecular Mechanism and Breeding Utilization of Brown Planthopper Resistance Genes in Rice: An Integrated Review[J]. Int J Mol Sci , 24:517-531 [109]Zhang G, Wu Y, Li X J, et al. 2016. Annual Fluctuations of Early Immigrant Populations of Sogatella furcifera (Hemiptera: Delphacidae) in Jiangxi Province, China. J Econ Entomol [J], 109: 1636-1645. [110]Zhang J H, Yu N, Xu X X, et al. 2019. Community structure, dispersal ability and functional profiling of microbiome existing in fat body and ovary of the brown planthopper, Nilaparvata lugens[J]. Insect Sci , 26: 683-694. [111]Zhang Q, Cai P, Wang B, et al. 2021. Manipulation of Gut Symbionts for Improving the Sterile Insect Technique: Quality Parameters of Bactrocera dorsalis (Diptera: Tephritidae) Genetic Sexing Strain Males After Feeding on Bacteria-Enriched Diets[J]. J Econ Entomol , 114: 560-570. [112]Zhao J, Guan G, Li D, et al. 2024. Study on the gut symbiotic microbiota in long- and short-winged brown planthopper, Nilaparvata lugens (Stal)[J]. Sci Rep , 14: 11306. [113]Zhao Y, Huang J, Wang Z, et al. 2016. Allelic diversity in an NLR gene BPH9 enables rice to combat planthopper variation[J]. Proc Natl Acad Sci U S A , 113: 12850-12855. [114]Zheng D, Liwinski T, ELINAV E 2020. Interaction between microbiota and immunity in health and disease[J]. Cell Res , 30: 492-506. [115]Zheng X, Zhu L, He G 2021. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation[J]. Curr Opin Insect Sci , 45: 14-20. |
中图分类号: | S43 |
开放日期: | 2025-06-16 |