中文题名: | 南极磷虾产品在日本沼虾饲料中的应用研究 |
姓名: | |
学号: | 2021813053 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095134 |
学科名称: | 农学 - 农业 - 渔业发展 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 水产动物营养与饲料 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2023-06-30 |
答辩日期: | 2023-05-26 |
外文题名: | Study On The Application Of Antarctic Krill Products In The Diet Of Macrobrachium Nipponense |
中文关键词: | |
外文关键词: | Antarctic krill ; Macrobrachium nipponense ; Growth performance ; Antioxidant capacity ; Fat metabolism |
中文摘要: |
南极磷虾不仅资源量巨大,而且营养价值丰富,越来越受到世界各国的重视。磷虾在水产饲料方面的应用是磷虾产品最重要的市场。但是其在日本沼虾饲料中的应用效果还没有评估,基于此,本试验以日本沼虾(Macrobrachium nipponense)为研究对象,探讨南极磷虾产品对日本沼虾生长性能、抗氧化能力以及脂肪代谢的影响,以期为南极磷虾产品作为饲料原料在水产养殖中的应用提供参考依据。试验内容分为以下两部分: 试验一:饲料中添加南极磷虾粉替代鱼粉对日本沼虾生长、抗氧化能力及脂质代谢的影响 在日本沼虾基础饲料中按五个不同水平梯度添加0%(FM)、5%(KM5)、10%(KM10)、15%(KM15)、20%(KM20)南极磷虾粉(替代鱼粉水平分别为0%、13.3%、26.7%、40.0%、56.7%),制备五组等氮等能试验饲料。选取(0.2 ± 0.01)g健康的日本沼虾进行为期8周的养殖试验。养殖结束后,测定其生长性能、血淋巴生理生化、肝胰腺抗氧化酶、组织结构和肝胰腺免疫、脂质代谢相关基因的表达。结果表明,与FM组相比,基础饲料中添加不同浓度南极磷虾粉替代鱼粉均具有提高日本沼虾增重率(WGR)、特定生长率(SGR)和蛋白质效率(PER)的作用(P<0.05)。基于WGR和SGR的二次回归分析,南极磷虾粉的最佳添加量为12.96%(替代鱼粉水平为34.60%)。KM5、KM10、KM15、KM20组血淋巴总胆固醇(TC)和低密度脂蛋白(LDL)均显著高于FM组(P<0.05)。血淋巴总蛋白(TP)、白蛋白(ALB)、甘油三酯(TG)、高密度脂蛋白(HDL)的含量随着南极磷虾粉的添加呈现先上升后下降的趋势,其中, KM10和KM15组显著高于FM组(P<0.05)。与FM组相比,KM10、KM15组肝胰腺谷胱甘肽(GSH)含量显著提高(P<0.05),同时丙二醛(MDA)、总一氧化氮合酶(TNOS)、诱导型一氧化氮合酶(iNOS)含量显著降低(P<0.05)。进一步对基因表达分析发现,日本沼虾肝胰腺免疫基因dorsal、hsp60、myd88的表达随着南极磷虾粉的添加呈现先下降后上升的趋势,relish的表达呈现下降的趋势,其中,与FM组相比,KM10组dorsal、hsp60、myd88的表达量显著降低(P<0.05),relish的表达量无显著差异(P>0.05)。此外,与FM组相比,KM10组脂质合成基因fas和acc的表达量显著上调(P<0.05),脂肪代谢基因acbp、cpt Ⅰ和sr-b Ⅰ的表达量显著下调(P<0.05),且对肝胰腺组织结构无不良影响。总体而言,饲料中添加南极磷虾粉替代鱼粉对日本沼虾的生理状态、抗氧化能力、脂质代谢影响显著。从生长性能、免疫能力、脂质代谢水平来看,饲料中添加5%-10%南极磷虾粉(替代26.7%-40.0%鱼粉)效果更优。 试验二:饲料中添加南极磷虾油替代鱼油对日本沼虾生长性能、生理生化和抗氧化能力的影响 用分别以鱼油与豆油和南极磷虾油与豆油的混合油脂为原料制备的两组等氮等能试验饲料饲喂(0.2 ± 0.01)g健康的日本沼虾8周。养殖试验结束后,测定了日本沼虾生长性能、肝胰腺抗氧化酶活性、组织结构、免疫相关基因的表达。独立样本T检验分析结果显示,南极磷虾油的添加对日本沼虾的生长性能、肝胰腺抗氧化功能和组织结构具有有利影响。具体来说,南极磷虾油组日本沼虾WGR、SGR、PER、血淋巴中TP、ALB、TC、TG、LDL、HDL含量及肝胰腺GSH含量都显著高于鱼油组(P<0.05),且显著下调了免疫基因dorsal、hsp60、myd88和relish在mRNA水平的表达(P<0.05)。肝胰腺HE染色切片结果显示,南极磷虾油改善了日本沼虾肝胰腺组织结构。总体而言,日本沼虾饲料中用南极磷虾油替代鱼油可以减少日本沼虾氧化应激损伤,并改善肝胰腺组织结构,促进营养物质的吸收,从而提高生长性能。 |
外文摘要: |
The Antarctic krill, characterized by a vast resource quantity and high nutritional value, has been increasingly recognized by various countries worldwide. The application of Antarctic krill in aquafeed was the most crucial market for krill products. However, the efficacy of incorporating krill into the feed of Macrobrachium nipponense has not been evaluated. Therefore, this study aims to investigate the impact of Antarctic krill products on the growth performance, antioxidant capacity, and lipid metabolism of prawns, providing a reference for the application of Antarctic krill products as feed ingredients in aquaculture. The experiment is divided into the following two parts: Experiment I: The effects of different concentrations of fishmeal substitution with krill meal on the growth performance, antioxidant capacity, and lipid metabolism of M. nipponense. Five groups of isonitrogenous and isoenergetic test diets were prepared by adding 0% (FM), 5% (KM5), 10% (KM10), 15% (KM15), and 20% (KM20) krill meal (0%, 13.3%, 26.7%, 40.0%, and 56.7% replacement fishmeal levels, respectively) to the base diet of M. nipponense in five different level gradients. (0.2 ± 0.01) g of healthy Japanese marsh shrimp were selected for an 8-week culture trial. Five isonitrogenous and isoenergy experimental diets were prepared with 0% (FM), 5% (KM5), 10% (KM10), 15% (KM15), 20% (KM20) krill meal (replacing 0%, 13.3%, 26.7%,40.0%, 56.7% fish meal) in the basic diet of M. nipponense. Healthy M. nipponense (0.2 ± 0.01) g was selected for an 8-week feeding trial. At the end of the experiment, growth performance, antioxidant capability of the hepatopancreas, tissue structure and immunity, and expression of genes related to lipid metabolism were measured. The results showed that the addition of different concentrations of Antarctic krill meal to the basal diet replacing fish meal had the effect of significantly increasing the weight gain rate (WGR), specific growth rate (SGR) and protein efficiency (PER) of M. nipponense compared with the FM group (P<0.05). Based on the quadratic regression analysis of WGR and SGR, the optimal addition of Antarctic krill meal was 12.96% (replacing fish meal level of 34.60%). Hemolymph total cholesterol (TC) and low-density lipoprotein (LDL) were significantly higher in KM5, KM10, KM15, and KM20 groups than in FM group (P<0.05). The levels of hemolymph total protein (TP), albumin (ALB), triglyceride (TG) and high-density lipoprotein (HDL) showed a trend of increasing and then decreasing with the addition of Antarctic krill meal, in which the KM10 and KM15 groups were significantly higher than the FM group (P<0.05). Compared with the FM group, the hepatopancreas glutathione (GSH) content in the KM10 and KM15 groups increased significantly (P<0.05), while the malondialdehyde (MDA), total nitric oxide synthase (TNOS) and inducible nitric oxide synthase (iNOS) contents decreased significantly (P<0.05). Further analysis of gene expression revealed that the expression of the hepatopancreas immune genes dorsal, hsp60, and myd88 of M. nipponense showed a decreasing and then increasing trend with the addition of Antarctic krill meal, and the expression of relish showed a decreasing trend, in which the expression of dorsal, hsp60, and myd88 of KM10 group was significantly lower compared with that of FM group (P<0.05), and the expression of relish showed no significant difference (P>0.05). In addition, compared with the FM group, the expression of lipid synthesis genes fas and acc was significantly up-regulated in the KM10 group (P<0.05), and the expression of lipid metabolism genes acbp, cpt Ⅰ and sr-b Ⅰ was significantly down-regulated (P<0.05), and there was no adverse effect on the hepatopancreatic tissue structure. Overall, dietary fish meal replacement with Antarctic krill meal had significant effects on the physiological status, antioxidant capacity, and lipid metabolism of M. nipponense. In terms of growth performance, immune capacity, and lipid metabolism levels, the addition of 5%-10% Antarctic krill meal (replacing 26.7%-40.0% fish meal) was more effective. Experiment II: The effects of dietary fish oil replacement with krill oil on the growth performance, physiological and biochemical parameters, and antioxidant capacity of M. nipponense. Two isonitrogenous and isoenergetic test diets prepared from a mixture of fish oil and soybean oil and Antarctic krill oil and soybean oil, respectively, were fed to (0.2 ± 0.01) g of healthy M. nipponense for 8 weeks. At the end of the culture period, growth performance, antioxidant enzyme activity in the hepatopancreas, tissue structure, and expression of immune-related genes were measured. Independent sample T-tests revealed that the addition of krill oil had a beneficial effect on the growth performance, antioxidant function, and tissue structure of M. nipponense. Specifically, the WGR, PER, and GSH content in the hepatopancreas of the krill oil group were significantly higher than those in the fish oil group (P<0.05), and the mRNA expression of immune genes like dorsal, hsp60, myd88, and relish was significantly downregulated (P<0.05). Histological results of HE-stained sections of the hepatopancreas showed that krill oil improved the tissue structure of the hepatopancreas of M. nipponense. In conclusion, replacing fish oil with krill oil in the diet of M. nipponense can alleviate oxidative stress damage, improve the structure of hepatopancreas tissues, promote nutrient absorption, and thereby enhance growth performance. As gathered above, krill meal and krill oil are good alternatives to fish meal and fish oil in aquaculture feed. |
参考文献: |
[1] 常青, 秦帮勇, 孔繁华, 等. 南极磷虾在水产饲料中的应用[J]. 动物营养学报, 2013, 25(02): 256-262. [2] 龚洋洋, 黄艳青, 陆建学, 等. 南极磷虾粉在水产饲料中的应用研究进展[J]. 海洋渔业, 2013, 35(02): 236-242. [3] 郭勇, 胡毅, 易新文, 等. 棉粕替代豆粕对斑点叉尾(鱼回)生长、血清生化、体色、肉色以及肠道菌群的影响[J]. 上海海洋大学学报, 2023, 32(02): 339-347. [4] 何邵平, 呙于明, 郭吉余. 橙皮苷的生理功能及在家禽生产中的应用[J]. 中国饲料, 2023, 1-5. [5] 胡桂森. 基于水箱试验的南极磷虾游泳行为研究[D]. 上海海洋大学, 2016. [6] 黄洪亮, 陈雪忠, 冯春雷. 南极磷虾资源开发现状分析[J]. 渔业现代化, 2007(01): 48-51. [7] 黄艳青, 高露姣, 陆建学, 等. 饲料中添加南极大南极磷虾粉对点带石斑鱼幼鱼生长与肌肉营养成分的影响[J]. 海洋渔业, 2010, 32(04): 440-446. [8] 蒋振廷, 刘波, 戈贤平, 等. 饲料不同n-3/n-6脂肪酸比值对日本沼虾生长、虾体组分、血清抗氧化及相关基因表达的影响[J]. 水产学报, 2019, 43(10): 2109-2122. [9] 景蓉, 何广卫, 吴强, 等. MCI-002对大鼠局灶性脑缺血的保护作用及机制[J]. 安徽医药, 2009, 13(12): 1463-1466. [10] 康莉, 王家富, 商战平. 与动脉粥样硬化密切相关的清道夫受体[J]. 泰山医学院学报, 2007(03): 232-235. [11] 孔凡华, 梁萌青, 吴立新, 等. 南极磷虾粉对大菱鲆生长、非特异性免疫及氟残留的影响[J]. 渔业科学进展, 2012, 33(01): 54-60. [12] 孔令法. 甲减和甲亢对青年大鼠卵巢和子宫氧化应激的影响[D]. 南京农业大学, 2015. [13] 李爱杰. 水产动物营养与饲料学[M]. 北京: 中国农业出版社, 1996: 8-107. [14] 李汶恒, 王海涛, 单洪伟, 等. 饲料中添加南极磷虾粉对凡纳滨对虾生长、体组分及体色的影响[J]. 南方水产科学, 2023, 19(01): 97-105. [15] 李一鸣. 日本沼虾杂交和亲本群体遗传多样性与抗逆性的比较研究[D]. 华东师范大学, 2022. [16] 林志灯. 磷脂对中华绒螯蟹脂代谢影响的研究[D]. 华东师范大学, 2021. [17] 刘丽. 南极磷虾的生物特性及其开发前景[J]. 农产品加工, 2015(05): 60-61. [18] 刘勤, 刘志东, 陆亚男, 等. 南极磷虾产品研究及发展趋势[J]. 渔业信息与战略, 2014, 29(02): 115-121. [19] 刘青华, 徐恩平, 侯丽丽, 等. 适用于海水鱼类育苗的高密度培养轮虫技术[J]. 渔业现代化, 2004(05): 19-21. [20] 刘小芳, 宫玉雪, 田良良, 等. 南极磷虾油改善衰老小鼠抗氧化能力的作用研究[J]. 食品研究与开发, 2021, 42(12): 14-18. [21] 刘晓攀, 赵永慧, 赵行, 等. 南极磷虾热风干燥工艺对油脂品质的影响[J]. 江苏海洋大学学报(自然科学版), 2020, 29(02): 39-44. [22] 陆建学, 林听听, 黄艳青, 等. 南极大南极磷虾粉对褶皱臂尾轮虫生长及脂肪酸组成的影响[J]. 中国水产科学, 2012, 19(06): 1018-1026. [23] 麦康森, 魏玉婷, 王嘉, 等. 南极磷虾的主要营养组成及其在水产饲料中的应用[J]. 中国海洋大学学报(自然科学版), 2016, 46(11): 1-15. [24] 潘方艳. 日本沼虾CYP306a1基因的克隆、表达及其功能的研究[D]. 上海海洋大学, 2022. [25] 期逍婷, 郑路, 吴昊, 等. 饲粮铁添加水平对肉鸡生长、脂肪沉积及脂质代谢的影响[J]. 动物营养学报, 2023. [26] 邱千, 廖晓燕, 邱国福. 核磁共振定量碳谱测定食用油脂肪酸组成综合实验设计[J]. 实验科学与技术, 2022, 20(06): 120-125. [27] 苏学锋, 冯迪娜. 南极磷虾产业开发特点及发展趋势[J]. 食品研究与开发, 2012, 33(12): 214-217. [28] 孙昌华. 南极磷虾油主要生物学特性及其降血脂机制研究[D]. 中国农业大学, 2019. [29] 孙淼, 何超凡, 张玲, 等. 不同水温与饲料磷水平对日本沼虾生产性能、组织及水体磷含量的影响[J]. 水产学报, 2021, 45(10): 1667-1676. [30] 田晓清, 杨桥, 邵盛男, 等. 南极磷虾脂溶性成分的研究进展[J]. 海洋渔业, 2011, 33(04): 462-466. [31] 田艳芳. 外源蛋白酶K缓解草鱼低氧应激后肝脏和鳃损伤的作用[D]. 四川农业大学, 2022. [32] 王林林. 酶解法提取南极磷虾虾油的研究[D]. 上海海洋大学, 2019. [33] 王龙. 重金属镉、铜对日本沼虾免疫及抗氧化功能的影响[D]. 上海海洋大学, 2021. [34] 王馨悦. 南极磷虾粉对中华绒螯蟹幼蟹生长性能、蛋白质代谢和抗氧化能力的影响[D]. 华东师范大学, 2020. [35] 王亚恩, 姜国良, 徐恺, 等. 南极磷虾油对高脂血症大鼠血脂和抗氧化力的影响[J]. 中国海洋药物, 2011, 30(03): 56-59. [36] 王裕玉, 赵璐, 郭晓华, 等. 南极磷虾粉营养特性及其在水产饲料中的应用[J]. 动物营养学报, 2021, 33(12): 6601-6611. [37] 魏佳丽, 王际英, 宋志东, 等. 酶解南极磷虾粉替代鱼粉对珍珠龙胆石斑鱼幼鱼生长性能、体组成及血清生化的影响[J]. 渔业科学进展, 2016, 37(01): 100-110. [38] 魏佳丽. 南极磷虾粉在星斑川鲽和珍珠龙胆石斑鱼幼鱼饲料中的应用研究[D]. 上海海洋大学, 2015. [39] 吴莉芳, 秦贵信, 刘春力, 等. 饲料大豆蛋白对鲤鱼消化酶活力和血液主要生化指标的影响[J]. 西北农林科技大学学报(自然科学版), 2009, 37(08): 63-69. [40] 武小斌, 穆淑梅, 赵玲玉, 等. 日本沼虾(Macrobrachium nipponense)4个野生群体遗传多样性微卫星分析[J]. 河北大学学报(自然科学版), 2017 ,37(02): 161-168. [41] 肖扬波, 曹申平, 敖青, 等. 低鱼粉饲料中黑水虻幼虫粉替代鱼粉对合方鲫生长性能、消化能力、血浆生化指标及相关基因表达的影响[J]. 水生生物学报, 2023. [42] 谢凯, 石勇, 何慧, 等. 南极磷虾粉替代鱼粉对黄颡鱼生长、免疫及肌肉品质的影响[J]. 水产学报, 2022, 46(03): 410-419. [43] 严俊丽, 陈四清, 常青, 等. 南极磷虾粉替代鱼粉对圆斑星鲽幼鱼生长性能、血清和肝脏生化指标及血清非特异性免疫指标的影响[J]. 动物营养学报, 2016, 28(11): 3503-3510. [44] 杨程, 高权新, 张晨捷, 等. 饲料中添加南极磷虾粉对银鲳幼鱼生长、非特异性免疫及抗氧化功能的影响[J]. 海洋渔业, 2019, 41(02): 224-233. [45] 杨程. 南极磷虾粉对银鲳生长、代谢及免疫力的影响[D]. 上海海洋大学, 2019. [46] 杨自严. 多液相酶催化体系提取及改性南极磷虾中活性成分的研究[D]. 华南理工大学, 2021. [47] 袁玥, 李学英, 杨宪时, 等. 南极磷虾粉营养成分的分析与比较[J]. 海洋渔业, 2012, 34(04): 457-463. [48] 张莉莉, 梁萌青, 徐后国, 等. 饲料中添加磷虾水解物对大菱鲆幼鱼生长性能、体组成及相关酶活性的影响[J]. 水生生物学报, 2017, 41(03): 497-505. [49] 赵敏, 梁萌青, 郑珂珂, 等. 饲料中添加南极磷虾粉对半滑舌鳎(Cynoglossus semilaevi)雄性亲鱼繁殖性能及抗氧化功能的影响[J]. 渔业科学进展, 2016, 37(06): 49-55. [50] 郑建明. 南极磷虾产品在圆斑星鲽幼鱼饲料中的应用研究[D]. 上海海洋大学, 2018. [51] 朱旺明, 谭永刚, 马卉佳, 等. 不同水平南极磷虾粉等量替代鱼粉对大口黑鲈生长性能及部分生理生化指标的影响[J]. 中国饲料, 2019(15): 85-92. [52] 邹函峪, 王宝维, 张名爱, 等. 凝结芽孢杆菌和丁酸梭菌对肉鸭生长性能、屠宰性能、血清生化指标及肠道健康的影响[J]. 动物营养学报, 2023. [53] Agarwal A, Gupta S, Sharma R K. Role of oxidative stress in female reproduction[J]. Reprod Biol Endocrinol, 2005, 3:28. [54] Atkinson A, Siegel V, Pakhomov E A, et al. A re-appraisal of the total biomass and annual production of Antarctic krill[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2009, 56(5):727-740. [55] Batetta B, Griinari M, Carta G, et al. Endocannabinoids may mediate the ability of (n-3) fatty acids to reduce ectopic fat and inflammatory mediators in obese zucker rats[J]. The Journal of Nutrition, 2009, 139(8):1495-1501. [56] Beaudoin A, Martin G. Method of extracting lipids from marine and aquatic animal tissues[Z]. Univ Sherbrooke, 2002. [57] Bell J G, Henderson R J, Tocher D R, et al. Substituting fish oil with crude palm oil in the diet of Atlantic Salmon (Salmo salar) affects muscle fatty acid composition and hepatic fatty acid metabolism[J]. The Journal of Nutrition, 2002, 132(2):222-230. [58] Betancor M B, Nordrum S, Atalah E, et al. Potential of three new krill products for seabream larval production[J]. Aquaculture Research, 2012, 43(3):395-406. [59] Betancor M B, Ortega A, De La Gándara F, et al. Performance, feed utilization, and hepatic metabolic response of weaned juvenile Atlantic bluefin tuna (Thunnus thynnus L.): effects of dietary lipid level and source[J]. Fish Physiology and Biochemistry, 2019, 45(2):697-718. [60] Chen S, Lin Y, Miao L, et al. Ferulic acid alleviates lipopolysaccharide-induced acute liver injury in Megalobrama amblycephala[J]. Aquaculture, 2021, 532:735972. [61] Chen S, Lin Y, Miao L, et al. Iron homeostasis of liver-gut axis alleviates inflammation caused by dietary cottonseed meal through dietary Fe2+ supplementation in juvenile grass carp (Ctenopharyngodon idellus) [J]. Aquaculture, 2022, 561:738647. [62] Cho B O, Ryu H W, So Y, et al. Anti-inflammatory effect of Mangostenone F in lipopolysaccharide-stimulated RAW264.7 macrophages by suppressing NF-κB and MAPK activation[J]. Biomol Ther (Seoul), 2014,22(4):288-294. [63] Coma J, Carrion D, Zimmerman D R. Use of plasma urea nitrogen as a rapid response criterion to determine the lysine requirement of pigs[J]. Journal of Animal Science, 1995, 73(2):472-481. [64] De Santis C, Taylor J F, Martinez-Rubio L, et al. Influence of development and dietary phospholipid content and composition on intestinal transcriptome of Atlantic Salmon (Salmo salar) [J]. Plos One, 2015, 10(10):140964. [65] Ferrer J, Paez G, Marmol Z, et al. Acid hydrolysis of shrimp-shell wastes and the production of single cell protein from the hydrolysate[J]. Bioresource Technology, 1996, 57(1):55-60. [66] Fricke H, Gercken G, Schreiber W, et al. Lipid, sterol and fatty acid composition of Antarctic krill (Euphausia superba) [J]. Lipids, 1984, 19(11):821-827. [67] Gaber M M A. The effect of different levels of krill meal supplementation of soybean-based diets on feed intake, digestibility, and chemical composition of juvenile nile Tilapia Oreochromis niloticus, L[J]. Journal of the World Aquaculture Society, 2005, 36(3):346-353. [68] Gao R, Chen L, Zhang W, et al. Effect of dietary Antarctic krill Euphausia superba on the growth performance and nonspecific immunity of red swamp crayfish Procambarus clarkia[J]. Fish & Shellfish Immunology, 2020, 96:122-125. [69] Gigliotti J C, Davenport M P, Beamer S K, et al. Extraction and characterisation of lipids from Antarctic krill (Euphausia superba) [J]. Food Chemistry, 2011,125(3):1028-1036. [70] Gillard B K, Bassett G R, Gotto A J, et al. Scavenger receptor B1 (SR-B1) profoundly excludes high density lipoprotein (HDL) apolipoprotein AII as it nibbles HDL-cholesteryl ester[J]. Journal of Biological Chemistry, 2017,292(21):8864-8873. [71] Guo C, Jin M, Jiao L, et al. Evaluation of krill meal in commercial diets for juvenile Swimming crab (Portunus trituberculatus)[J]. Aquaculture Nutrition, 2022, 2022:3007674. [72] Hansen A K G, Kortner T M, Denstadli V, et al. Dose-response relationship between dietary choline and lipid accumulation in pyloric enterocytes of Atlantic salmon (Salmo salar L.) in seawater[J]. British Journal of Nutrition, 2020, 123(10):1081-1093. [73] Hansen J Ø, Penn M, Øverland M, et al. High inclusion of partially deshelled and whole krill meals in diets for Atlantic salmon (Salmo salar) [J]. Aquaculture, 2010, 310(1):164-172. [74] Hou Y C, Janczuk A, Wang P G. Current trends in the development of nitric oxide donors[J]. Curr Pharm Des, 1999, 5(6):417-441. [75] Ivanova Z, Bjørndal B, Grigorova N, et al. Effect of fish and krill oil supplementation on glucose tolerance in rabbits with experimentally induced obesity[J]. European Journal of Nutrition, 2015, 54(7):1055-1067. [76] Jiang Q, Li S, Xu Y, et al. Nutrient Compositions and Properties of Antarctic Krill (Euphausia superba) Muscle and Processing By-Products[J]. Journal of Aquatic Food Product Technology, 2016, 25(3):434-443. [77] Jiang X, Yu X, Chen J, et al. Ferulic acid improves motor function induced by spinal cord injury in rats via inhibiting neuroinflammation and apoptosis[J]. Acta Cirurgica Brasileira, 2021, 36(7):360705. [78] Jin L H, Bahn J H, Eum W S, et al. Transduction of human catalase mediated by an HIV-1 TAT protein basic domain and arginine-rich peptides into mammalian cells[J]. Free Radical Biology and Medicine, 2001, 31(11):1509-1519. [79] Julshamn K, Malde M K, Bjorvatn K, et al. Fluoride retention of Atlantic salmon (Salmo salar) fed krill meal[J]. Aquaculture Nutrition, 2004, 10(1):9-13. [80] Kaleo I V, Gao Q, Liu B, et al. Effects of Moringa oleifera leaf extract on growth performance, physiological and immune response, and related immune gene expression of Macrobrachium rosenbergii with Vibrio anguillarum and ammonia stress[J]. Fish & Shellfish Immunology, 2019, 89:603-613. [81] Kanjanapruthipong J. Supplementation of milk replacers containing soy protein with threonine, methionine, and lysine in the diets of calves[J]. Journal of Dairy Science, 1998, 81(11):2912-2915. [82] Kaur K, Kortner T M, Benitez-Santana T, et al. Effects of Antarctic krill products on feed intake, growth performance, fillet quality, and health in salmonids[J]. Aquaculture Nutrition, 2022, 2022:1-14. [83] Khosravi S, Rahimnejad S, Herault M, et al. Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major[J]. Fish Shellfish Immunol, 2015, 45(2):858-868. [84] King M F, Boyd L C, Sheldon B W. Effects of phospholipids on lipid oxidation of a salmon oil model system[J]. Journal of the American Oil Chemists Society, 1992, 69(3):237-242. [85] Kjaer M A, Todorcević M, Torstensen B E, et al. Dietary n-3 HUFA affects mitochondrial fatty acid beta-oxidation capacity and susceptibility to oxidative stress in Atlantic salmon[J]. Lipids, 2008, 43(9):813-827. [86] Kurashige M, Okimasu E, Inoue M, et al. Inhibition of oxidative injury of biological membranes by astaxanthin[J]. Physiol Chem Phys Med NMR, 1990, 22(1):27-38. [87] Lambertsen G, Braekkan O R. Method of analysis of astaxanthin and its occurrence in some marine products[J]. Journal of the Science of Food and Agriculture, 1971, 22(2):99-101. [88] Li F, Xiang J. Recent advances in researches on the innate immunity of shrimp in China[J]. Developmental & Comparative Immunology, 2013a, 39(1):11-26. [89] Li F, Xiang J. Signaling pathways regulating innate immune responses in shrimp[J]. Fish & Shellfish Immunology, 2013, 34(4):973-980. [90] Li Y, Fan B, Huang Y, et al. Effects of dietary vitamin E on reproductive performance and antioxidant capacity of Macrobrachium nipponense female shrimp[J]. Aquaculture Nutrition, 2018, 24(6):1698-1708. [91] Li Y, Gao J, Huang S. Effects of different dietary phospholipid levels on growth performance, fatty acid composition, PPAR gene expressions and antioxidant responses of blunt snout bream Megalobrama amblycephala fingerlings[J]. Fish Physiology and Biochemistry, 2014,41. [92] Liu F, Smith A D, Solano-Aguilar G, et al. Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models[J]. Microbiome, 2020, 8(1):83. [93] Liu M, Sun M, Zhang L, et al. The essentiality of dietary myo-inositol to oriental river prawn (Macrobrachium nipponense): Evidence in growth performance, lipid metabolism and mitochondrial function[J]. Aquaculture, 2023, 567:739304. [94] Liu X, Jiang S, Liu B, et al. Dietary effect of ferulic acid on growth performance, physiological response, non-specific immunity and disease resistance of oriental river prawn (Macrobrachium nipponense) [J]. Aquaculture Reports, 2022, 24:101162. [95] Lv B, Liu B, Zhou Q, et al. Effects of different temperatures and protein levels on growth performance, physiological response and expression of immune-related genes of juvenile oriental river prawn (Macrobrachium nipponense) [J]. Aquaculture, 2021, 536:736435. [96] Mandrup S, Hummel R, Ravn S, et al. Acyl-CoA-binding protein/diazepam-binding inhibitor gene and pseudogenes. A typical housekeeping gene family[J]. Journal of Molecular Biology, 1992, 228(3):1011-1022. [97] Maoka T, Katsuyama M, Kaneko N, et al. Stereochemical investigation of carotenoids in the antarctic krill Euphausia superba[J]. Nippon Suisan Gakkaishi, 1985, 51:1671-1673. [98] McCall J M, Braughler J M, Hall E D. Lipid peroxidation and the role of oxygen radicals in CNS injury[J]. Acta Anaesthesiol Belg, 1987, 38(4):373-379. [99] Miao F, Geng Y, Lu D, et al. Stability and changes in astaxanthin ester composition from Haematococcus pluvialis during storage[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(6):1181-1189. [100] Mørkøre T, Moreno H M, Borderías J, et al. Dietary inclusion of Antarctic krill meal during the finishing feed period improves health and fillet quality of Atlantic salmon (Salmo salar L.) [J]. Br J Nutr, 2020, 124(4):418-431. [101] Nicol S, Forster I, Spence J. Products derived from krill[M]. 2000:262-283. [102] Nunes A, Carmo-e-Sá M, Sabry Neto H. Growth performance of the white shrimp, Litopenaeus vannamei, fed on practical diets with increasing levels of the Antarctic krill meal, Euphausia superba, reared in clear-versus green-water culture tanks[J]. Aquaculture Nutrition, 2010, 17:511-e520. [103] Oeistein H, Snorre T. A new method for making krill meal[Z]. Aker Biomarine ASA, 2008. [104] Olsen R E, Suontama J, Langmyhr E, et al. The replacement of fish meal with Antarctic krill, Euphausia superba in diets for Atlantic salmon, Salmo salar[J]. Aquaculture Nutrition, 2006, 12(4):280-290. [105] Phleger C F, Nelson M M, Mooney B D, et al. Interannual and between species comparison of the lipids, fatty acids and sterols of Antarctic krill from the US AMLR Elephant Island survey area[J]. Comp Biochem Physiol B Biochem Mol Biol, 2002, 131(4):733-747. [106] Roncarati A, Sirri F, Felici A, et al. Effects of dietary supplementation with krill meal on pigmentation and quality of flesh of rainbow trout (Oncorhynchus mykiss) [J]. Italian Journal of Animal Science, 2011, 10(2):27. [107] Saleh R, Betancor M B, Roo J, et al. Biomarkers of bone development and oxidative stress in gilthead sea bream larvae fed microdiets with several levels of polar lipids and α-tocopherol[J]. Aquaculture Nutrition, 2015, 21(3):341-354. [108] Saleh R, Betancor M B, Roo J, et al. Optimum krill phospholipids content in microdiets for gilthead seabream (Sparus aurata) larvae[J]. Aquaculture Nutrition, 2013, 19(4):449-460. [109] Sharp G J E, Secombes C J. The role of reactive oxygen species in the killing of the bacterial fish pathogen Aeromonas salmonicida by rainbow trout macrophages[J]. Fish & Shellfish Immunology, 1993, 3(2):119-129. [110] Shepherd C J, Jackson A J. Global fishmeal and fish-oil supply: inputs, outputs and markets[J]. Journal of Fish Biology, 2013, 83(4):1046-1066. [111] Shimizu C, Ibrahim A, Tokoro T, et al. Feeding stimulation in sea bream, Pagrus major, fed diets supplemented with Antarctic krill meals[J]. Aquaculture, 1990, 89(1):43-53. [112] Song C, Bo L, Jiang S, et al. Anthraquinone extract from Rheum officinale Bail improves growth performance and Toll–Relish signaling-regulated immunity and hyperthermia tolerance in freshwater prawn Macrobrachium nipponense[J]. 3 Biotech, 2020, 10. [113] Sun D, Cao C, Li B, et al. Study on combined heat pump drying with freeze-drying of Antarctic krill and its effects on the lipids[J]. Journal of Food Process Engineering, 2017, 40(6):12577. [114] Sun D, Zhang L, Chen H, et al. Effects of Antarctic krill oil on lipid and glucose metabolism in C57BL/6J mice fed with high fat diet[J]. Lipids in Health and Disease, 2017, 16(1):218. [115] Suontama J, Kiessling A, Melle W, et al. Protein from Northern krill (Thysanoessa inermis), Antarctic krill (Euphausia superba) and the Arctic amphipod (Themisto libellula) can partially replace fish meal in diets to Atlantic salmon (Salmo salar) without affecting product quality[J]. Aquaculture Nutrition, 2007, 13(1):50-58. [116] Tandy S, Chung R W S, Wat E, et al. Dietary krill oil supplementation reduces hepatic steatosis, glycemia, and hypercholesterolemia in high-fat-fed mice[J]. Journal of Agricultural and Food Chemistry, 2009, 57(19):9339-9345. [117] Tibbetts S M, Olsen R E, Lall S P. Effects of partial or total replacement of fish meal with freeze-dried krill (Euphausia superba) on growth and nutrient utilization of juvenile Atlantic cod (Gadus morhua) and Atlantic halibut (Hippoglossus hippoglossus) fed the same practical diets[J]. Aquaculture Nutrition, 2011, 17(3):287-303. [118] Torstensen B, Lie Ø, Hamre K. A factorial experimental design for investigation of effects of dietary lipid content and pro- and antioxidants on lipid composition in Atlantic salmon (Salmo salar) tissues and lipoproteins[J]. Aquaculture Nutrition, 2008, 7:265-276. [119] Tou J C, Jaczynski J, Chen Y C. Krill for human consumption: nutritional value and potential health benefits[J]. Nutrition Reviews, 2007, 65(2):63-77. [120] Venditti P, Di Meo S. Thyroid hormone-induced oxidative stress[J]. Cellular and Molecular Life Sciences, 2006, 63(4):414-434. [121] Villamil L, Gómez-León J, Gómez-Chiarri M. Role of nitric oxide in the defenses of Crassostrea virginica to experimental infection with the protozoan parasite Perkinsus marinus[J]. Developmental & Comparative Immunology, 2007, 31(10):968-977. [122] Wang L F, Wang X N, Huang C C, et al. Inhibition of NAMPT aggravates high fat diet-induced hepatic steatosis in mice through regulating Sirt1/AMPKα/SREBP1 signaling pathway[J]. Lipids in Health and Disease, 2017, 16(1):82. [123] Wang W, Ishikawa M, Koshio S, et al. Effects of dietary astaxanthin supplementation on juvenile kuruma shrimp, Marsupenaeus japonicus[J]. Aquaculture, 2018, 491:197-204. [124] Wang Z, Cai C, Cao X, et al. Supplementation of dietary astaxanthin alleviated oxidative damage induced by chronic high pH stress, and enhanced carapace astaxanthin concentration of Chinese mitten crab Eriocheir sinensis[J]. Aquaculture, 2018, 483:230-237. [125] Watanabe T, Lee M J, Mizutani J, et al. Effective components in cuttlefish meal and raw krill for improvement of quality of red seabream Pagrus major eggs. Bulletin of the Japanese Society of Scientific Fisheries, 1991, 57(4):695-698. [126] Wei Y, Chen H, Jia M, et al. Effects of dietary Antarctic krill Euphausia superba meal on growth performance and muscle quality of triploid rainbow trout Oncorhynchus mykiss farmed in sea water[J]. Aquaculture, 2019a, 509:72-84. [127] Wei Y, Shen H, Xu W, et al. Replacement of dietary fishmeal by Antarctic krill meal on growth performance, intestinal morphology, body composition and organoleptic quality of large yellow croaker Larimichthys crocea[J]. Aquaculture, 2019b, 512:734281. [128] Williams K C, Smith D M, Barclay M C, et al. Evidence of a growth factor in some crustacean-based feed ingredients in diets for the giant tiger shrimp Penaeus monodon[J]. Aquaculture, 2005, 250(1):377-390. [129] Xie D, Gong M, Wei W, et al. Antarctic Krill (Euphausia superba) Oil: A Comprehensive Review of Chemical Composition, Extraction Technologies, Health Benefits, and Current Applications[J]. Compr Rev Food Sci Food Saf, 2019, 18(2):514-534. [130] Xie D, Jin J, Sun J, et al. Comparison of solvents for extraction of krill oil from krill meal: Lipid yield, phospholipids content, fatty acids composition and minor components[J]. Food Chemistry, 2017, 233:434-441. [131] Yamaguchi K, Miki W, Toriu N, et al. The composition of carotenoid pigments in the Antarctic krill Euphauia superba[J]. Nippon Suisan Gakkaishi, 1983, 49(9):1411-1415. [132] Yan J, Chang Q, Chen S, et al. Effect of dietary Antarctic krill meal on growth performance, muscle proximate composition, and antioxidative capacity of juvenile spotted halibut, Verasper variegatus[J]. Journal of the World Aquaculture Society, 2018, 49(4):761-769. [133] Yin F, Liu X, Fan X, et al. Extrusion of Antarctic krill (Euphausia superba) meal and its effect on oil extraction[J]. International Journal of Food Science & Technology, 2015, 50(3):633-639. [134] Yoshitomi B, Aoki M, Oshima S, et al. Evaluation of krill (Euphausia superba) meal as a partial replacement for fish meal in rainbow trout (Oncorhynchus mykiss) diets[J]. Aquaculture, 2006,261(1):440-446. [135] Yoshitomi B, Aoki M, Oshima S. Effect of total replacement of dietary fish meal by low fluoride krill (Euphausia superba) meal on growth performance of rainbow trout (Oncorhynchus mykiss) in fresh water[J]. Aquaculture, 2007, 266(1):219-225. [136] Yoshitomi B, Nagano I. Effect of dietary fluoride derived from Antarctic krill (Euphausia superba) meal on growth of yellowtail (Seriola quinqueradiata) [J]. Chemosphere, 2012, 86(9):891-897. [137] Zacour A C, Silva M E, Cecon P R, et al. Effect of dietary chitin on cholesterol absorption and metabolism in rats[J]. Journal of Nutritional Science and Vitaminology, 1992, 38(6):609-613. [138] Zhao J, Ai Q, Zuo R, et al. Effects of dietary phospholipids on survival, growth, digestive enzymes and stress resistance of large yellow croaker, Larmichthys crocea larvae[J]. Aquaculture, 2013,410-411:122-128. [139] Zhu J, Shi J, Qian W, et al. Effects of krill oil on serum lipids of hyperlipidemic rats and human SW480 cells[J]. Lipids in Health and Disease, 2008, 7(1):30. |
中图分类号: | S96 |
开放日期: | 2023-06-15 |