中文题名: | 新型唾液酸衍生剂的开发及用于不同物种唾液酸组成差异研究 |
姓名: | |
学号: | 2021208001 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0832 |
学科名称: | 工学 - 食品科学与工程(可授工学、农学学位) |
学生类型: | 博士 |
学位: | 工学博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 糖组学与糖生物学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-05-30 |
答辩日期: | 2025-05-26 |
外文题名: | Development of a Novel Sialic Acid Derivative Reagent, and Study on the Differences in Sialic Acid Composition among Different Species |
中文关键词: | |
外文关键词: | Sialic acid derivatives ; Imidazole based ionic liquids ; Mollusc sialic acid ; Sialic acid Aldolase |
中文摘要: |
唾液酸是一种含有九个碳的酸性单糖,通常存在于细胞和糖蛋白表面糖聚合物上糖链的末端。这些唾液酸化聚糖具有多种生理生化功能,同时唾液酸也被鉴定为不同类型癌症的标志物用于早期诊断和治疗。鉴于唾液酸在生物学和生理学中的重要作用,对其准确、简单和灵敏地定量在人类健康状况的临床诊断和评估中具有重要意义。目前已经开发了各种技术来定量唾液酸及其衍生物单糖,但大多都存在特异性差和灵敏性低等不足。此外,LC-MS法常用的传统唾液酸衍生剂(例如OPD、DMB和DMBA)在质谱离子化过程中,由于异质离子的加入降低了检测的灵敏度。因此,开发新型唾液酸衍生剂用于高特异性和高灵敏性的LC-MS检测具有重要意义。 离子液体类探针(ITag)在糖化学和糖生物学中有着广泛的应用。咪唑基ITag由于其易于合成并且能够结合其他不同的化合物结构,而作为ITag中常用的一种类别。目前,ITag在糖科学中的最新发展突显了它们作为质谱技术中灵敏探针的巨大潜力。咪唑类离子液体自身带有的永久性正电荷的特性与非离子化合物相比,可以显著增加质谱信号,适用于复杂生物基质中痕量唾液酸的鉴定。 因此,基于上述研究背景和技术现状,本文设计并合成了一种基于芳香胺咪唑类离子液体的新型唾液酸衍生剂(DAPMI),经过结构表征、功能验证及衍生条件优化后,对其在UPLC-ESI-MS上的检测灵敏度进行定量分析,并将其应用于不同物种(脊椎动物和软体动物)唾液酸类型及含量的鉴定。针对不同物种表现出的唾液酸组成差异性,本文围绕唾液酸代谢中的关键酶,唾液酸醛缩酶(NPL),深入探索了不同物种来源重组NPL的底物特异性,以期阐明不同物种唾液酸的体内组成差异与唾液酸的生物合成途径的相关性,为解释唾液酸组成的种属差异提供分子机制支撑。具体研究结果如下: 1. 基于芳香胺咪唑类离子液体的新型唾液酸标记物的设计与合成 本文采取将自身带有正电荷的咪唑基探针(ITag)和具有功能性芳香胺结构的液相荧光衍生物相结合,设计并合成了一种新型的芳香胺咪唑基唾液酸标记物(DAPMI)。该衍生剂可以选择性地与唾液酸中的酸性部分反应,同时将唾液酸本身转化为带正电的物质,以提高MS质谱离子化效率和检测灵敏度,NMR和HRMS表征结果显示DAPMI的结构正确且纯度较高。 然后,本文对DAPMI衍生唾液酸的功能进行了验证,采用HPLC-ESI-MS证明它可以实现对唾液酸(Neu5Ac、Neu5Gc和KDN)及经过基团修饰的唾液酸类似物进行衍生,验证了该法的可行性和普适性。为了提高衍生效率,本文对不同的衍生条件进行优化,以Neu5Ac为标准唾液酸进行衍生,并使用HPLC检测,条件优化结果如下:DAPMI衍生唾液酸的最适温度为80 °С,最佳衍生时间为45 min,最适衍生剂DAPMI浓度为20 mg/mL和还原剂NaHSO3的浓度为100 mM;最佳衍生溶剂为水溶液。DAPMI衍生后的储藏稳定性显示无论是在4 °С还是20 °С的避光或室内光条件下产物具有较好的稳定性。 2. 基于DAPMI衍生唾液酸的检测性能分析 本文为了进一步分析DAPMI衍生化唾液酸在液相色谱的荧光强度(UPLC-FLD)和电喷雾质谱(ESI-MS)离子化效率方面的性能,以实现定量分析DAPMI的HPLC-ESI-MS检测灵敏度。为了体现DAPMI的优良衍生效率及检测灵敏性,还与传统衍生剂(OPD)进行了比较。经过两种衍生剂的大体系衍生制备得到衍生化唾液酸OPD-Neu5Ac(2.2 mg)和DAPMI-Neu5Ac(8.8 mg),并采用核磁波谱(NMR)和高分辨质谱(HRMS)验证了分子结构正确并且纯度较高。荧光扫描显示,DAPMI-Neu5Ac的最佳激发波长/发射波长为356 nm/412 nm,OPD-Neu5Ac的最佳激发波长/发射波长为354 nm/416 nm。 衍生化唾液酸的检测限和定量限定量分析表明:在UPLC-FLD检测中,OPD-Neu5Ac的检出限和定量限分别为512 fmol和1512 fmol,而DAPMI-Neu5Ac的检出限和定量限分别为380 fmol和1505 fmol。在ESI-MS质谱检测中,OPD-Neu5Ac的LOD和LOQ分别是326.15 fmol和890.67 fmol,而DAPMI-Neu5Ac的LOD和LOQ分别是2.55 fmol和28.78 fmol。综上,DAPMI衍生唾液酸的荧光强度与传统唾液酸衍生剂OPD衍生唾液酸相比荧光强度略高,而质谱结果显示DAPMI衍生唾液酸的质谱响应值即在ESI-MS中的离子化效率和检测灵敏度显著提高,与OPD衍生唾液酸相比提高了130倍,检测限LOD(S/N=3)降低了130倍,定量限LOQ(S/N=10)降低了31倍。此外,当在各自的激发和发射最大值下检测时,DAPMI-Neu5Ac在FLD分析中的荧光检测灵敏度略高于OPD衍生的Neu5Ac。 本文还与传统唾液酸检测方法(酶法、化学法)的检测性能进行对比,结果显示这些方法灵敏度和特异性不高,并且适用于检测唾液酸含量较高的样本,只能测定总唾液酸含量,无法分开鉴定不同种类的唾液酸,这更加突出了DAPMI高效的检测性能。 3. 新型唾液酸标记物DAPMI用于不同物种唾液酸组成差异性研究 本文验证了咪唑类离子液体唾液酸标记物(DAPMI)应用于复杂生物样本中唾液酸检测的可行性,尤其适用于微量唾液酸的检测。DAPMI分别对脊椎动物(人、CMAH小鼠、禽蛋)和软体动物(牡蛎)中的唾液酸进行鉴定。 通过外标法对人血清和CMAH小鼠组织中的唾液酸分析结果表明,在野生型和杂合型CMAH(+/-)小鼠各组织中Neu5Ac/Neu5Gc比例不同。在纯合子CMAH(-/-)小鼠的组织和人血清中检测到了微量的Neu5Gc。为了减少定量误差,本文利用“一釜五酶”法生物合成了唾液酸内标物(Neu5FoGalX),并且MALDI-ToF-MS、NMR和HRMS证实了Neu5FoGalX具有正确的结构和较高的纯度。将此内标物应用于ESI-MS定量分析禽蛋中的唾液酸,结果显示禽蛋中的唾液酸由Neu5Ac及少量的KDN组成。此外,本文在牡蛎的唾液酸中首次发现了游离KDN,ESI-MS/MS表明牡蛎中的唾液酸主要由KDN构成,还存在少量的KDN类似物(5-epi-KDN和5,7-di-epi-KDN)。 4. 不同物种唾液酸生物合成途径的差异比较 针对脊椎动物和软体动物中的唾液酸在组成及含量上的差异性,本文进一步对不同物种生物合成途径进行比较,尤其是唾液酸醛缩酶参与的唾液酸代谢途径。本文选择几种代表性的脊椎动物(鸡)和软体动物(牡蛎、蜗牛)来源的唾液酸醛缩酶(NPL)并探究他们对唾液酸(Neu5Ac、KDN及其类似物)的合成与分解的催化活性。经过基因合成、重组蛋白表达与纯化后,获得家禽鸡NPL(chNPL)、淡水蜗牛NPL(sNPL)和太平洋牡蛎(CgNPL),采用TLC、化学法、酶法及HPLC-ESI-MS法进行底物活性鉴定的结果显示,软体动物源NPL(sNPL和CgNPL)无法催化由ManNAc和丙酮酸生成Neu5Ac的可逆反应,但可催化一系列己醛糖(甘露糖、葡萄糖和半乳糖)与丙酮酸生成相应的KDN及KDN类似物(5-epi-KDN和5,7-di-epi-KDN),这种催化活性的区别与不同动物体内唾液酸组成差异性具有较强的相关性。 |
外文摘要: |
Sialic acid is a nine-carbon acidic monosaccharide typically found at the terminal ends of glycan chains on cell surfaces and glycoprotein-associated sugar polymers. These sialylated glycans participate in various physiological and biochemical functions, and sialic acid has also been identified as a biomarker for different types of cancers, aiding in early diagnosis and treatment. Given the significant role of sialic acid in biology and physiology, its accurate, simple, and sensitive quantification is of great importance for clinical diagnosis and assessment of human health. Various techniques have been developed to quantify sialic acid and its derivative monosaccharides, but most suffer from limitations such as poor specificity and low sensitivity. Additionally, traditional sialic acid derivatization reagents (e.g., OPD, DMB, and DMBA) commonly used in LC-MS methods reduce detection sensitivity during mass spectrometry ionization due to the introduction of heterogeneous ions. Therefore, developing novel sialic acid derivatization reagents for highly specific and sensitive LC-MS detection is of significant importance. Ionic liquid-based probes (ITags) have broad applications in glycochemistry and glycobiology. Among them, imidazole-based ITags are widely used due to their ease of synthesis and ability to incorporate diverse compound structures. Recent advancements in ITags within glycoscience highlight their great potential as highly sensitive probes in mass spectrometry. The inherent permanent positive charge of imidazole-based ionic liquids can significantly enhance mass spectrometry signals compared to non-ionic compounds, making them suitable for identifying trace sialic acids in complex biological matrices. Based on the above research background and current technological landscape, this study designed and synthesized a novel sialic acid derivatization reagent (DAPMI) based on an aromatic amine-imidazole ionic liquid. After structural characterization, functional validation, and optimization of derivatization conditions, its detection sensitivity on UPLC-ESI-MS was quantitatively analyzed, and it was applied to identify the types and concentrations of sialic acids in different species (vertebrates and mollusks). Given the observed variations in sialic acid composition among species, this study focused on a key enzyme in sialic acid metabolism — sialic acid aldolase (NPL) — to explore the substrate specificity of recombinant NPLs from different species, aiming to elucidate the correlation between in vivo and in vitro sialic acid synthesis. The specific research findings are as follows: 1. Design and Synthesis of a Novel Sialic Acid Tagging Reagent Based on Aromatic Amine-Imidazole Ionic Liquid This study describes the design and synthesis of DAPMI by combining a positively charged imidazolium tag (ITag) with a functional aromatic amine-based fluorescent derivatization group. This derivatization reagent selectively reacts with the carboxyl group of sialic acids while converting them into positively charged species to enhance MS ionization efficiency and detection sensitivity. NMR and HRMS analyses confirmed the correct structure and high purity of DAPMI. We then validated DAPMI's functionality for sialic acid derivatization using HPLC-ESI-MS, demonstrating its applicability to sialic acids (Neu5Ac, Neu5Gc, and KDN) and their modified analogs, confirming the method's feasibility and universality. To optimize derivatization efficiency, we systematically evaluated reaction conditions using Neu5Ac as the standard substrate, with HPLC detection. The optimized conditions were: optimal temperature of 80°C, derivatization time of 45 minutes, DAPMI concentration of 20 mg/mL, NaHSO3 concentration of 100 mM, and aqueous reaction medium. Stability studies showed that DAPMI-derivatized products maintained good stability under both 4°C and 20°C storage conditions, whether protected from light or exposed to ambient light. 2. Performance Analysis of DAPMI-Derivatized Sialic Acids This study further analyzed the performance of DAPMI-derivatized sialic acids in terms of fluorescence intensity (UPLC-FLD) and electrospray ionization efficiency (ESI-MS) to quantitatively evaluate the detection sensitivity of DAPMI in HPLC-ESI-MS. To demonstrate DAPMI's superior derivatization efficiency and detection sensitivity, we conducted comparative studies with the traditional derivatization reagent OPD. Large-scale derivatization using both reagents yielded OPD-Neu5Ac (2.2 mg) and DAPMI-Neu5Ac (8.8 mg), with their molecular structures and high purity confirmed by NMR and HRMS. Fluorescence scanning revealed optimal excitation/emission wavelengths of 356 nm/412 nm for DAPMI-Neu5Ac and 354 nm/416 nm for OPD-Neu5Ac. Limit of detection (LOD) and quantification (LOQ) analyses showed: (1) in UPLC-FLD: OPD-Neu5Ac (LOD=512 fmol, LOQ=1512 fmol) vs DAPMI-Neu5Ac (LOD=380 fmol, LOQ=1505 fmol); (2) In ESI-MS: OPD-Neu5Ac (LOD=326.15 fmol, LOQ=890.67 fmol) vs DAPMI-Neu5Ac (LOD=2.55 fmol [130-fold improvement], LOQ=28.78 fmol [31-fold improvement]) While DAPMI-derivatized sialic acids showed slightly higher fluorescence intensity than OPD derivatives, their MS response values (reflecting ionization efficiency and detection sensitivity) were dramatically improved - 130-fold higher for LOD (S/N=3) and 31-fold higher for LOQ (S/N=10). Additionally, when detected at their respective maximum excitation/emission wavelengths, DAPMI-Neu5Ac showed slightly higher sensitivity in FLD analysis than OPD-derivatized Neu5Ac. Comparative studies with traditional sialic acid detection methods (enzymatic and chemical assays) revealed their limitations in sensitivity and specificity, as they could only measure total sialic acid content without distinguishing between different sialic acid types, further highlighting DAPMI's superior detection performance. 3. DAPMI-Based Analysis of Species-Specific Sialic Acid Composition Variations This study validated the feasibility of applying imidazolium ionic liquid sialic acid tags (DAPMI) to detect sialic acids in complex biological samples, particularly for trace-level analysis. DAPMI was used to profile sialic acids in vertebrates (humans, CMAH mice, avian eggs) and mollusks (oysters). External standard analysis of human serum and CMAH mouse tissues revealed different Neu5Ac/Neu5Gc ratios across wild-type and heterozygous CMAH (+/-) mouse tissues. Trace Neu5Gc was detected in homozygous CMAH (-/-) mouse tissues and human serum, likely due to dietary intake of Neu5Gc-containing foods. To minimize quantification errors, we biosynthesized a sialic acid internal standard (Neu5FoGalX) using a "one-pot five-enzyme" method, with its structure and high purity confirmed by MALDI-ToF-MS, NMR, and HRMS. Application of this internal standard in ESI-MS quantification revealed that avian egg sialic acids consisted primarily of Neu5Ac with minor KDN components. Free KDN was identified for the first time in oysters. ESI-MS/MS analysis showed oyster sialic acids were predominantly KDN, with minor amounts of KDN analogs (5-epi-KDN and 5,7-di-epi-KDN). 4. Comparison of Differences in Salic Acid Biosynthetic Pathways among Different Species To investigate the interspecies differences in sialic acid composition, we characterized the catalytic activities of representative NPL enzymes from vertebrates (chicken) and mollusks (oyster, snail) toward sialic acid (Neu5Ac, KDN and analogs) synthesis and degradation. Following gene synthesis, recombinant protein expression and purification, we obtained chicken NPL (chNPL), freshwater snail NPL (sNPL), and Pacific oyster NPL (CgNPL). Activity assays using TLC, chemical methods, enzymatic assays, and HPLC-ESI-MS revealed that molluskan NPLs (sNPL and CgNPL) could not catalyze the reversible reaction of Neu5Ac synthesis from ManNAc and pyruvate, but could catalyze the formation of KDN and its analogs (5-epi-KDN and 5,7-di-epi-KDN) from various hexoses (mannose, glucose, galactose) and pyruvate. This catalytic difference likely contributes to the distinct sialic acid profiles observed in different species. |
参考文献: |
[1] 杨阳, 焦淑玲, 朱美旗, 等. 唾液酸检测方法研究进展[J]. 化学工程师, 2020, 34(09): 51-56. [2] 文琦, 沈清武. 红肉中N-羟乙酰神经氨酸在人体中的代谢途径及危害[J]. 食品研究与开发, 2019, 40(08): 7-13. [3] Yang H, Lu L, Chen X. An overview and future prospects of sialic acids[J]. Biotechnology Advances, 2021, 46: 107678. [4] Pearce O M T, Läubli H. Sialic acids in cancer biology and immunity[J]. Glycobiology, 2015, 26(2): 111-128. [5] Diaz S L, Padler Karavani V, Ghaderi D, et al. Sensitive and Specific Detection of the Non-Human Sialic Acid N-Glycolylneuraminic Acid In Human Tissues and Biotherapeutic Products[J]. PLoS ONE, 2009, 4(1): e4241. [6] Wang B, Brand-Miller J. The role and potential of sialic acid in human nutrition[J]. European Journal of Clinical Nutrition, 2003, 57(11): 1351-1369. [7] Samraj A, Läubli H, Varki N, et al. Involvement of a Non-Human Sialic Acid in Human Cancer[J]. Frontiers in Oncology, 2014a, 4(33): 1-13. [8] Hedlund M, Tangvoranuntakul P, Takematsu H, et al. N-glycolylneuraminic acid deficiency in mice: implications for human biology and evolution[J]. Mol Cell Biol, 2007, 27(12): 4340-6. [9] Perota A, Galli C. N-Glycolylneuraminic Acid (Neu5Gc) Null Large Animals by Targeting the CMP-Neu5Gc Hydroxylase (CMAH)[J]. Front Immunol, 2019, 10: 2396. [10] Padler K, V., Yu H, Cao H, et al. Diversity in specificity, abundance, and composition of anti-Neu5Gc antibodies in normal humans: potential implications for disease[J]. Glycobiology, 2008, 18(10): 818-30. [11] Sethi M K, Hancock W S, Fanayan S. Identifying N-Glycan Biomarkers in Colorectal Cancer by Mass Spectrometry[J]. Acc Chem Res, 2016, 49(10): 2099-2106. [12] Moons S J, Adema G J, Derks M T G M, et al. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs[J]. Glycobiology, 2019, 29(6): 433-445. [13] Awofiranye A E, Dhar C, He P, et al. N-glycolylated carbohydrates in nature[J]. Glycobiology, 2022, 32(11): 921-932. [14] D'addio M, Frey J, Otto V I. The manifold roles of sialic acid for the biological functions of endothelial glycoproteins[J]. Glycobiology, 2020, 30(8): 490-499. [15] Varki A. Sialic acids in human health and disease[J]. Trends in Molecular Medicine, 2008, 14(8): 351-360. [16] Zhou X, Yang G, Guan F. Biological Functions and Analytical Strategies of Sialic Acids in Tumor[J]. Cells, 2020, 9(2): 1-18. [17] Salvadorv A M, Boyd E F. Insights into the evolution of sialic acid catabolism among bacteria[J]. BMC Evolutionary Biology, 2009, 9(1): 118. [18] Johnston J W, Shamsulddin H, Miller A-F, et al. Sialic acid transport and catabolism are cooperatively regulated by SiaR and CRP in nontypeable Haemophilus influenzae[J]. BMC microbiology, 2010, 10: 240-240. [19] Lee J O, Yi J K, Lee S G, et al. Production of N-acetylneuraminic acid from N-acetylglucosamine and pyruvate using recombinant human renin binding protein and sialic acid aldolase in one pot[J]. Enzyme and Microbial Technology, 2004, 35(2): 121-125. [20] Wen X Y, Tarailo Graovac M, Brand Arzamendi K, et al. Sialic acid catabolism by N-acetylneuraminate pyruvate lyase is essential for muscle function[J]. JCI Insight, 2018, 3(24): [21] Zhang X, Liu Y, Liu L, et al. Microbial production of sialic acid and sialylated human milk oligosaccharides: Advances and perspectives[J]. Biotechnology Advances, 2019, 37(5): 787-800. [22] Mahajan V S, Pillai S. Sialic acids and autoimmune disease[J]. Immunological Reviews, 2016, 269(1): 145-161. [23] Gray M A, Stanczak M A, Mantuano N R, et al. Targeted glycan degradation potentiates the anticancer immune response in vivo[J]. Nature Chemical Biology, 2020, 16(12): 1376-1384. [24] Kuliesiute U, Joseph K, Straehle J, et al. Sialic acid metabolism orchestrates transcellular connectivity and signaling in glioblastoma[J]. Neuro Oncol, 2023, 25(11): 1963-1975. [25] Crocker P R, Paulson J C, Varki A. Siglecs and their roles in the immune system[J]. Nature Reviews Immunology, 2007, 7(4): 255-266. [26] Zhao C, Hu X, Qiu M, et al. Sialic acid exacerbates gut dysbiosis-associated mastitis through the microbiota-gut-mammary axis by fueling gut microbiota disruption[J]. Microbiome, 2023, 11(1): [27] Cheeseman J, Kuhnle G, Spencer D I R, et al. Assays for the identification and quantification of sialic acids: Challenges, opportunities and future perspectives[J]. Bioorganic & Medicinal Chemistry, 2021, 30: 115882. [28] Jayeoye T J, Cheewasedtham W, Putson C, et al. Colorimetric determination of sialic acid based on boronic acid-mediated aggregation of gold nanoparticles[J]. Mikrochim Acta, 2018, 185(9): 409. [29] Denny P C, Denny P A, Allerton S E. Determination of sialic acid using 2-thiobarbituric acid in the absence of hazardous sodium arsenite[J]. Clinica Chimica Acta, 1983, 131(3): 333-336. [30] Ricardo Z C, Jaramillo Flores M E J, Vallejo Ruiz V, et al. Detection of Sialic Acid to Differentiate Cervical Cancer Cell Lines Using a Sambucus nigra Lectin Biosensor[J]. Biosensors, 2024, 14(1): 34. [31] Kawasaki A, Yasuda M, Mawatari K-I, et al. Sensitive Analysis of Sialic Acid and Related Compound by Hydrophilic Interaction Liquid Chromatography Using Fluorescence Detection after Derivatization with DBD-PZ[J]. Analytical Sciences, 2018, 34(7): 841-844. [32] Fujita A, Sato C, Münster-Kühnel A K, et al. Development of a simple and efficient method for assaying cytidine monophosphate sialic acid synthetase activity using an enzymatic reduced nicotinamide adenine dinucleotide/oxidized nicotinamide adenine dinucleotide converting system[J]. Analytical Biochemistry, 2005, 337(1): 12-21. [33] Karagüler N G, Sessions R B, Binay B, et al. Protein engineering applications of industrially exploitable enzymes: Geobacillus stearothermophilus LDH and Candida methylica FDH[J]. Biochem Soc Trans, 2007, 35(Pt 6): 1610-5. [34] Spichtig V, Michaud J, Austin S. Determination of sialic acids in milks and milk-based products[J]. Anal Biochem, 2010, 405(1): 28-40. [35] Chen Y, Pan L, Liu N, et al. LC–MS/MS quantification of N-acetylneuraminic acid, N-glycolylneuraminic acid and ketodeoxynonulosonic acid levels in the urine and potential relationship with dietary sialic acid intake and disease in 3- to 5-year-old children[J]. British Journal of Nutrition, 2014, 111(2): 332-341. [36] Klepach T, Carmichael I, Serianni A S. 13C-Labeled N-Acetyl-neuraminic Acid in Aqueous Solution: Detection and Quantification of Acyclic Keto, Keto Hydrate, and Enol Forms by 13C NMR Spectroscopy[J]. Journal of the American Chemical Society, 2008, 130(36): 11892-11900. [37] He X N, Wang Y N, Wang Y, et al. Accurate quantitative detection of cell surface sialic acids with a background-free SERS probe[J]. Talanta, 2020, 209: 120579. [38] Galuska S P, Geyer H, Weinhold B, et al. Quantification of Nucleotide-Activated Sialic Acids by a Combination of Reduction and Fluorescent Labeling[J]. Analytical Chemistry, 2010, 82(11): 4591-4598. [39] Kobayashi K, Akiyama Y, Kawaguchi K, et al. Fluorometric Determination of N-Acetyl and N-Glycolyl Neuraminic Acids by High Performance Liquid Chromatography as Their 4'-Hydrazino-2-stilbazole Derivatives[J]. Analytical Sciences, 1985, 1(1): 81-84. [40] Honda S, Iwase S, Suzuki S, et al. Fluorometric determination of sialic acids using malononitrile in weakly alkaline media and its application to postcolumn labeling in high-performance liquid chromatography[J]. Analytical Biochemistry, 1987, 160(2): 455-461. [41] Li K. Determination of sialic acids in human serum by reversed-phase liquid chromatography with fluorimetric detection[J]. J Chromatogr, 1992, 579(2): 209-13. [42] Martin M J, Vázquez E, Rueda R. Application of a sensitive fluorometric HPLC assay to determine the sialic acid content of infant formulas[J]. Anal Bioanal Chem, 2007, 387(8): 2943-9. [43] Stanton P G, Shen Z, Kecorius E A, et al. Application of a sensitive HPLC-based fluorometric assay to determine the sialic acid content of human gonadotropin isoforms[J]. J Biochem Biophys Methods, 1995, 30(1): 37-48. [44] Anumula K R. Rapid quantitative determination of sialic acids in glycoproteins by high-performance liquid chromatography with a sensitive fluorescence detection[J]. Anal Biochem, 1995, 230(1): 24-30. [45] Maria V D H, Prinsen B H C M T, Huijmans J G M, et al. Quantification of free and total sialic acid excretion by LC–MS/MS[J]. Journal of Chromatography B, 2007, 848(2): 251-257. [46] Zhang Q, Li Z, Wang Y, et al. Mass spectrometry for protein sialoglycosylation[J]. Mass Spectrometry Reviews, 2018, 37(5): 652-680. [47] Valianpour F, Abeling N G G M, Duran M, et al. Quantification of Free Sialic Acid in Urine by HPLC–Electrospray Tandem Mass Spectrometry: A Tool for the Diagnosis of Sialic Acid Storage Disease[J]. Clinical Chemistry, 2004, 50(2): 403-409. [48] Thomson R I, Gardner R A, Strohfeldt K, et al. Analysis of Three Epoetin Alpha Products by LC and LC-MS Indicates Differences in Glycosylation Critical Quality Attributes, Including Sialic Acid Content[J]. Analytical Chemistry, 2017, 89(12): 6455-6462. [49] Sekiya S, Wada Y, Tanaka K. Derivatization for stabilizing sialic acids in MALDI-MS[J]. Anal Chem, 2005, 77(15): 4962-8. [50] Nishikaze T. Sialic acid derivatization for glycan analysis by mass spectrometry[J]. Proceedings of the Japan Academy, Series B, 2019, 95(9): 523-537. [51] Harvey D J. Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus[J]. J Am Soc Mass Spectrom, 2000, 11(10): 900-15. [52] Zhang Y Y, Ghirardello M, Wang T, et al. Imidazolium labelling permits the sensitive mass-spectrometric detection of N-glycosides directly from serum[J]. Chemical Communications, 2021, 57(57): 7003-7006. [53] Zhang Y Y, Zhang S Y, Hu Z X, et al. High sensitivity profiling of N-glycans from mouse serum using fluorescent imidazolium tags by HILIC electrospray ionisation spectrometry[J]. Carbohydrate Polymers, 2024, 343: 122449. [54] Ghirardello M, Zhang Y Y, Voglmeir J, et al. Recent applications of ionic liquid-based tags in glycoscience[J]. Carbohydrate Research, 2022, 520: 108643. [55] Li X, Chen K, Guo R, et al. Ionic Liquids Functionalized MOFs for Adsorption[J]. Chem Rev, 2023, 123(16): 10432-10467. [56] Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J]. Chem. Soc. Rev., 2008, 37(1): 123-150. [57] Hallett J P, Welton T. Room-Temperature Ionic Liquids: Solvents for Synthesis and Catalysis. 2[J]. Chemical Reviews, 2011, 111(5): 3508-3576. [58] Bland R D, Nielson D W. Developmental changes in lung epithelial ion transport and liquid movement[J]. Annu Rev Physiol, 1992, 54: 373-94. [59] Dobson G, Christie W W, Nikolova-Damyanova B. Silver ion chromatography of lipids and fatty acids[J]. J Chromatogr B Biomed Appl, 1995, 671(1-2): 197-222. [60] Yagami T, Kitagawa K, Futaki S. Liquid secondary-ion mass spectrometry of peptides containing multiple tyrosine-O-sulfates[J]. Rapid Commun Mass Spectrom, 1995, 9(14): 1335-41. [61] Castro R, Moyano E, Galceran M T. Ion-pair liquid chromatography-atmospheric pressure ionization mass spectrometry for the determination of quaternary ammonium herbicides[J]. J Chromatogr A, 1999, 830(1): 145-54. [62] López R B. Advances in the determination of inorganic anions by ion chromatography[J]. J Chromatogr A, 2000, 881(1-2): 607-27. [63] Poletti L, Rencurosi A, Lay L, et al. Trichloroacetimidates as Glycosyl Donors in Recyclable Ionic Liquids[J]. Synlett, 2003, 2003(15): 2297-2300. [64] Poletti L, Chiappe C, Lay L, et al. Glucose-derived ionic liquids: exploring low-cost sources for novel chiral solvents[J]. Green Chemistry, 2007, 9(4): 337-341. [65] Khera S, Grillo M, Schnier P, et al. Application of diffusion-edited NMR spectroscopy for the structural characterization of drug metabolites in mixtures[J]. Journal of Pharmaceutical and Biomedical Analysis, 2010, 51(1): 164-169. [66] Brandt A, Gräsvik J, Hallett J P, et al. Deconstruction of lignocellulosic biomass with ionic liquids[J]. Green Chemistry, 2013, 15(3): 550-583. [67] Marina C B, Vidović S, Radojčić Redovniković I, et al. Green solvents for green technologies[J]. Journal of Chemical Technology & Biotechnology, 2015, 90(9): 1631-1639. [68] Alina B S, Więcek P, Guzik M, et al. Combining amino acids and carbohydrates into readily biodegradable, task specific ionic liquids[J]. RSC Advances, 2020, 10(31): 18355-18359. [69] Komabayashi M, Nokami T, Jopp S. From Chitin to CHILs: First Glucosamine based Ionic Liquids[J]. Asian Journal of Organic Chemistry, 2020, 9(12): 2092-2094. [70] Xu A, Wang F. Carboxylate ionic liquid solvent systems from 2006 to 2020: thermal properties and application in cellulose processing[J]. Green Chemistry, 2020, 22(22): 7622-7664. [71] Vincent S, Prado R, Kuzmina O, et al. Regenerated Cellulose and Willow Lignin Blends as Potential Renewable Precursors for Carbon Fibers[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(5): 5903-5910. [72] Sittel I, Galan M C. Chemo-enzymatic synthesis of imidazolium-tagged sialyllactosamine probes[J]. Bioorganic & Medicinal Chemistry Letters, 2015, 25(19): 4329-4332. [73] Anderson J L, Ding J, Welton T, et al. Characterizing ionic liquids on the basis of multiple solvation interactions[J]. J Am Chem Soc, 2002, 124(47): 14247-54. [74] Huang J Y, Lei M, Wang Y G. A novel and efficient ionic liquid supported synthesis of oligosaccharides[J]. Tetrahedron Letters, 2006, 47(18): 3047-3050. [75] Sittel I, Tran A T, Benito Alifonso D, et al. Combinatorial ionic catch-and-release oligosaccharide synthesis (combi-ICROS)[J]. Chemical Communications, 2013, 49(39): 4217-4219. [76] Reddy D M, Rieger R A, Torres M C, et al. Analysis of synthetic oligodeoxynucleotides containing modified components by electrospray ionization mass spectrometry[J]. Anal Biochem, 1994, 220(1): 200-7. [77] Salvitti C, Pepi F, Managò M, et al. Free N-heterocyclic carbenes from Brønsted acidic ionic liquids: Direct detection by electrospray ionization mass spectrometry[J]. Rapid Commun Mass Spectrom, 2022, 36(17): e9338. [78] Galan M C, Tran A T, Bromfield K, et al. Ionic-liquid-based MS probes for the chemo-enzymatic synthesis of oligosaccharides[J]. Organic & Biomolecular Chemistry, 2012, 10(35): 7091-7097. [79] Wu C, Wang L, Li H, et al. Analyzing 2-acetyl-4(5)-(1,2,3,4-tetrahydroxybutyl)-imidazole in beverages by dispersive micro-solid phase extraction using polymer cation exchange sorbent followed by ion chromatography and liquid chromatography coupled with tandem mass spectrometry[J]. Food Chem, 2019, 292: 260-266. [80] Galan M C, Tran A T, Bernard C. Ionic-liquid-based catch and release mass spectroscopy tags for enzyme monitoring[J]. Chemical Communications, 2010, 46(47): 8968-8970. [81] Río G, J., García Valverde M T, López Lorente Á I, et al. Polymeric ionic liquid immobilized onto paper as sorptive phase in microextraction[J]. Anal Chim Acta, 2020, 1094: 47-56. [82] Javanbakht F, Afshar Mogaddam M R, Nemati M, et al. Determination of metronidazole and clarithromycin in plasma samples using surfactant-modified amorphous carbon-based DSPE combined with DLLME followed by HPLC[J]. Anal Sci, 2023, 39(8): 1287-1295. [83] Ge D, Lee H K. Ionic liquid based dispersive liquid-liquid microextraction coupled with micro-solid phase extraction of antidepressant drugs from environmental water samples[J]. J Chromatogr A, 2013, 1317: 217-22. [84] Pang J, Liao Y, Huang X, et al. Metal-organic framework-monolith composite-based in-tube solid phase microextraction on-line coupled to high-performance liquid chromatography-fluorescence detection for the highly sensitive monitoring of fluoroquinolones in water and food samples[J]. Talanta, 2019, 199: 499-506. [85] Kilicarslan B, Sardan Ekiz M, Bayram C. Electrostatic Repulsive Features of Free-Standing Titanium Dioxide Nanotube-Based Membranes in Biofiltration Applications[J]. Langmuir, 2023, 39(9): 3400-3410. [86] Kim M, Lee H S, Seo D H, et al. Melt-quenched carboxylate metal-organic framework glasses[J]. Nat Commun, 2024, 15(1): 1174. [87] Ichikawa T, Yoshio M, Hamasaki A, et al. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks[J]. J Am Chem Soc, 2007, 129(35): 10662-3. [88] Han L, Shu Y, Wang X, et al. Encapsulation of silica nano-spheres with polymerized ionic liquid for selective isolation of acidic proteins[J]. Anal Bioanal Chem, 2013, 405(27): 8799-806. [89] Xue S, Pattathil S, Da Costa Sousa L, et al. Understanding the structure and composition of recalcitrant oligosaccharides in hydrolysate using high-throughput biotin-based glycome profiling and mass spectrometry[J]. Sci Rep, 2022, 12(1): 2521. [90] Cindrić M, Cepo T, Skrlin A, et al. Accelerated on-column lysine derivatization and cysteine methylation by imidazole reaction in a deuterated environment for enhanced product ion analysis[J]. Rapid Commun Mass Spectrom, 2006, 20(4): 694-702. [91] Chen Z H, Guo Y W, Li X W. Recent advances on marine mollusk-derived natural products: chemistry, chemical ecology and therapeutical potential[J]. Nat Prod Rep, 2023, 40(3): 509-556. [92] Ciavatta M L, Lefranc F, Carbone M, et al. Marine Mollusk-Derived Agents with Antiproliferative Activity as Promising Anticancer Agents to Overcome Chemotherapy Resistance[J]. Med Res Rev, 2017, 37(4): 702-801. [93] Harayashiki C a Y, Márquez F, Cariou E, et al. Mollusk shell alterations resulting from coastal contamination and other environmental factors[J]. Environ Pollut, 2020, 265(Pt B): 114881. [94] Koirala P, Bhandari Y, Khadka A, et al. Nanochitosan from crustacean and mollusk byproduct: Extraction, characterization, and applications in the food industry[J]. Int J Biol Macromol, 2024, 262(Pt 1): 130008. [95] Bretting H, Stanislawski E, Jacobs G, et al. Isolation and characterization of a lectin from the snail Biomphalaria glabrata and a study of its combining site[J]. Biochim Biophys Acta, 1983, 749(2): 143-52. [96] Hatzoglou E, Rodakis G C, Lecanidou R. Complete sequence and gene organization of the mitochondrial genome of the land snail Albinaria coerulea[J]. Genetics, 1995, 140(4): 1353-66. [97] Nederbragt A J, Lespinet O, Van Wageningen S, et al. A lophotrochozoan twist gene is expressed in the ectomesoderm of the gastropod mollusk Patella vulgata[J]. Evol Dev, 2002, 4(5): 334-43. [98] Staudacher E. Mollusc N-glycosylation: Structures, Functions and Perspectives[J]. Biomolecules, 2021, 11(12): 1820. [99] Takakura D, Norizuki M, Ishikawa F, et al. Isolation and characterization of the N-linked oligosaccharides in nacrein from Pinctada fucata[J]. Mar Biotechnol (NY), 2008, 10(3): 290-6. [100] Hardy S W, Grant P T, Fletcher T C. A haemagglutinin in the tissue fluid of the Pacific oyster, Crassostrea gigas, with specificity for sialic acid residues in glycoproteins[J]. Experientia, 1977, 33(6): 767-9. [101] Stepan H, Bleckmann C, Geyer H, et al. Determination of 3-O- and 4-O-methylated monosaccharide constituents in snail glycans[J]. Carbohydrate Research, 2010, 345(10): 1504-1507. [102] Vimr E R, Troy F A. Regulation of sialic acid metabolism in Escherichia coli: role of N-acylneuraminate pyruvate-lyase[J]. Journal of Bacteriology, 1985, 164(2): 854-860. [103] Campeotto I, Carr S B, Trinh C H, et al. Structure of an Escherichia coli N-acetyl-D-neuraminic acid lyase mutant, E192N, in complex with pyruvate at 1.45 angstrom resolution[J]. Acta crystallographica. Section F, Structural biology and crystallization communications, 2009, 65(Pt 11): 1088-1090. [104] Chou C Y, Tzu Ping K, Kuan-Jung W, et al. Modulation of substrate specificities of D-sialic acid aldolase through single mutations of Val-251[J]. The Journal of biological chemistry, 2011, 286(16): [105] Campeotto I, Bolt A H, Harman T A, et al. Structural Insights into Substrate Specificity in Variants of N-Acetylneuraminic Acid Lyase Produced by Directed Evolution[J]. Journal of Molecular Biology, 2010, 404(1): 56-69. [106] Lawrence M C, Barbosa J a R G, Smith B J, et al. Structure and mechanism of a sub-family of enzymes related to N-acetylneuraminate lyase11Edited by F. E. Cohen[J]. Journal of Molecular Biology, 1997, 266(2): 381-399. [107] Shelton M C, Cotterill I C, Novak S T A, et al. 2-Keto-3-deoxy-6-phosphogluconate Aldolases as Catalysts for Stereocontrolled Carbon−Carbon Bond Formation[J]. Journal of the American Chemical Society, 1996, 118(9): 2117-2125. [108] Dobson R C J, Griffin M D W, Roberts S J, et al. Dihydrodipicolinate synthase (DHDPS) from Escherichia coli displays partial mixed inhibition with respect to its first substrate, pyruvate[J]. Biochimie, 2004, 86(4): 311-315. [109] Baker P, Seah S Y K. Rational Design of Stereoselectivity in the Class II Pyruvate Aldolase Bphl[J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134(1): 507-513. [110] Karel H, Joglar J, Bujons J, et al. Nucleophile Promiscuity of Engineered Class II Pyruvate Aldolase YfaU from E.Coli[J]. Angewandte Chemie International Edition, 2018, 57(14): 3583-3587. [111] Lee S G, Jeong Oh L, Jung-Kyu Y, et al. Production of cytidine 5'-monophosphate N-acetylneuraminic acid using recombinant Escherichia coli as a biocatalyst[J]. Biotechnology and bioengineering, 2002, 80(5): [112] Dean S M, Greenberg W A, Wong C H. Recent advances in aldolase-catalyzed asymmetric synthesis[J]. Advanced Synthesis & Catalysis, 2007, 349(8-9): 1308-1320. [113] Brovetto M, Gamenara D, Saenz Méndez P, et al. C−C Bond-Forming Lyases in Organic Synthesis[J]. Chemical Reviews, 2011, 111(7): 4346-4403. [114] Guillena G, Najera C, Ramon D J. Enantioselective direct aldol reaction: the blossoming of modern organocatalysis[J]. Tetrahedron-asymmetry, 2007, 18(19): 2249-2293. [115] Lee S H, Yeom S J, Kim S E, et al. Development of aldolase-based catalysts for the synthesis of organic chemicals[J]. Trends in Biotechnology, 2022, 40(3): 306-319. [116] Hsu C C, Hong Z, Wada M, et al. Directed evolution of D-sialic acid aldolase to L-3-deoxy-manno-2-octulosonic acid (L-KDO) aldolase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(26): 9122-9126. [117] Lv X, Cao H, Lin B, et al. Synthesis of Sialic Acids, Their Derivatives, and Analogs by Using a Whole-Cell Catalyst[J]. Chemistry – A European Journal, 2017, 23(60): 15143-15149. [118] Liu Q, Wei G, Yang P, et al. One-pot biosynthesis of N-acetylneuraminic acid from chitin via combination of chitin-degrading enzymes, N-acetylglucosamine-2-epimerase, and N-neuraminic acid aldolase[J]. Front Microbiol, 2023, 14: 1156924. [119] Woodhall T, Williams G, Berry A, et al. Synthesis of screening substrates for the directed evolution of sialic acid aldolase: towards tailored enzymes for the preparation of influenza A sialidase inhibitor analogues[J]. Organic & Biomolecular Chemistry, 2005, 3(9): 1795-1800. [120] Adrian R R, Iglesias Fernández J, Osuna S. Exploring the conversion of a d-sialic scid aldolase into a l-KDO aldolase[J]. European Journal of Organic Chemistry, 2018, 2018(20-21): 2603-2608. [121] Kim M J, Hennen W J, Sweers H M, et al. Enzymes in carbohydrate synthesis: N-acetylneuraminic acid aldolase catalyzed reactions and preparation of N-acetyl-2-deoxy-D-neuraminic acid derivatives[J]. Journal of the American Chemical Society, 1988, 110(19): 6481-6486. [122] Hader S, Watts A G. The synthesis of a series of deoxygenated 2,3-difluoro-N-acteylneuraminic acid derivatives as potential sialidase inhibitors[J]. Carbohydrate Research, 2013, 374: 23-28. [123] Chen Q, Han L, Chen X, et al. A sialic acid aldolase from Peptoclostridium difficile NAP08 with 4-hydroxy-2-oxo-pentanoate aldolase activity[J]. Enzyme and Microbial Technology, 2016, 92: 99-106. [124] Laborda P, Wang S Y, Lu A M, et al. Diastereoselective One-Step Synthesis of 2-Keto-3-deoxy-d- glycero-d-galacto-nononic acid (KDN) Analogues as Templates for the Development of Influenza Drugs[J]. Advanced Synthesis & Catalysis, 2017, 359(18): 3120-3125. [125] Yu H, Cao H, Tiwari V K, et al. Chemoenzymatic synthesis of C8-modified sialic acids and related α2-3- and α2-6-linked sialosides[J]. Bioorg Med Chem Lett, 2011, 21(17): 5037-40. [126] Palazzolo M A, Nigro M J, Iribarren A M, et al. A Chemoenzymatic Route To Prepare Acyclic Nucleoside Analogues[J]. European Journal of Organic Chemistry, 2016, 2016(5): 921-924. [127] Palazzolo M A, Pérez Sánchez M, Iribarren A M, et al. Organocatalytic synthesis of novel purine and pyrimidine acyclic nucleosides[J]. Tetrahedron Letters, 2012, 53(50): 6797-6800. [128] Tunkijjanukij S, Giaever H, Chin C C, et al. Sialic acid in hemolymph and affinity purified lectins from two marine bivalves[J]. Comp Biochem Physiol B Biochem Mol Biol, 1998, 119(4): 705-13. [129] Yang J, Wei X, Liu X, et al. Cloning and transcriptional analysis of two sialic acid-binding lectins (SABLs) from razor clam Solen grandis[J]. Fish Shellfish Immunol, 2012, 32(4): 578-85. [130] Kamerling J P, Gerwig G J: Structural Analysis of Naturally Occurring Sialic Acids, Glycobiology Protocols: Humana Press: 69-92. [131] Szabo Z, Bones J, Guttman A, et al. Sialic Acid Speciation Using Capillary Electrophoresis: Optimization of Analyte Derivatization and Separation[J]. Analytical Chemistry, 2012, 84(18): 7638-7642. [132] Sankoh S, Thammakhet C, Numnuam A, et al. 4-mercaptophenylboronic acid functionalized gold nanoparticles for colorimetric sialic acid detection[J]. Biosens Bioelectron, 2016, 85: 743-750. [133] Xu S, Che S, Ma P, et al. One-step fabrication of boronic-acid-functionalized carbon dots for the detection of sialic acid[J]. Talanta, 2019, 197: 548-552. [134] Du J, Zhang Q, Li J, et al. LC-MS in combination with DMBA derivatization for sialic acid speciation and distribution analysis in fish tissues[J]. Analytical Methods, 2020, 12(17): 2221-2227. [135] Luo Z, Williams J, Read R W, et al. Fluorous Boc ((F)Boc) carbamates: new amine protecting groups for use in fluorous synthesis[J]. J Org Chem, 2001, 66(12): 4261-6. [136] Srinivasan N, Yurek George A, Ganesan A. Rapid deprotection of N-Boc amines by TFA combined with freebase generation using basic ion-exchange resins[J]. Mol Divers, 2005, 9(4): 291-3. [137] Palazon F, Benavides C M, Léonard D, et al. Carbodiimide/NHS derivatization of COOH-terminated SAMs: activation or byproduct formation?[J]. Langmuir, 2014, 30(16): 4545-50. [138] Grant D J, Dixon D A. Heats of formation and bond energies of the H(3-n)BX(n) compounds for (X = F, Cl, Br, I, NH2, OH, and SH)[J]. J Phys Chem A, 2009, 113(4): 777-87. [139] Morgado A, Najera F, Lagunas A, et al. Slightly congested amino terminal dendrimers. The synthesis of amide-based stable structures on a large scale[J]. Polymer Chemistry, 2021, 12(36): 5168-5177. [140] Ren R, Wang Y, Liu D, et al. Facile preparation of a novel nickel-containing metallopolymer via RAFT polymerization[J]. Designed Monomers and Polymers, 2017, 20(1): 300-307. [141] Wang D, Zhou X, Wang L, et al. Quantification of free sialic acid in human plasma through a robust quinoxalinone derivatization and LC–MS/MS using isotope-labeled standard calibration[J]. Journal of Chromatography B, 2014, 944: 75-81. [142] Dube D H, Bertozzi C R. Metabolic oligosaccharide engineering as a tool for glycobiology[J]. Current Opinion in Chemical Biology, 2003, 7(5): 616-625. [143] Evard H, Kruve A, Leito I. Tutorial on estimating the limit of detection using LC-MS analysis, part II: Practical aspects[J]. Anal Chim Acta, 2016, 942: 40-49. [144] Zhang Y, Xu X, Zhang L. Capsulation of red emission chromophore into the CoZn ZIF as nanozymes for on-site visual cascade detection of phosphate ions, o-phenylenediamine, and benzaldehyde[J]. Sci Total Environ, 2023, 856(Pt 1): 159091. [145] Moran A B, Gardner R A, Wuhrer M, et al. Sialic Acid Derivatization of Fluorescently Labeled N-Glycans Allows Linkage Differentiation by Reversed-Phase Liquid Chromatography-Fluorescence Detection-Mass Spectrometry[J]. Analytical Chemistry, 2022, 94(18): 6639-6648. [146] Varki A. Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution[J]. American Journal of Physical Anthropology, 2001, 116(S33): 54. [147] Okerblom J, Varki A. Biochemical, Cellular, Physiological, and Pathological Consequences of Human Loss of N-Glycolylneuraminic Acid[J]. ChemBioChem, 2017, 18(13): 1155-1171. [148] Suzuki A. Genetic basis for the lack of N-glycolylneuraminic acid expression in human tissues and its implication to human evolution[J]. Proceedings of the Japan Academy, Series B, 2006, 82(3): 93-103. [149] Kawanishi K, Coker J K, Grunddal K V, et al. Dietary Neu5Ac Intervention Protects Against Atherosclerosis Associated With Human-Like Neu5Gc Loss-Brief Report[J]. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41(11): 2730-2739. [150] Davies L R L, Pearce O M T, Tessier M B, et al. Metabolism of Vertebrate Amino Sugars with N-Glycolyl Groups[J]. Journal of Biological Chemistry, 2012, 287(34): 28917-28931. [151] Blackwell S, O'reilly D S, Talwar D K. HPLC analysis of asymmetric dimethylarginine (ADMA) and related arginine metabolites in human plasma using a novel non-endogenous internal standard[J]. Clin Chim Acta, 2009, 401(1-2): 14-9. [152] Imre S, Tero-Vescan A, Dogaru M T, et al. With or Without Internal Standard in HPLC Bioanalysis. A Case Study[J]. J Chromatogr Sci, 2019, 57(3): 243-248. [153] Platt J, Randall, Chen S, Zhou Y, et al. CRISPR-Cas9 Knockin Mice for Genome Editing and Cancer Modeling[J]. Cell, 2014, 159(2): 440-455. [154] Yao H L, Conway L P, Wang M M, et al. Quantification of sialic acids in red meat by UPLC-FLD using indoxylsialosides as internal standards[J]. Glycoconjugate Journal, 2016, 33(2): 219-226. [155] Cao C, Wang W J, Huang Y Y, et al. Determination of Sialic Acids in Liver and Milk Samples of Wild-type and CMAH Knock-out Mice.[J]. Journal of Visualized Experiments, 2017, (125): [156] Lever J, Krzywinski M, Altman N. Principal component analysis[J]. Nature Methods, 2017, 14(7): 641-642. [157] Li Y, Kind T, Folz J, et al. Spectral entropy outperforms MS/MS dot product similarity for small-molecule compound identification[J]. Nature Methods, 2021, 18(12): 1524-1531. [158] Wang F, Chen L, Chen S, et al. Characterization of two closely related citrus cultivars using UPLC-ESI-MS/MS-based widely targeted metabolomics[J]. PLOS ONE, 2021, 16(7): e0254759. [159] Liu F, Tol A J C, Kuipers F, et al. Characterization of milk oligosaccharide and sialic acid content and their influence on brain sialic acid in a lean mouse model for gestational diabetes[J]. Heliyon, 2024, 10(3): e24539. [160] Lepers A, Shaw L, Schneckenburger P, et al. A study on the regulation of N-glycoloylneuraminic acid biosynthesis and utilization in rat and mouse liver[J]. European Journal of Biochemistry, 1990, 193(3): 715-723. [161] Kandiba L, Aitio O, Helin J, et al. Diversity in prokaryotic glycosylation: an archaeal-derived N-linked glycan contains legionaminic acid[J]. Mol Microbiol, 2012, 84(3): 578-93. [162] Eneva R, Stephan E, Radoslav A, et al. Sialic acids, sialoconjugates and enzymes of their metabolism in fungi[J]. Biotechnology & Biotechnological Equipment, 2021, 35(1): 346-357. [163] Holden H M, Thoden J B, Gilbert M. Enzymes required for the biosynthesis of N-formylated sugars[J]. Current Opinion in Structural Biology, 2016, 41: 1-9. [164] Laborda P, Lyu Y-M, Parmeggiani F, et al. Inside Cover: An Enzymatic N-Acylation Step Enables the Biocatalytic Synthesis of Unnatural Sialosides (Angew. Chem. Int. Ed. 13/2020)[J]. Angewandte Chemie International Edition, 2020, 59(13): 4974-4974. [165] Linhorst M, Wattjes J, Moerschbacher B M. Chitin Deacetylase as a Biocatalyst for the Selective N-Acylation of Chitosan Oligo- and Polymers[J]. ACS Catalysis, 2021, 11(23): 14456-14466. [166] Wu Y, Zhang L, Jung Y M, et al. Two-dimensional correlation spectroscopy in protein science, a summary for past 20years[J]. Spectrochim Acta A Mol Biomol Spectrosc, 2018, 189: 291-299. [167] Elliott K W, Delaglio F, Wikström M, et al. Principal Component Analysis of 1D 1H Diffusion Edited NMR Spectra of Protein Therapeutics[J]. J Pharm Sci, 2021, 110(10): 3385-3394. [168] Ruzicka E, Pellechia P, Benicewicz B C. Polymer Molecular Weights via DOSY NMR[J]. Anal Chem, 2023, 95(20): 7849-7854. [169] Neuberger A, Ratcliffe W A. The acid and enzymic hydrolysis of O-acetylated sialic acid residues from rabbit Tamm-Horsfall glycoprotein[J]. Biochem J, 1972, 129(3): 683-93. [170] Peri S, Kulkarni A, Feyertag F, et al. Phylogenetic Distribution of CMP-Neu5Ac Hydroxylase (CMAH), the Enzyme Synthetizing the Proinflammatory Human Xenoantigen Neu5Gc[J]. Genome Biol Evol, 2018, 10(1): 207-219. [171] Kwon D N, Choi Y J, Cho S G, et al. CMP-Neu5Ac Hydroxylase Null Mice as a Model for Studying Metabolic Disorders Caused by the Evolutionary Loss of Neu5Gc in Humans[J]. Biomed Res Int, 2015, 2015: 830315. [172] Uno Y, Kawakami S, Ochiai K, et al. Molecular characterization of cytidine monophospho-N-acetylneuraminic acid hydroxylase (CMAH) associated with the erythrocyte antigens in dogs[J]. Canine Genetics and Epidemiology, 2019, 6(1): [173] Pam T, Gagneux P, Diaz S, et al. Human uptake and incorporation of an immunogenic nonhuman dietary sialic acid[J]. Proceedings of the National Academy of Sciences, 2003, 100(21): 12045-12050. [174] Seo N, Ko J, Lee D, et al. In-depth characterization of non-human sialic acid (Neu5Gc) in human serum using label-free ZIC-HILIC/MRM-MS[J]. Analytical and Bioanalytical Chemistry, 2021, 413(20): 5227-5237. [175] Norimura Y, Yamamoto D, Makino K. Synthesis of sialic acid derivatives based on chiral substrate-controlled stereoselective aldol reactions using pyruvic acid oxabicyclo[2.2.2]octyl orthoester[J]. Organic & Biomolecular Chemistry, 2017, 15(3): 640-648. [176] Boons G J, Demchenko A V. Recent advances in o-sialylation[J]. Chem Rev, 2000, 100(12): 4539-66. [177] Podvalnyy N M, Malysheva N N, Panova M V, et al. Stereoselective sialylation with O-trifluoroacetylated thiosialosides: hydrogen bonding involved?[J]. Carbohydr Res, 2017, 451: 12-28. [178] Panza M, Stine K J, Demchenko A V. HPLC-assisted automated oligosaccharide synthesis: the implementation of the two-way split valve as a mode of complete automation[J]. Chemical Communications, 2020, 56(9): 1333-1336. [179] Brossmer R, Nebelin E. Synthesis of N-formyl- and N-succinyl-D-neuraminic acid on the specificity of neuraminidase[J]. FEBS Lett, 1969, 4(4): 335-336. [180] Daigneault D E, Hartshorn K L, Liou L S, et al. Influenza A virus binding to human neutrophils and cross-linking requirements for activation[J]. Blood, 1992, 80(12): 3227-34. [181] Salim A A, Cho K J, Tan L, et al. Rare Streptomyces N-formyl amino-salicylamides inhibit oncogenic K-Ras[J]. Org Lett, 2014, 16(19): 5036-9. [182] Karakus U, Sempere Borau M, Martínez-Barragán P, et al. MHC class II proteins mediate sialic acid independent entry of human and avian H2N2 influenza A viruses[J]. Nat Microbiol, 2024, 9(10): 2626-2641. [183] Jhou Y F, Yang F L, Liao K S, et al. A lectin from Crenomytilus grayanus as a probe for the detection of widespread cancerous and metastatic cells[J]. Glycobiology, 2023, 33(5): 423-431. [184] Yabu M, Korekane H, Hatano K, et al. Occurrence of free deaminoneuraminic acid (KDN)-containing complex-type N-glycans in human prostate cancers[J]. Glycobiology, 2013, 23(6): 634-642. [185] Samraj A, Läubli H, Varki N, et al. Involvement of a Non-Human Sialic Acid in Human Cancer[J]. Frontiers in Oncology, 2014b, 4(33): [186] Wang F, Xie B, Wang B, et al. LC–MS/MS glycomic analyses of free and conjugated forms of the sialic acids, Neu5Ac, Neu5Gc and KDN in human throat cancers[J]. Glycobiology, 2015, 25(12): 1362-1374. [187] Guerrero-Flores G N, Pacheco F J, Boskovic D S, et al. Sialic acids Neu5Ac and KDN in adipose tissue samples from individuals following habitual vegetarian or non-vegetarian dietary patterns[J]. Scientific Reports, 2023, 13(1): [188] Obukhova P S, Ziganshina M M, Shilova N V, et al. Antibodies Against Unusual Forms of Sialylated Glycans[J]. Acta Naturae, 2022, 14(2): 85-92. [189] Nadano D, Iwasaki M, Endo S, et al. A naturally occurring deaminated neuraminic acid, 3-deoxy-D-glycero-D-galacto-nonulosonic acid (KDN). Its unique occurrence at the nonreducing ends of oligosialyl chains in polysialoglycoprotein of rainbow trout eggs[J]. J Biol Chem, 1986, 261(25): 11550-7. [190] Inoue S, Kanamori A, Kitajima K, et al. KDN-glycoprotein: a novel deaminated neuraminic acid-rich glycoprotein isolated from vitelline envelope of rainbow trout eggs[J]. Biochem Biophys Res Commun, 1988, 153(1): 172-6. [191] Song Y, Kitajima K, Inoue S, et al. Isolation and structural elucidation of a novel type of ganglioside, deaminated neuraminic acid (KDN)-containing glycosphingolipid, from rainbow trout sperm. The first example of the natural occurrence of KDN-ganglioside, (KDN)GM3[J]. J Biol Chem, 1991, 266(32): 21929-35. [192] Gil Serrano A M, Rodríguez Carvajal M A, Tejero-Mateo P, et al. Structural determination of a 5-O-methyl-deaminated neuraminic acid (Kdn)-containing polysaccharide isolated from Sinorhizobium fredii[J]. Biochem J, 1998, 334 ( Pt 3)(Pt 3): 585-94. [193] Wagstaff B A, Rejzek M, Field R A. Identification of a Kdn biosynthesis pathway in the haptophyte Prymnesium parvum suggests widespread sialic acid biosynthesis among microalgae[J]. J Biol Chem, 2018, 293(42): 16277-16290. [194] Campanero R M A, Solís D, Carrera E, et al. Rat liver contains age-regulated cytosolic 3-deoxy-D-glycero-D-galacto-non-2-ulopyranosonic acid (Kdn)[J]. Glycobiology, 1999, 9(6): 527-32. [195] Go S, Sato C, Yin J, et al. Hypoxia-enhanced expression of free deaminoneuraminic acid in human cancer cells[J]. Biochemical and Biophysical Research Communications, 2007, 357(2): 537-542. [196] Liu C, Jiang S, Wang M, et al. A novel siglec (CgSiglec-1) from the Pacific oyster (Crassostrea gigas) with broad recognition spectrum and inhibitory activity to apoptosis, phagocytosis and cytokine release[J]. Developmental & Comparative Immunology, 2016, 61: 136-144. [197] Hykollari A, Paschinger K, Eckmair B, et al.: Analysis of Invertebrate and Protist N-Glycans, Methods in Molecular Biology: Springer New York, 2017: 167-184. [198] Hykollari A, Paschinger K, Wilson I B H. Negative‐mode mass spectrometry in the analysis of invertebrate, fungal, and protist N‐glycans[J]. Mass Spectrometry Reviews, 2022, 41(6): 945-963. [199] Inoue S, Kitajima K. KDN (Deaminated neuraminic acid): Dreamful past and exciting future of the newest member of the sialic acid family[J]. Glycoconjugate Journal, 2006, 23(5-6): 277-290. [200] Dolashka P, Daskalova A, Dolashki A, et al. De Novo Structural Determination of the Oligosaccharide Structure of Hemocyanins from Molluscs[J]. Biomolecules, 2020, 10(11): 1470. [201] Li Y, Yu H, Cao H, et al. Pasteurella multocida sialic acid aldolase: a promising biocatalyst[J]. Appl Microbiol Biotechnol, 2008, 79(6): 963-70. [202] Huynh N, Aye A, Li Y, et al. Structural basis for substrate specificity and mechanism of N-acetyl-D-neuraminic acid lyase from Pasteurella multocida[J]. Biochemistry, 2013, 52(47): 8570-8579. [203] Daniels A D, Campeotto I, Van Der Kamp M W, et al. Reaction mechanism of N-acetylneuraminic acid lyase revealed by a combination of crystallography, QM/MM simulation, and mutagenesis[J]. ACS chemical biology, 2014, 9(4): 1025-1032. [204] Barbosa J a R G, Smith B J, Degori R, et al. Active site modulation in the N-acetylneuraminate lyase sub-family as revealed by the structure of the inhibitor-complexed Haemophilus influenzae enzyme11Edited by I. A. Wilson[J]. Journal of Molecular Biology, 2000, 303(3): 405-421. [205] Visser E A, Moons S J, Timmermans S B P E, et al. Sialic acid O-acetylation: From biosynthesis to roles in health and disease[J]. Journal of Biological Chemistry, 2021, 297(2): 100906. [206] Zheng G X Y, Terry J M, Belgrader P, et al. Massively parallel digital transcriptional profiling of single cells[J]. Nature Communications, 2017, 8(1): 14049. [207] Moscona A. Neuraminidase Inhibitors for Influenza[J]. New England Journal of Medicine, 2005, 353(13): 1363-1373. [208] Erik D C. Antiviral agents active against influenza A viruses[J]. Nature Reviews Drug Discovery, 2006, 5(12): 1015-1025. [209] Hsu K C, Hung H C, Huangfu W C, et al. Identification of neuraminidase inhibitors against dual H274Y/I222R mutant strains[J]. Scientific Reports, 2017, 7(1): 12336. [210] Wang H, Dou D, Östbye H, et al. Structural restrictions for influenza neuraminidase activity promote adaptation and diversification[J]. Nature Microbiology, 2019, 4(12): 2565-2577. [211] Kragl U, Gödde A, Wandrey C, et al. New synthetic applications of sialic acid aldolase, a useful catalyst for KDO synthesis. Relation between substrate conformation and enzyme stereoselectivity[J]. Journal of the Chemical Society, Perkin Transactions 1, 1994, (1): 119-124. [212] Monique V S, Conte F, Büll C, et al. Dynamic tracing of sugar metabolism reveals the mechanisms of action of synthetic sugar analogs[J]. Glycobiology, 2022, 32(3): 239-250. [213] Nigro M J, Palazzolo M A, Colasurdo D, et al. N-Acetylneuraminic acid aldolase-catalyzed synthesis of acyclic nucleoside analogues carrying a 4-hydroxy-2-oxoacid moiety[J]. Catalysis Communications, 2019, 121: 73-77. [214] Sirbasku D A, Binkley S B. Purification and properties of N-acetylneuraminate lyase from beef kidney cortex[J]. Biochim Biophys Acta, 1970, 206(3): 479-82. [215] Schauer R, Sommer U, Krüger D, et al. The terminal enzymes of sialic acid metabolism: acylneuraminate pyruvate-lyases[J]. Biosci Rep, 1999, 19(5): 373-83. [216] Cheng C, Hu Z X, He M, et al. Recombinant human N-acetylneuraminate lyase as a tool to study clinically relevant mutant variants[J]. Carbohydr Res, 2022, 516: 108561. [217] Jankowski M D, Glaberman S R, Kimball D B, et al. Sialic acid on avian erythrocytes[J]. Comp Biochem Physiol B Biochem Mol Biol, 2019, 238: 110336. [218] Nakagawa T, Iwaki Y, Wu D, et al. Identification and characterization of a deaminoneuraminic acid (Kdn)-specific aldolase from Sphingobacterium species[J]. Glycobiology, 2023, 33(1): 47-56. [219] Liu M, Huang L Z X, Smits A A, et al. Human-type sialic acid receptors contribute to avian influenza A virus binding and entry by hetero-multivalent interactions[J]. Nature Communications, 2022, 13(1): 110-113. [220] Mckimm Breschkin J L. Influenza neuraminidase inhibitors: antiviral action and mechanisms of resistance[J]. Influenza and Other Respiratory Viruses, 2013, 7(s1): 25-36. |
中图分类号: | TS2 |
开放日期: | 2025-06-14 |