- 无标题文档
查看论文信息

中文题名:

 优化水肥管理对水稻产量及品质的影响    

姓名:

 杨蕾    

学号:

 2022103095    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090302    

学科名称:

 农学 - 农业资源利用 - 植物营养学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 植物营养学    

研究方向:

 植物营养生理学与养分管理    

第一导师姓名:

 郭世伟    

第一导师单位:

  南京农业大学    

完成日期:

 2025-05-09    

答辩日期:

 2025-05-27    

外文题名:

 Effects of Optimizing Water and Fertilizer Management on Rice Yield and Quality    

中文关键词:

 水稻 ; 水肥管理 ; 产量 ; 品质 ; 源库关系    

外文关键词:

 Rice ; Water and fertilizer management ; Yield ; Quality ; Source-database relationships    

中文摘要:

水稻作为我国最主要的三大粮食作物之一,其生产效能直接关系我国粮食安全与农业可持续发展。随着消费升级,市场对水稻生产要求已从单纯高产转向优质高产。在水稻生产过程中,水和肥是影响其产量和品质的两个最主要因素。南方稻区虽然水资源充沛,但频发的旱涝灾害与不合理的施肥问题突出,不仅导致水肥利用率低,还制约了水稻产量和品质的提升。优化水肥管理成为实现水稻优质高产与肥水高效协同的关键。本研究基于田间定位试验,设置了5种不同水肥管理模式的田间处理,通过田间监测结合室内实验的方法,探究不同水肥管理模式对水稻产量、品质、水肥利用效率及经济效益的影响;并通过熵权法进行水稻综合效应评价,探究最佳的水肥平衡策略,构建水肥高效、增产提质、节本增收的水稻绿色生产模式。本试验于2023-2024年在江苏省溧阳市南渡镇进行,共设置五个不同水肥管理模式,分别是不施氮对照(CK)、常规模式(CON)、侧深施肥模式(DF)、半旱式垄作模式(SF)、覆膜垄作模式(PM)。研究结果如下:

优化水肥管理可以提高水稻的产量和水肥利用率。与CON相比,优化模式水肥模式增加水稻千粒重1.48%~11.58%,使产量增加2.95%~12.35%。PM模式产量最高(两年分别增产9.11%、12.35%);其次是SF(两年分别增产2.95%、8.64%)与DF(两年分别增产-4.57%、3.08%)模式;不同水肥优化策略最终均能实现株高和SPAD值稳定;PM模式在氮肥利用效率上表现最优,氮肥农学利用率较CON模式提高79.59%~127.95%,氮肥偏生产力提29.63%~48.78%。所有优化水肥模式均显著降低灌溉水量(降幅11.20~19.80%)和耗水量(3.59~9.08%),其中PM模式灌溉水利用效率较CON提升33.81%(2023年)和35.61%(2024年)。

优化水肥管理可保持较高的加工品质、外观品质和食味品质,从而改善稻米品质。与CON模式相比,优化水肥模式显著降低了青米率,其中2024年PM模式的青米率显著降低9.53%;垩白性状得到显著改善,其中DF、PM模式的垩白度降幅达25.78%~28.25%。优化水肥管理改变了稻米蛋白质组分构成及矿质元素积累模式,并通过提升谷蛋白/醇溶蛋白比值和增加矿质元素含量,显著改善了稻米的营养均衡性。优化水肥管理通过优化施肥与水分管理协同调控,显著降低了籽粒粗蛋白质含量,提升了直链淀粉含量,提高了稻米食味值。优化水肥管理模式提高稻米品质综合评价值。2024年各处理综合评价从大到小顺序依次为:PM>DF>SF>CK>CON。

水肥管理模式可通过维持灌浆特征和灌浆期源库平衡来提高水稻产量和品质。通过水肥管理,提高穗上部的最大灌浆速率,缩短了强势粒与弱势粒之间达到最大灌浆速率的时间差,使籽粒灌浆充足,保证弱势粒粒重的增加,可能是水稻进一步增产的有效途径。研究发现DF和PM模式降低库源差值,同时提高源库比,表明其通过增强源供应能力缓解了库对源的限制效应,SF模式虽提升灌浆速率,但源库参数与CON无显著差异。

优化水肥管理模式可以提高稻米经济效益和综合评价值。优化水肥管理通过平衡产量增益与资源投入成本,提高经济效益,其中SF模式展现出最佳经济可行性。同时,优化水肥管理下水稻的综合评价值显著提高,2023年综合评价排名由高到低依次为:PM>SF>DF>CON,2024为:PM>DF>SF>CON。通过对产量和品质区域划分,表明覆膜垄作模式与半旱式垄作模式属于高产优质水肥管理措施,而侧深施肥模式与常规模式属于低产低质水肥管理措施,进一步将水肥利用效率和经济效益纳入评判指标可以发现,半旱式垄作模式是高产、优质、高效率、高收益的水稻最佳水肥管理模式。

综上,优化水肥管理通过增强源库活性强度与促进源库系统的协同效应,可显著改善水稻灌浆期的物质分配效率,保证弱势粒粒重的增加,通过调节千粒重来提升籽粒产量。此外,优化水肥管理还显著提高了水肥利用效率,其中覆膜垄作模式在水肥利用效率方面表现最优。灌浆期充足的源强有助于提升籽粒加工品质和营养品质,还可以促进库容量的增长,源库平衡有利于籽粒中直链淀粉积累,继而改善籽粒的外观品质与食味品质。覆膜垄作模式展现出最佳的增产潜力。优化水肥管理模式提高水稻经济效益,其中半旱式垄作模式则展现出较高的经济可行性的生产目标,覆膜垄作模式产值高但需警惕边际效益递减。覆膜垄作模式与半旱式垄作模式属于高产优质水肥管理措施。

外文摘要:

As one of the three most important food crops in China, the production efficiency of rice is directly related to China's food security and sustainable agricultural development. With the upgrading of consumption, the market's requirements for rice production have shifted from simple high yield to high quality and high yield. In the process of rice production, water and fertilizer are the two most important factors affecting its yield and quality. Although the southern rice region has abundant water resources, frequent drought and flood disasters and unreasonable fertilization problems are prominent, which not only leads to low water and fertilizer utilization efficiency, but also restricts the improvement of rice yield and quality. Optimizing water and fertilizer management has become the key to achieving high-quality and high-yield rice and efficient synergy of fertilizer and water. In this study, five different water and fertilizer management modes were set up based on field positioning experiments, and the effects of different water and fertilizer management modes on rice yield, quality, water and fertilizer use efficiency and economic benefits were explored through field monitoring combined with laboratory experiments. Through the entropy weight method, the comprehensive effect of rice was evaluated, the optimal water and fertilizer balance strategy was explored, and a green rice production model with high water and fertilizer efficiency, yield and quality improvement, cost saving and income increase was constructed. The experiment was conducted in Nandu Town, Liyang City, Jiangsu Province from 2023 to 2024, and a total of five different water and fertilizer management modes were set, namely no nitrogen control (CK), conventional mode (CON), side deep fertilization mode (DF), semi-arid ridge cropping mode (SF), and film mulching ridge cropping mode (PM). The results of the study are as follows:

Optimizing water and fertilizer management can improve rice yield and water and fertilizer use efficiency. Compared with CON, the optimized water and fertilizer mode increased the 1000-grain weight of rice by 1.48%~11.58%, and increased the yield by 2.95%~12.35%. The PM mode had the highest yield (9.11% and 12.35% increase in two years, respectively). followed by SF (2.95% and 8.64% increase in production in two years) and DF (-4.57% and 3.08% increase in production in two years); In the end, the plant height and SPAD value were stable under different water and fertilizer optimization strategies. Compared with the CON model, the agronomic use efficiency of nitrogen fertilizer was increased by 79.59%~127.95%, and the partial productivity of nitrogen fertilizer was increased by 29.63%~48.78%. All the optimized water and fertilizer models significantly reduced the irrigation water amount (11.20~19.80%) and water consumption (3.59~9.08%), and the irrigation water use efficiency of the PM mode increased by 33.81% (2023) and 35.61% (2024) compared with CON.

Optimizing water and fertilizer management can maintain high processing quality, appearance quality and taste quality, thereby improving rice quality. Compared with the CON model, the optimized water and fertilizer model significantly reduced the green rice rate, and the green rice rate in the PM model in 2024 was significantly reduced by 9.53%. The chalkiness was significantly improved, and the chalkiness of DF and PM modes decreased by 25.78%~28.25%. Optimal water and fertilizer management changed the composition of protein components and the accumulation pattern of mineral elements in rice, and significantly improved the nutritional balance of rice by increasing the glutenin/gliadin ratio and increasing the content of mineral elements. Optimized water and fertilizer managementBy optimizing the coordinated regulation of fertilization and water management, the crude protein content of grains was significantly reduced, the amylose content was increased, and the taste value of rice was improved. Optimize the water and fertilizer management mode and improve the comprehensive evaluation value of rice quality. In 2024, the comprehensive evaluation of each treatment in order from large to small was as follows: PM>DF>SF>CK>CON.

The water and fertilizer management model can improve the yield and quality of rice by maintaining the grain filling characteristics and the source-sink balance at the grain filling stage. Through water and fertilizer management, the maximum grain filling rate in the upper panicle was increased, the time difference between the strong and weak grains to reach the maximum grain filling rate was shortened, and the grain filling was sufficient to ensure the increase of the weak grain weight, which may be an effective way to further increase the yield of rice. The results show that the DF and PM modes reduce the reservoir-source difference and increase the source-to-source ratio, indicating that they alleviate the reservoir-to-source restriction effect by enhancing the source supply capacity, and although the SF mode increases the grouting rate, there is no significant difference between the source-reservoir parameters and the CON.

Optimizing the water and fertilizer management mode can improve the economic benefit and comprehensive evaluation value of rice. Optimizing water and fertilizer management can improve economic benefits by balancing yield gain and resource input costs, and the SF model shows the best economic feasibility. At the same time, the comprehensive evaluation value of rice under optimized water and fertilizer management was significantly improved, and the comprehensive evaluation ranking from high to low in 2023 was PM>SF>DF>CON, and in 2024, it was PM>DF>SF>CON. Through the division of yield and quality regions, it was found that the semi-arid ridge cropping mode and semi-arid ridge cropping mode belonged to high-yield and high-quality water and fertilizer management measures, while the side-deep fertilization mode and conventional mode belonged to low-yield and low-quality water and fertilizer management measures.

In conclusion, optimizing water and fertilizer management can significantly improve the material distribution efficiency of rice at the grain filling stage, ensure the increase of weak grain weight, and improve grain yield by adjusting the 1000-grain weight by enhancing the activity intensity of the source sink and promoting the synergistic effect of the source and sink system. In addition, the optimization of water and fertilizer management also significantly improved the water and fertilizer use efficiency, and the mulching ridge tillage mode had the best performance in water and fertilizer use efficiency. Sufficient source strength at the filling stage can help to improve the processing quality and nutritional quality of grains, and can also promote the growth of storage capacity, and the balance of source and reservoir is conducive to the accumulation of amylose in grains, which in turn improves the appearance quality and taste quality of grains. The mulching pattern showed the best potential for increasing yields. Optimizing the water and fertilizer management mode to improve the economic benefits of rice, among which the semi-arid ridge cropping mode showed a higher economic feasibility production target, and the film mulching ridge cropping mode had a high output value but needed to be vigilant against the diminishing marginal benefit. The film mulching ridge cropping mode and the semi-arid ridge cropping mode belong to the high-yield and high-quality water and fertilizer management measures.

参考文献:

[1]卞金龙,许方甫,刘国栋,等.长江中下游粳稻食味品质综合评价方法研究[J].扬州大学学报(农业与生命科学版),2023,44(05):1-11.

[2]陈孙禄,詹成芳,蒋红,等.水稻籽粒灌浆速率的分子机制与遗传调控研究进展[J].植物学报,2021,56(01):80-89.

[3]陈立强,赵海成,赫臣,等.氮肥运筹模式下垄作双深对水稻产量及品质的影响[J].河南农业科,,2018,47(07).20-26.

[4]陈品,徐春春,纪龙,等.2024年我国水稻产业形势分析及2025年展望[J].中国稻米,2025,31(02):1-5.

[5]曹玉东,吴朋浩,戴志刚,等.侧深施肥对水稻产量、养分吸收及经济效益的影响[J].中国水稻科学,2024,38(06):695-708.

[6]丁凡,李诗彤,王展,等.塑料和可降解地膜的残留与降解及对土壤健康的影响:进展与思考[J].湖南生态科学学报,2021,8(03):83-89.

[7]杜红,张亚菲.氮肥施用深度对夏玉米氮素利用、产量及根系生理的影响[J].江苏农业科学,2022,50(13):112-119.

[8]法晓彤,孟庆好,王琛,等.水稻根系形态生理对干湿交替灌溉方式的响应研究进展[J].作物杂志,2024,(06):1-8.

[9]胡丹丹,范呈根,洪欠欠,等.养分条件下缓/控释肥料替代部分速效化肥对中稻生产效益的影响[J].中国稻米,2018,24(01):16-19.

[10]胡国辉,宋顺奇,向镜,等.生物可降解膜覆盖对机插水稻生长和稻米品质的影响[J].中国水稻科学,2020,34(02):159-170.

[11]胡国辉,王军可,王亚梁,等.生物可降解膜覆盖对水稻温室气体排放及产量的影响[J].生态环境学报,2020,29(05):977-986.

[12]胡国辉,朱德峰,徐一成,等.水稻覆膜栽培研究进展[J].中国农业科技导报,2019,21(06):163-170.

[13]黄晶,刘立生,马常宝,等.近30年中国稻区氮素平衡及氮肥偏生产力的时空变化[J].植物营养与肥料学报,2020,26(06):987-998.

[14]费立伟.有机无机肥配施下水稻产量和品质协同提升及其生理机制研究[D].南京农业大学,2024.

[15]胡明明,丁峰,彭志芸,等.多元化种植模式下秸秆还田配合水氮管理对水稻产量形成与氮素吸收利用的影响[J].作物学报,2024,50(05):1236-1252.

[16]韩天富,张会民,马常宝,等.基于Meta分析中国水稻产量对施肥的响应特征[J].中国农业科学,2019,52(11):1918-1 929.

[17]韩云飞.水稻花后叶片衰老相关性状和基因表达对蘖穗氮肥响应研究[D].东北农业大学,2018.

[18]焦艳婷.缓释肥对干湿交替稻田水稻源库转化效应的影响研究[D].沈阳农业大学,2022.

[19]季煜.氮肥调控下水稻产量、品质与经济效益间的权衡关系[D].南京农业大学,2022.

[20]康楷,刘丽华,秦猛,等.垄作双深与株行配置对水稻光合作用、产量及穗部性状的影响[J].作物杂志,2020,(05):164-169.

[21]李凡.籼粳杂交稻稻谷贮藏过程品质变化及贮藏特性的研究[D].浙江大学,2019.

[22]刘红江,郭智,郑建初,等.不同类型缓控释肥对水稻产量形成和稻田氮素流失的影响[J].江苏农业学报,2018,34(04):783-789.

[23]路凯,赵庆勇,周丽慧,等.稻米蛋白质含量与食味品质的关系及其影响因素研究进展[J].江苏农业学报,2020,36(05):1305-1311.

[24]罗兰芳,郑圣先,廖育林,等.控释氮肥对杂交水稻糙米蛋白质品质和氮代谢关键酶活性的影响[J].中国水稻科学,2007,(04):403-410.

[25]陆世忠,曾茜茜,刘敏强,等.水稻一次性施用脲醛缓释肥料效果研究[J].安徽农学通报,2017,23(19):28+35.

[26]梁友,王津,王思进,等.稻田环境因子对水稻生长发育和产量、品质形成的影响研究进展[J].江苏农业科学,2022,50(24):1-9.

[27]李忠.水稻灌浆期干-湿交替灌溉促进茎鞘物质转运的机制分析[D].福建农林大学,2014.

[28]马泉,王亚华,王梦尧,等.缓控释肥的发展应用与评价体系研究进展[J].江苏农业科学,2020,48(18):24-29.

[29]秦华东,江立庚,肖巧珍,等.水分管理对免耕抛秧水稻根系生长及产量的影响[J].中国水稻科学,2013,27(02):209-212.

[30]汝晨,魏永霞,刘慧,等.水稻产量及其构成要素对耗水过程的响应综述[J].节水灌溉,2017,(12):97-103.

[31]沙汉景.水杨酸、脯氨酸和γ-氨基丁酸对盐胁迫下水稻氮代谢及产质量的调控效应[D].东北农业大学,2018.

[32]施伟,朱国永,孙明法,等.水稻籽粒灌浆的影响因子及其机制研究进展[J].中国农学通报,2020,36(08):1-7.

[33]宋志文,赵蕾,毕俊国,等.滴灌条件下施氮量对不同氮效率水稻品种物质积累及养分吸收的影响[J].作物学报,2024,50(08):2025-2038.

[34]唐树鹏,刘洋,简超群,等.干湿交替灌溉对水稻产量、水氮利用效率和稻米品质影响的研究进展[J].华中农业大学学报,2022,41(04):184-192.

[35]田文涛,党程成,郝蓉蓉,等.缓释肥一次性施肥在水稻上增产增效的农学基础研究[J].江苏农业科学,2023,51(4):71-77.

[36]佟欣宇.缓释氮肥与尿素配施对水稻产量和品质的影响[D].吉林农业大学,2024.

[37]陶玥玥.水稻覆膜湿润栽培体系水氮管理优化及其氮锰营养研究[D].中国农业大学,2014.

[38]王成瑷,赵磊,赵秀哲,等.氮肥用量对水稻不同穗位与粒位籽粒灌浆速率的影响[J].农学学报,2016,6(02):8-21.

[39]王海月,张桥,武云霞,等.不同株距下氮肥减量配施运筹对机插杂交稻的产量及光合特性的影响[J].中国水稻科学,2019,33(05):447-456.

[40]吴昊,张瑛,王琛,等.栽培优化对长江下游水稻灌浆期根系特征和稻米淀粉特性的影响[J].作物学报,2024,50(02):478-492.

[41]汪顺生,姚英全,黄一丹,等.宽垄沟灌下冬小麦灌水施肥质量评价[J].中国农业科技导报,2023,25(12):145-157.

[42]王伟妮.基于区域尺度的水稻氮磷钾肥料效应及推荐施肥量研究[D].华中农业大学,2014.

[43]王文婷,马佳颖,李光彦,等.高温下不同施肥量对水稻产量品质形成的影响及其与能量代谢的关系分析[J].中国水稻科学,2023,37(03):253-264.

[44]王祥斌.水分管理对滴灌水稻产量和营养品质的影响机理[D].石河子大学,2023.

[45]王新鹏.孕穗期干旱胁迫对寒地粳稻碳代谢及产量形成影响的研究[D].东北农业大学,2020.

[46]肖君臣.不同栽培措施条件下稻谷成熟度差异及其对稻米品质的影响[D].华中农业大学,2022.

[47]熊若愚,解嘉鑫,谭雪明,等.不同灌溉方式对南方优质食味晚籼稻产量及品质的影响[J].中国农业科学,2021,54(07):1512-1524.

[48]徐心志.花后干旱对不同施氮水平下小麦谷氨酰胺合成酶(GS)同工酶基因表达及产量形成的影响[D].河南农业大学,2014.

[49]徐云姬,许阳东,李银银,等.干湿交替灌溉对水稻花后同化物转运和籽粒灌浆的影响[J].作物学报,2018,44(04):554-568.

[50]魏源.覆膜旱作对节水抗旱稻产量与品质的影响[D].华中农业大学,2023.

[51]杨波,王宝祥,邢志鹏,等.施氮量对连粳15号晚直播条件下灌浆特性和米质的影响[J].扬州大学学报(农业与生命科学版),2020,41(03):59-65.

[52]杨建昌.水稻弱势粒灌浆机理与调控途径[J].作物学报,2010,36(12):2011-2019.

[53]杨林生,习敏,涂德宝,等.长江三角洲地区主要类型水稻生产资源投入及碳氮足迹评估[J/O]作物杂志,1-9[2025-03-17].

[54]姚权,唐旭,肖谋良,等.缓释氮肥配施有机肥对稻麦轮作体系作物生长和土壤养分的影响[J].浙江农林大学学报,2025,42(01):175-184.

[55]张德奇,季书勤,王汉芳,等.缓/控释肥的研究应用现状及展望[J].耕作与栽培,2010,(03):46-48+43.

[56]张金.水稻种植技术优化及种植效益提升策略的深入剖析[J].种子世界,2024,(12):120-122.

[57]张剑锋,毕庆宇,魏源,等.施氮量对旱直播节水抗旱稻‘八月香’产量和稻米品质的影响[J].上海农业学报,2024,40(04):1-7.

[58]张玲,路辉,杨成,等.基于大米外观品质分析系统对垩白米的快速测定[J].食品工业科技,2019,40(23):235-241.

[59]赵龙,徐艺,张曦,等.旱作水稻田不同覆膜对土壤温度及水稻生长的影响[J].水利与建筑工程学报,2020,18(04):15-19+34.

[60]赵明君,赵乌英嘎,姜胜男,等.不同覆膜处理对水稻生长性状及产量的影响[J].现代农业科技,2021,(16):20-22+24.

[61]张文倩.昼夜高温对水稻颖花发育及籽粒结实的影响[D].中国农业科学院,2019.

[62]张伟杨,任维晨,于吉祥,等.轻干湿交替灌溉促进水稻茎中碳同化物积累与转运的机制[J].扬州大学学报(农业与生命科学版),2021,42(06):9-16.

[63]张伟杨.水分和氮素对水稻颖花发育与籽粒灌浆的调控机制[D].扬州大学,2018.

[64]赵晓龙,俄胜哲,袁金华,等.缓释肥料养分缓释机制及研究进展[J].生态产业科学与磷氟工程,2024,39(07):42-48.

[65]张亚洁,许德美,孙斌,等.种植方式对陆稻和水稻籽粒灌浆及垩白的影响[J].中国农业科学,2006,(02):257-264.

[66]张玉烛,刘洋,曾翔,等.覆盖方式对旱作水稻后期冠层生理生态特性及产量的影响[J].中国水稻科学,2010,24(05):487-492.

[67]周舟,沈炘垭,王俊,等.控释肥与普通尿素组合对水稻产量、氮肥利用率和米质的影响[J].作物杂志,2024,(04):180-187.

[68]Alaa A A, Li J H, Yousef A H, et al. Impacts of Slow-Release Nitrogen Fertilizer Rates on the Morpho-Physiological Traits, Yield, and Nitrogen Use Efficiency of Rice under Different Water Regimes[J]. Agriculture, 2022, 12(1), 86.

[69]Ashraf U, Hussain S, Naveed S M, et al. Alternate wetting and drying modulated physio‐biochemical attributes, grain yield, quality, and aroma volatile in fragrant rice[J]. Physiologia Plantarum, 2022, 174(6).

[70]Chen L, Deng X Y,Duan H X, et al. Water management can alleviate the deterioration of rice quality caused by high canopy humidity[J]. Agricultural Water Management, 2023, 289.

[71]Chen L M, Yi Y H, Wang W X, et al. Innovative furrow ridging fertilization under a mechanical direct seeding system improves the grain yield and lodging resistance of early indica rice in South China[J]. Field Crops Research, 2021, 270.

[72]Chen T T, Xu G W, Wang Z Q, et al. Expression of proteins in superior and inferior spikelets of rice during grain filling under different irrigation regimes.[J]. Proteomics, 2016, 16(1):102-21.

[73]Dong Y, Zeng F, Yuan J, et al. Integrated rice management simultaneously improves rice yield and nitrogen use efficiency in various paddy fields[J]. Pedosphere, 2020, 30(6):863-873.

[74]Eyshi E R, Heidi W, Senthold A, et al. Climate change impacts on crop yields[J]. Nature Reviews Earth & Environment, 2023, 4(12):831-846.

[75]Fu P H, Wang J, Zhang T, et al. High nitrogen input causes poor grain filling of spikelets at the panicle base of super hybrid rice[J]. Field Crops Research, 2019, 244107635-107635.

[76]Gao L M, Su J, Tian Q, et al. Contrasting Strategies of Nitrogen Absorption and Utilization in Alfalfa Plants Under Different Water Stress[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(3):1515-1523.

[77]Gao R, Zhuo L, Duan Y, et al. Effects of alternate wetting and drying irrigation on yield, water-saving, and emission reduction in rice fields: A global meta-analysis[J]. Agricultural and Forest Meteorology, 2024, 353110075.

[78]Guertal E. Slow-release Nitrogen Fertilizers in Vegetable Production: A Review[J]. HortTechnology, 2009, 19(1):16-19.

[79]Hao K, Fei L G, Liu L H, et al. Improving Fruit Yield and Quality of Mountain Apple (Malus domestica Borkh. cv. Hanfu) by Light Deficit Surge-Root Irrigation in the Loess Plateau, China[J]. Journal of Soil Science and Plant Nutrition, 2022, 22(2):1506-1519.

[80]Hua L L, Zhai L M, Liu J, et al. Effect of irrigation-drainage unit on phosphorus interception in paddy field system[J]. Journal of Environmental Management, 2019, 235319-327.

[81]He W, Wang L, Lin Q L, et al. Rice seed storage proteins: Biosynthetic pathways and the effects of environmental factors.[J]. Journal of integrative plant biology, 2021, 63(12):1999-2019.

[82]Hossain T S, Sugimoto H, Yamashita J, et al. Effect of topdressing on individual leaf photosynthesis at different position in direct-sown rice with non-woven fabric mulch system[J]. Photosynthetica: International Journal for Photosynthesis Research, 2007, 45(4):576-581.

[83]Huang J W, Pan Y P, Chen H F, et al. Physiochemical mechanisms involved in the improvement of grain-filling, rice quality mediated by related enzyme activities in the ratoon cultivation system[J]. Field Crops Research, 2020, 258.

[84]Huang Y H, Huang J Q, Ma B, et al. Author Correction: A translational regulator MHZ9 modulates ethylene signaling in rice[J]. Nature Communications, 2023, 14(1):5169-5169.

[85]Hu K B, Zhao P, Wu K X, et al. Reduced and deep application of controlled-release urea maintained yield and improved nitrogen-use efficiency[J]. Field Crops Research, 2023, 295.

[86]Hu X J, Yu Y Y, Xia Y D, et al. Analysis of the Dynamics and Characteristics of Rice Stem Tillers via Water Level Management[J]. Water, 2023, 15(6):1034-1034.

[87]Hytowitz A N. Review of using the Dyop optotype for acuity and refractions[J]. Journal of Optometry, 2023, 16(4):317-318.

[88]Jeanette L B, Rachelle M W, Lei L, et al. Rice grain protein composition influences instrumental measures of rice cooking and eating quality[J]. Journal of Cereal Science, 2018, 79: 35-42.

[89]Jiang Y, Tao W L, Zhang W Y, et al. Wetting alternating with partial drying during grain filling increases lysine biosynthesis in inferior rice grain[J]. The Crop Journal, 2024, 12(1):262-270.

[90]Jiang Y P, Jiang S Y, Liu L, et al. Understanding the multifaceted role of ABA signaling in orchestrating plant developmental transition[J]. Stress Biology, 2025, 5(1):5-5.

[91]Jiang Z G, Chen Q L, Liu D, et al. Application of slow-controlled release fertilizer coordinates the carbon flow in carbon-nitrogen metabolism to effect rice quality[J]. BMC Plant Biology, 2024, 24(1):621.

[92]Kang S Z & Zhang J H. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency.[J]. Journal of experimental botany, 2004, 55(407):2437-46.

[93]Li J Z, Liu J L, Zhang L L, et al. Variation Characteristics and Expression State of Nitrogen and Phosphorus Metering Ratio of Rice in Black Soil under Film Mulching and Irrigation Methods[J]. Agronomy, 2023, 13(10):13.

[94]Li Q P, Deng F, Zeng Y L, et al. Low Light Stress Increases Chalkiness by Disturbing Starch Synthesis and Grain Filling of Rice[J]. International Journal of Molecular Sciences, 2022, 23(16):9153-9153.

[95]Li X, Zhang M, Xiao Z W,et al. Relationships between texture properties of cooked rice with grain amylose and protein content in high eating quality indica rice[J]. Cereal Chemistry, 2024, 101(3).

[96]Li Z Y, Wang B F, Liu Z H, et al. Ridge–furrow planting with film mulching and biochar addition can enhance the spring maize yield and water and nitrogen use efficiency by promoting root growth[J]. Field Crops Research, 2023, 303.

[97]Lin Z, Li Y, Wang Y B, et al. Initiation and amplification of SnRK2 activation in abscisic acid signaling[J]. Nature Communications, 2021, 12(1):2456-2456.

[98]Ling Y, Zhang Z C, Yang J, et al. Coated urea enhances iron and zinc concentrations in rice grain under different cultivation methods[J]. Journal of Plant Nutrition, 2017, 40(6):841-850.

[99]Liu B, Guo C Y, Xu J, et al. Co-benefits for net carbon emissions and rice yields through improved management of organic nitrogen and water.[J]. Nature food, 2024, 5(3):241-250.

[100]Liu C, Zhou T Y, Xue Z Y, et al. Combining Controlled-Release and Normal Urea Enhances Rice Grain Quality and Starch Properties by Improving Carbohydrate Supply and Grain Filling[J]. Plants, 2025, 14(1):107-107.

[101]Liu H Y, Zhou H L, Li J, et al. Effects of nitrogen fertilizer application on the physicochemical properties of foxtail millet (Setaria italica L.) starch.[J]. International journal of biological macromolecules, 2024, 278(P1):134522.

[102]Liu X G, Qi Y T, Li F S, et al. Impacts of regulated deficit irrigation on yield, quality and water use efficiency of Arabica coffee under different shading levels in dry and hot regions of southwest China[J]. Agricultural Water Management, 2018, 204292-300.

[103]Lu X H, Wu L H, Pang L J, et al. Effects of plastic film mulching cultivation under non‐flooded condition on rice quality[J]. Journal of the Science of Food and Agriculture, 2007, 87(2):334-339.

[104]Ma B, Zhang L, He Z H, et al. Understanding the regulation of cereal grain filling: The way forward[J]. Journal of integrative plant biology, 2023, 65(2):526-547.

[105]Ma Y N, Yang S J, Ding R S, et al. Mild water deficit under reasonable dense planting ensures maize yield and improves water use efficiency by coordinating source-sink relationships[J]. Field Crops Research, 2025, 327.

[106]Ma Z B, Bu R Y, Zhou G B, et al. Appropriately delayed flooding before rice transplanting increases net ecosystem economic benefit in the winter green manure-rice rotation system[J]. Resources, Environment and Sustainability, 2024, 18100173-100173.

[107]Ma Z T, Cao J L, Chen X, et al. Differences in carbon and nitrogen metabolism of soft japonica rice in southern China during grain filling stage under different light and nitrogen fertilizer conditions and their relationship with rice eating quality[J]. Frontiers in Plant Science, 2025, 161534625-1534625.

[108]Meng X H, Lou H Y, Zhai S S, et al. TaNAM-6A is essential for nitrogen remobilisation and regulates grain protein content in wheat (Triticum aestivum L.).[J]. Plant, cell & environment, 2024, 47(6):2310-2321.

[109]Muhammad I, Nadeem A, Usman Z, et al. Influence of water management techniques on milling recovery, grain quality and mercury uptake in different rice production systems[J]. Agricultural Water Management, 2021, 243106500.

[110]MustaffaF A R M, PandianK, ChitraputhirapillaiS, et al. Synthesis of biochar‐embedded slow‐release nitrogen fertilizers: Mesocosm and field scale evaluation for nitrogen use efficiency, growth and rice yield[J]. Soil Use and Management, 2023, 40(1).

[111]Nannan D, Guiai I, Ruijie C, et al. OsLESV and OsESV1 promote transitory and storage starch biosynthesis to determine rice grain quality and yield[J]. Plant communications, 2024, 5(7):100893-100893.

[112]Qian H Y, Zhu X C, Huang S, et al. Greenhouse gas emissions and mitigation in rice agriculture[J]. Nature Reviews Earth & Environment, 2023, 4(10):716-732.

[113]Shi S J, Wang E T, Li C X, et al. Use of Protein Content, Amylose Content, and RVA Parameters to Evaluate the Taste Quality of Rice [J]. Frontiers in Nutrition, 2022, 8.

[114]Slewinski L T, Braun M D. Current perspectives on the regulation of whole-plant carbohydrate partitioning[J]. Plant Science, 2010, 178(4):341-349.

[115]Sun G Z, Hu T T, Liu X G, et al. Optimizing irrigation and fertilization at various growth stages to improve mango yield, fruit quality and water-fertilizer use efficiency in xerothermic regions[J]. Agricultural Water Management, 2022, 260.

[116]Sun L J, Li X J, Fu Y C, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice.[J]. Journal of integrative plant biology, 2013, 55(10):938-49.

[117]Tantray A Y, Hazzazi Y,Ahmad A, et al. Physiological, Agronomical, and Proteomic Studies Reveal Crucial Players in Rice Nitrogen Use Efficiency under Low Nitrogen Supply[J]. International Journal of Molecular Sciences, 2022, 23(12):6410-6410.

[118]Tu B, Zhang T, Liu P, et al. The LCG1-OsBP5/OsEBP89-Wx module regulates the grain chalkiness and taste quality in rice.[J]. Plant biotechnology journal, 2024, 23(1):36-50.

[119]Wang H L, Zhang H, Liu J J, et al. Transcriptome analysis reveals the mechanism of nitrogen fertilizers in starch synthesis and quality in waxy and non-waxy proso millet[J]. Carbohydrate Polymers, 2024, 323121372-121372.

[120]Wang J F, Fawibe O, Fawibe K, et al. Water productivity, sink production and varietal differences in panicle structure of rice (Oryza sativa L.) under drip irrigation with plastic-film mulch[J]. Field Crops Research, 2023, 291.

[121]Wang S Q, Yang S W, Tang Q H, et al. Low-temperature stress at the booting stage reduces high-quality aromatic rice quality by improving the albumin and amylose contents[J]. Plant Physiology and Biochemistry, 2025, 219109434-109434.

[122]Wang X L, Wang J H, Zhu Y B, et al. Improving resilience to high temperature in drought: water replenishment enhances sucrose and amino acid metabolisms in maize grain.[J]. The Plant journal : for cell and molecular biology, 2024, 119(2):658-675.

[123]Wassmann R, Jagadish S, Heuer S, et al. Chapter 2 Climate Change Affecting Rice Production[J]. Advances in Agronomy, 2009, 10159-122.

[124]Wu W, Dong X O, Chen G M, et al. The elite haplotype OsGATA8-H coordinates nitrogen uptake and productive tiller formation in rice.[J]. Nature genetics, 2024, 56(7):1516-1526.

[125]Wu X L, Liu M, Li C S, et al. Source–sink relations and responses to sink–source manipulations during grain filling in wheat[J]. Journal of Integrative Agriculture, 2022, 21(6):1593-1605.

[126]Xie W J, Ashraf U, Zhong D, et al. Application of γ-aminobutyric acid (GABA) and nitrogen regulates aroma biochemistry in fragrant rice.[J]. Food science & nutrition, 2019, 7(11):3784-3796.

[127]Xing H W, Wang H, Huang Y Y, et al. FZP modulates tillering via OsMADS57 in rice.[J]. Plant biotechnology journal, 2025.

[128]Xu G W, Song K J, Lu D K, et al. Influence of Water Management and Nitrogen Application on Rice Root and Shoot Traits[J]. Agronomy Journal, 2019, 111(5):2232-2244.

[129]Xu G W, Zhao X H, Jiang M M, et al. Nitrogen forms and irrigation regimes interact to affect rice yield by regulating the source and sink characteristics[J]. Agronomy Journal, 2021, 113(5):4022-4036.

[130]Yan B, Wang X, Kees JG, et al. Improved alternate wetting and drying irrigation increases global water productivity[J]. Nature Food, 2024, 5(12):1-9.

[131]Yan Y Y, Duan F Y, Li X, et al. Photosynthetic capacity and assimilate transport of the lower canopy influence maize yield under high planting density.[J]. Plant physiology, 2024.

[132]Yang Y H, Ma X L, Yan L, et al. Soil–root interface hydraulic conductance determines responses of photosynthesis to drought in rice and wheat[J]. Scientific Journal of Silesian University of Technology, 2024, 194(1):376-390.

[133]Yang Z R, Cao Y B, Shi Y T, et al. Genetic and Molecular Exploration of Maize Environmental Stress Resilience: Towards Sustainable Agriculture.[J]. Molecular plant, 2023, 16(10):1496-1517.

[134]Yao Y Z. Effects of ridge tillage on photosynthesis and root characters of rice[J]. Chilean Journal of Agricultural Research, 2015, 75(1):35-41.

[135]Yin X T, Chen X Y, Hu J L, et al. Effects of distribution, structure and interactions of starch, protein and cell walls on textural formation of cooked rice: A review[J]. International Journal of Biological Macromolecules, 2023, 253(P6):127403-127403.

[136]Yin X Y, Guo W S, Spiertz J H. A quantitative approach to characterize sink-source relationships during grain filling in contrasting wheat genotypes[J]. Field Crops Research, 2009, 114 (1): 119-126.

[137]Zhang G B, Ma J, Yang Y, et al. Variations of Stable Carbon Isotopes of CH 4 Emission from Three Typical Rice Fields in China[J]. Pedosphere, 2017, 27(1):52-64.

[138]Zhang G X, Zhang Y, Liu S J, et al. Optimizing nitrogen fertilizer application to improve nitrogen use efficiency and grain yield of rainfed spring maize under ridge-furrow plastic film mulching planting[J]. Soil & Tillage Research, 2023, 229.

[139]Zhang G X, Zhao D H,Liu S J, et al. Can controlled-release urea replace the split application of normal urea in China? A meta-analysis based on crop grain yield and nitrogen use efficiency[J]. Field Crops Research, 2022, 275.

[140]Zhang J, Iwaasa D A, Han G, et al. Utilizing a multi-index decision analysis method to overall assess forage yield and quality of C3 grasses in the western Canadian prairies[J]. Field Crops Research, 2018, 22212-25.

[141]Zhang S N, Zhang Y Y, Li K N, et al. Nitrogen Mediates Flowering Time and Nitrogen Use Efficiency via Floral Regulators in Rice[J]. Current Biology, 2020, 31(4):671-683.

[142]Zhang S Y, Ji Z, Wu J, et al. Natural variation of OsWRKY23 drives difference in nitrate use efficiency between indica and japonica rice.[J]. Nature communications, 2025, 16(1):1-13

[143]Zhao C X, Qiu R J, Zhang T, et al. Effects of Alternate Wetting and Drying Irrigation on Methane and Nitrous Oxide Emissions From Rice Fields: A Meta-Analysis.[J]. Global change biology, 2024, 30(12):e17581.

[144]Zhao L, Tang Q Y, Song Z W, et al. Increasing the yield of drip-irrigated rice by improving photosynthetic performance and enhancing nitrogen metabolism through optimizing water and nitrogen management [J]. Frontiers in Plant Science, 2023, 141075625-1075625.

[145]Zhao Z G, Wang C L, Yu X W, et al. Auxin regulates source-sink carbohydrate partitioning and reproductive organ development in rice.[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(36):e2121671119-e2121671119.

[146]Zhou Z X, Struik C P, Gu J F, et al. Quantifying source–sink relationships in leaf-color modified rice genotypes during grain filling[J]. Journal of Integrative Agriculture, 2024, 23(9):2923-2940.

[147]Zhu D W, Zheng X, Yu J, et al. Effects of Starch Molecular Structure and Physicochemical Properties on Eating Quality ofIndicaRice with Similar Apparent Amylose and Protein Contents[J]. Foods, 2023, 12(19).

[148]Zhu K Y, Yan J Q, Shen Y, et al. Deciphering the morpho–physiological traits for high yield potential in nitrogen efficient varieties (NEVs): A japonica rice case study[J]. Journal of Integrative Agriculture, 2022, 21(4):947-963.

中图分类号:

 S14    

开放日期:

 2025-06-10    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式