- 无标题文档
查看论文信息

中文题名:

 工业级射流磨处理对全豆豆浆和全豆腐竹品质影响及湿态全豆腐竹保鲜研究    

姓名:

 包梦晓    

学号:

 2022108045    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 0832    

学科名称:

 工学 - 食品科学与工程(可授工学、农学学位)    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 南京农业大学    

院系:

 食品科技学院    

专业:

 食品科学与工程    

研究方向:

 农产品贮藏与加工    

第一导师姓名:

 陈志刚    

第一导师单位:

 南京农业大学    

完成日期:

 2025-05-21    

答辩日期:

 2025-05-21    

外文题名:

 An Investigation on the Effect of Industry-Scale Microfluidization System Treatment on the Quality of Whole Soybean Milk and Whole Yuba and the Preservation of Whole Yuba in Wet State    

中文关键词:

 工业级射流磨 ; 全豆豆浆 ; 全豆腐竹 ; 湿态全豆腐竹保鲜    

外文关键词:

 Industry-scale microfluidization system ; Whole soybean milk ; Whole yuba ; Wet state whole yuba preservation    

中文摘要:

传统的豆浆制作过程中,通常需要经过泡豆、研磨和过滤来得到豆浆,这一过程会导致营养成分的损失,同时豆浆的颗粒较为粗糙,且容易出现沉淀和分层的现象。全豆制品因其营养丰富而日益受到消费者青睐,但由于去较高的膳食纤维含量其口感稍差。工业级高压射流技术(Industry-scale microfluidization system,ISMS)则利用高压流体的高速喷射作用,将大豆细胞壁高效破碎,不但使豆浆口感细腻而且避免了营养成分的损失,实现全组分利用,同时该处理大豆无需进行提前浸泡,豆浆也无需过滤,使大豆得到了充分的利用。本文采用高压射流技术,研究工业级射流磨对全豆豆浆的的理化性质及功能特性、全豆豆浆的稳定性、抗氧化性及风味特性、全豆腐竹理化性质及成膜特性影响研究,并对湿态全豆腐竹保鲜方法进行研究,其具体研究内容如下:

1.工业级高压射流磨对全豆豆浆的的理化性质及功能特性的影响

探究了ISMS压力水平(80、100 和 120 MPa)对全豆豆浆的结构、理化和功能性质的影响。120 MPa处理使豆浆体积平均粒径从初始54.5 μm降至26.03 μm,粒径分布跨度从2.14优化至1.9,zeta电位增加了14%。此外,ISMS处理过的全豆豆浆中游离巯基含量的减少(9.4→6.0 μmol/g)也显著增加了表面疏水性(763→836)。随着压力的增加,全豆豆浆蛋白质的二级结构发生了变化,α-螺旋含量增加20.67%,β-片段含量降低20.46%。内源荧光光谱的结果表明,荧光强度相应增强。与此同时,蛋白质的空间构象也发生了改变,导致之前隐藏在蛋白质中的疏水氨基酸侧链暴露出来。这种暴露导致表面疏水性逐渐增加,最终达到最大的蛋白质溶解度(1.76 mg/mL)。

2.全豆豆浆的稳定性、抗氧化性及风味特性的探究

与传统豆浆相比,ISMS处理增加了表观粘度,从而提高了稳定性。频率扫描结果进一步表明粘弹性得到了改善。总黄酮和多酚含量分别增加了4.11 mg GAE/g 和2.32 mg GAE/g。体外消化后,120 MPa处理样品的DPPH自由基清除能力提高了56.54%,铁抗氧化还原能力提高了72.41%。激光共聚焦扫描显微镜和气相色谱-质谱分析表明,ISMS-120样品的整体结构体系表现出更高的均匀性,蛋白质-脂肪体系得到改善,从而降低了引起豆腥味物质的相对含量(4414.28 μg/L→2238.68 μg/L)。随着ISMS生产的豆浆在混合豆浆中所占比例的增加到70%,所得产品的稳定性和抗氧化性超过了传统豆浆。

3.工业级射流磨对全豆腐竹理化性质及成膜特性影响研究

研究表明,ISMS处理能够有效提升全豆腐竹中的异黄酮含量,从2.04 mg/g提高至2.97 mg/g,表明其在增强功能性成分方面发挥了重要作用。而70%的射流豆浆添加也会使腐竹在颜色和质构方面表现出优异的特性。然而,当射流豆浆比例达到80%时却显示出较差的成膜性。这一现象表明,ISMS处理对全豆腐竹的成膜性产生了负面影响。首先,高含量的膳食纤维会使成膜性变弱。进一步通过聚丙酰胺凝胶电泳和红外光谱分析表明,ISMS处理过程中导致全豆腐竹中蛋白质分子间的氢键断裂。这一改变会削弱蛋白质分子之间的相互作用,蛋白质分子难以有效地排列成紧密的膜结构,从而导致成膜性能的下降。

4.湿态全豆腐竹保鲜方法及风味变化的探究

研究了不同保鲜技术对湿态全豆腐竹贮藏期间品质与风味的调控作用。研究发现,热包装、0.3‰ε-聚赖氨酸盐酸盐与1‰柠檬酸复合保鲜剂联合巴氏灭菌的协同处理方案,显著提高了湿态全豆腐竹的贮藏特性。该复合保鲜方法使产品货架期延长至30天以上,同时维持了良好的感官品质:其亮度值达80.12,硬度(3.4N)和胶黏性(1.7N·s)分别较对照组降低30%和32%,弹性模量(2.45)提升45%,赋予全豆腐竹更细腻的咀嚼口感。水分分布分析显示,自由水流动性显著受限,有效保持产品湿润度。风味代谢组学分析表明,复合处理组中较其他组,主要特征风味为异戊醇和丙烯醛,实现了品质与风味的双重稳定。

本研究通过探讨工业级射流磨处理对全豆豆浆与全豆腐竹的影响,系统地分析了其对理化性质、功能特性、稳定性、抗氧化性、风味变化及湿态全豆腐竹保鲜技术的作用。研究为优化全豆豆制品生产工艺提供了理论依据,并为提升豆制品功能性、延长保鲜期以及改善食品安全提供了新的技术思路。

外文摘要:

In the traditional soybean milk production process, it is usually necessary to soak the beans, grinding and filtering to get soybean milk, this process will lead to the loss of nutrients, while the soybean milk particles are relatively rough, and easy to precipitation and stratification phenomenon. Whole bean products are increasingly popular among consumers because of their rich nutrition, but their taste is a little worse due to the high dietary fiber content. Industry-scale microfluidization system is the use of high-pressure fluid high-speed jet effect, the soybean cell wall efficient crushing, not only to make the taste of soybean milk delicate and avoid the loss of nutrients, to achieve the use of the whole component, at the same time, the treatment of soybeans do not need to be soaked in advance, and soybean milk without filtering, so that soybeans get the full flavor. At the same time, the treatment soybeans do not need to be soaked in advance, and soybean milk does not need to be filtered, so that soybeans are fully utilized. This paper adopts high-pressure microfluidization technology to study the impact of industry-scale microfluidization on the physicochemical properties and functional characteristics of whole soybean milk, the stability, antioxidant and flavor characteristics of whole soybean milk, the physicochemical properties and film-forming properties of whole yuba, and the method of preserving the freshness of whole yuba in the wet state, which is studied as follows:

1. The effect of industry-scale microfluidization system on the physicochemical and functional properties of whole soybean milk

The effects of ISMS pressure levels (80, 100, and 120 MPa) on the structural, physicochemical, and functional properties of whole-bean soymilk were explored. The 120 MPa treatment resulted in a decrease in the volume-averaged particle size of the soymilk from an initial 54.5 μm to 26.03 μm, an optimization of the span of the particle-size distribution from 2.14 to 1.9, and an increase in the zeta potential by 14%. In addition, the decrease in free sulfhydryl content (9.4→6.0 μmol/g) in ISMS-treated whole soybean milk significantly increased the surface hydrophobicity (763→836). The secondary structure of whole bean soymilk proteins changed with increasing pressure, with α-helix content increasing by 20.67% and β-fragment content decreasing by 20.46%. The results of endogenous fluorescence spectroscopy showed that the fluorescence intensity was enhanced accordingly. At the same time, the spatial conformation of the protein was changed, resulting in the exposure of hydrophobic amino acid side chains previously hidden in the protein. This exposure led to a gradual increase in surface hydrophobicity, which ultimately resulted in maximum protein solubility (1.76 mg/mL).

2. Investigation of stability, antioxidant and flavor properties of whole soybean milk

The ISMS treatment increased the apparent viscosity and thus improved the stability as compared to conventional soybean milk. Frequency scan results further indicated improved viscoelasticity. The total flavonoid and polyphenol contents increased by 4.11 mg GAE/g and 2.32 mg GAE/g, respectively. After in vitro digestion, the DPPH radical scavenging capacity of the 120 MPa-treated samples increased by 56.54% and the iron antioxidant reduction capacity by 72.41%. Laser confocal scanning microscopy and gas chromatography-mass spectrometry analyses showed that the overall structural system of the ISMS-120 samples exhibited higher homogeneity, and the protein-fat system was improved, which led to a reduction in the relative content of the substances that caused the fishy soybean odor (4414.28 μg/L→2238.68 μg/L). As the proportion of soybean milk produced by ISMS in the blend increased to 70%, the stability and antioxidant properties of the resulting product exceeded those of conventional soybean milk.

3.Study on the effect of industry-scale microfluidization system on the physicochemical properties and skin-forming characteristics of whole yuba

It was shown that ISMS treatment was effective in enhancing the isoflavone content in whole yuba from 2.04 mg/g to 2.97 mg/g, indicating that it played an important role in enhancing the functional components. The addition of 70% ISMS-treated soybean milk also resulted in the yuba showing excellent characteristics in terms of color difference and texture. However, it shows poor film formation when the proportion of ISMS-treated soybean milk reaches 80%. This phenomenon suggests that the ISMS treatment negatively affected the film-forming properties of whole yuba. First, the high content of dietary fiber weakens the film-forming property. Further analysis by polyacrylamide gel electrophoresis and infrared spectroscopy showed that the ISMS treatment process resulted in the breaking of hydrogen bonds between protein molecules in whole yuba. This alteration weakens the interactions between protein molecules, which make it difficult for protein molecules to efficiently arrange into a tight membrane structure, leading to a decrease in the film-forming properties.

4. Exploration of preservation methods and flavor changes of wet whole yuba

The role of different preservation techniques in regulating the quality and flavor of wet whole yuba during storage was investigated. It was found that the synergistic treatment scheme of hot packaging, 0.3‰ ε-polylysine hydrochloride and 1‰ citric acid compound preservative combined with pasteurization significantly improved the storage characteristics of wet whole yuba. The composite preservation method extended the shelf-life of the product to more than 30 days while maintaining good sensory qualities: its brightness value reached 80.12, hardness (3.4 N) and stickiness (1.7 N·s) were reduced by 30% and 32%, respectively, and the modulus of elasticity (2.45) was enhanced by 45% compared with the control group, which endowed whole yuba with a more delicate chewing texture. Moisture distribution analysis showed that free water mobility was significantly restricted, effectively maintaining product moistness. Flavor metabolomics analysis showed that the main characteristic flavors were isoamyl alcohol and acrolein in the composite treatment group compared with the other groups, achieving double stabilization of quality and flavor.

In this study, the effects of ISMS treatment on whole soybean milk and whole yuba were systematically analyzed for physicochemical properties, functional properties, stability, antioxidant properties, flavor changes, and freshness preservation technology of whole yuba in wet state. The study provides a theoretical basis for optimizing the production process of whole soybean products, and offers new technical ideas for enhancing the functionality of soybean products, extending the freshness period and improving food safety.

参考文献:

[1] 蔡家深. 全营养豆浆风味、稳定性及抗氧化活性研究[D]. 合肥工业大学, 2021.

[2] 陈斌. 基于酶处理的高纤维豆干加工工艺研究[D]. 浙江工商大学, 2021.

[3] 陈秉彦, 刘芸, 林晓姿, 等. 纳微化笋膳食纤维浓度干预凝固型酸奶凝胶网络形成的研究[J]. 食品工业科技, 2024: 1-14.

[4] 陈兰. 大豆蛋白糖基化作用对全豆豆腐凝胶形成过程及理化性质的影响[D]. 四川农业大学, 2023.

[5] 陈银阁, 张养东, 李宁, 等. 生乳中风味物质特征及来源研究进展[J]. 中国畜牧兽医, 2024, 51(3): 1103-1110.

[6] 符传涵, 杨海花, 李瑜, 等. 脉冲强光技术对食品加工品质的影响及安全控制技术研究进展[J]. 现代食品科技, 2024, 40(5): 325-338.

[7] 葛钰鸿. 大豆多糖对全豆豆腐凝胶形成过程及理化性质的影响[D]. 四川农业大学, 2024.

[8] 管兰兰, 莫小引, 汤鹏宇, 等. 大方豆干贮藏期微生物群落及品质变化分析[J]. 食品与发酵工业, 2025: 1-9.

[9] 郭婷婷, 厉佳怡, 王红磊, 等. 酶联合动态高压微射流改性豌豆分离蛋白及其在Pickering乳液中的适用性[J]. 食品科学, 2024, 45(16): 188-196.

[10] 贺小红. 工业级高压射流磨对豌豆基食品大分子的改性机理研究[D]. 南昌大学, 2022.

[11] 侯剑桥, 张岩岩, 赵家儒. 生物防腐剂的来源及在食品防腐中的运用解析[J]. 中国食品工业, 2024(15): 125-127.

[12] 胡瀚文, 余雪健, 李旭, 等. 壳聚糖/乳酸链球菌素复合抗菌膜的制备及其性能[J]. 食品与发酵工业, 2023, 49(11): 13-19.

[13] 焦捷. 栅栏技术在食品贮藏与保鲜中的应用[J]. 现代食品, 2023, 29(10): 48-50.

[14] 金曼芹, 罗丹, 薛文通. 豆酱的风味物质及微生物多样性的研究进展[J]. 中国酿造, 2023, 42(11): 1-8.

[15] 况玉玉. 紫菜生鲜面的品质改良及保鲜技术研究[D]. 南京农业大学, 2022.

[16] 黎萍, 李岩. 新型食品防腐剂ε-PL的研究进展及应用[J]. 中国食品工业, 2023(7): 97-99.

[17] 李安怡. 全大豆豆浆改善脂代谢的功效研究[D]. 江南大学, 2023.

[18] 李佳运, 杨锋, 侯玉澄, 等. 五种地标腐竹理化指标及品质分析[J]. 中国调味品, 2022, 47(8): 150-153+159.

[19] 李剑, 高向阳, 马丽萍. 冰温技术在食品保藏中的应用与研究进展[J]. 江苏调味副食品, 2021(4): 10-13.

[20] 李永吉. 揭膜过程中腐竹品质变化及腐竹粉的制备研究[D]. 江南大学, 2014.

[21] 梁亚桢. 全豆豆浆及速溶全豆粉产品研发[D]. 南昌大学, 2020.

[22] 林峻. 鲜湿腐竹联合保鲜技术研究及年产2000吨鲜湿腐竹工厂设计[D]. 南京农业大学, 2019.

[23] 刘雨. 热包装馒头淀粉老化机理研究[D]. 陕西师范大学, 2019.

[24] 刘玉霞, 杨晓晖, 于春涛, 等. 不同制备工艺对全豆豆浆品质及抗氧化性的影响[J]. 食品科技, 2024, 49(11): 214-219.

[25] 骆佳, 段志蓉, 程玉娇, 等. 微波杀菌及包装材料的微波穿透性对湿豆皮保鲜品质的影响[J]. 包装工程, 2023, 44(15): 60-67.

[26] 孟新静, 杨旭, 孟德尚, 等. 大豆次生代谢产物结构、生物活性及其作用机制研究进展[J]. 食品科学, 2024, 45(20): 35-47.

[27] 莫然, 唐善虎, 李思宁, 等. NaCl添加量对发酵牦牛肉灌肠成熟过程中理化品质及挥发性风味物质的影响[J]. 食品科学, 2022, 43(4): 69-79.

[28] 缪园欣, 贲锦华, 彭欣雨, 等. 响应面-主成分分析法优化功能性荷叶茶发酵工艺[J]. 中国酿造, 2024, 43(10): 211-216.

[29] 牛晓琴. 高压射流磨系统制备全果番茄饮料研究[D]. 南昌大学, 2021.

[30] 戚英伟, 王玲, 陈飞平, 等. 可食性涂膜性能及其水果保鲜应用研究进展[J]. 保鲜与加工, 2022, 22(1): 110-120.

[31] 时玉强, 刘锡潜, 李顺秀, 等. 基于气相离子迁移谱的大豆分离蛋白风味控制研究[J]. 农业机械学报, 2021, 52(2): 355-363.

[32] 孙淑倩, 徐凤娟, 王磊, 等. 乳酸菌细菌素的研究与应用[J]. 食品科技, 2024, 49(9): 12-18.

[33] 孙鑫. 留渣豆浆制备工艺优化及超声波和高压均质处理对其品质的影响[D]. 四川农业大学, 2021.

[34] 陶湘林, 蒋立文, 苏悟, 等. 电子鼻、电子舌鉴别不同蒸煮条件的毛霉型豆豉品质的研究[J]. 核农学报, 2015, 29(12): 2349-2354.

[35] 田雨琪. 真空冷冻干燥对腐竹品质及货架期影响的试验研究[D]. 黑龙江八一农垦大学, 2023.

[36] 王佳宇, 胡文忠, 管玉格, 等. 乳酸链球菌素抑菌机理及在食品保鲜中的研究进展[J]. 食品工业科技, 2021, 42(3): 346-350.

[37] 王润铃, 庞文媛, 郭德军, 等. 基于GC-IMS技术分析不同方法陈酿桑葚白兰地的风味特征[J]. 中国酿造, 2024, 43(9): 249-255.

[38] 吴佳, 赵鸾, 魏娜, 等. 动态高压微射流处理对低盐肌原纤维蛋白溶解度和结构的影响[J]. 食品与发酵工业, 2022, 48(11): 129-135.

[39] 吴宪玲, 李晓敏, 周雪婷. 气调包装技术在食品包装中的应用[J]. 农业科技与装备, 2021(6): 86-87.

[40] 夏阿林, 夏霞明, 吉琳琳, 等. 低场核磁共振结合化学模式识别方法判别休闲豆干品牌[J]. 农业工程学报, 2018, 34(10): 282-288.

[41] 向凤兰, 吴尔文, 陈沛, 等. 大豆品种及油体富集工艺对腐竹品质的影响[J]. 河南工业大学学报(自然科学版), 2023, 44(5): 10-17, 50.

[42] 肖欢欢, 耿虎林, 楼乔明, 等. 葡萄糖和β-环糊精糖基化改善鱼明胶乳液凝胶的凝胶特性[J]. 食品工业科技, 2024: 1-15.

[43] 杨新俊, 崔政伟, 张裕中, 等. 湿法超细粉碎制备全豆豆浆关键技术研究[J]. 食品与机械, 2017, 33(10): 158-162.

[44] 于海燕, 敖婷, 廖晗雪, 等. 不同乳酸菌对发酵芸豆乳风味特征的影响[J]. 食品科学, 2024, 45(22): 180-188.

[45] 岳丽, 王卉, 王佳敏, 等. 气相色谱-离子迁移谱结合多元统计法分析不同颜色膨化高粱米挥发性化合物[J]. 中国粮油学报, 2025: 1-11.

[46] 张凤璇. 鲜腐竹的贮藏保鲜技术研究[D]. 山东农业大学, 2024.

[47] 张娟, 闫瑞霞, 孙志洪, 等. 全豆豆浆与传统豆浆感官品质和营养成分对比[J]. 大豆科学, 2017, 36(3): 459-462.

[48] 张娟, 杨栋梁, 周媛, 等. 全豆豆浆的加工工艺研究[J]. 大豆科学, 2016, 35(6): 1013-1017.

[49] 张明凯. 高纤豆腐品质改良及其机制研究[D]. 南京农业大学, 2018.

[50] 张倩芝. 红外光谱法快速鉴别食用豆类的主要营养成分[J]. 食品科技, 2013, 38(2): 285-287, 295.

[51] 张权, 顾凡, 王远利, 等. 不同贮藏温度的鲜核桃仁中挥发性有机物的GC-IMS分析[J]. 中国食品学报, 2024, 24(12): 299-312.

[52] 张志衡, 陈振家, 李玉娥, 等. 不同酸浆添加量制备的豆腐凝胶特性比较[J]. 现代食品科技, 2022, 38(4): 161-170.

[53] 周晓倩, 李晓贝, 张艳梅, 等. 基于GC-IMS和GC×GC-To F-MS技术分析产地对羊肚菌挥发性风味成分的影响[J]. 中国农业科学, 2024, 57(22): 4553-4567.

[54] Agrahar-Murugkar D, Bajpai-Dixit P, Kotwaliwale N. Rheological, nutritional, functional and sensory properties of millets and sprouted legume based beverages[J]. Journal of Food Science and Technology-Mysore, 2020, 57(5): 1671-1679.

[55] Amiri A, Sharifian P, Soltanizadeh N. Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins[J]. International Journal of Biological Macromolecules, 2018, 111: 139-147.

[56] Ardean C, Davidescu C M, Nemes N S, et al. Factors Influencing the Antibacterial Activity of Chitosan and Chitosan Modified by Functionalization[J]. International Journal of Molecular Sciences, 2021, 22(14): 7449.

[57] Bouayed J, Hoffmann L, Bohn T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake[J]. Food Chemistry, 2011, 128(1): 14-21.

[58] Bruylants G, Wouters J, Michaux C. Differential scanning calorimetry in life science: Thermodynamics, stability, molecular recognition and application in drug design[J]. Current Medicinal Chemistry, 2005, 12(17): 2011-2020.

[59] Cai W qiang, Zhang J wei, Zou B wen, et al. A straight-forward fabrication of yuba films with controllable mechanical properties by oil-in-water emulsion model system rather than soymilk[J]. International Journal of Biological Macromolecules, 2024, 281: 136457.

[60] Cavender G A, Kerr W L. Microfluidization of full-fat ice cream mixes: Effects on rheology and microstructure[J]. Journal of Food Process Engineering, 2020, 43(2): e13350.

[61] Chait Y A, Gunenc A, Bendali F, et al. Simulated gastrointestinal digestion and in vitro colonic fermentation of carob polyphenols: Bioaccessibility and bioactivity[J]. Lwt-Food Science and Technology, 2020, 117: 108623.

[62] Chakrabarti S, Hinczewski M, Thirumalai D. Plasticity of hydrogen bond networks regulates mechanochemistry of cell adhesion complexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(25): 9048-9053.

[63] Chakraborty P, Witt T, Harris D, et al. Texture and mouthfeel perceptions of a model beverage system containing soluble and insoluble oat bran fibres[J]. Food Research International, 2019, 120: 62-72.

[64] Chen B, Cai Y, Liu T, et al. Improvements in physicochemical and emulsifying properties of insoluble soybean fiber by physical-chemical treatments[J]. Food Hydrocolloids, 2019, 93: 167-175.

[65] Chen H, Wang Q, Rao Z, et al. The linear/nonlinear rheological behaviors of Pickering emulsion stabilized by Zein and Xanthan gum: Effect of interfacial assembly strategies[J]. Food Hydrocolloids, 2023, 145: 109116.

[66] Chen X, Xu X, Liu D, et al. Rheological behavior, conformational changes and interactions of water-soluble myofibrillar protein during heating[J]. Food Hydrocolloids, 2018, 77: 524-533.

[67] Chen X, Zhou R, Xu X, et al. Structural modification by high-pressure homogenization for improved functional properties of freeze-dried myofibrillar proteins powder[J]. Food Research International, 2017, 100: 193-200.

[68] Chen Y, Capuano E, Stieger M. Chew on it: influence of oral processing behaviour on in vitro protein digestion of chicken and soya-based vegetarian chicken[J]. British Journal of Nutrition, 2021, 126(9): 1408-1419.

[69] Chen Y, Sun Y, Meng Y, et al. Synergistic effect of microfluidization and transglutaminase cross-linking on the structural and oil-water interface functional properties of whey protein concentrate for improving the thermal stability of nanoemulsions[J]. Food Chemistry, 2023, 408: 135147.

[70] Ciron C I E, Gee V L, Kelly A L, et al. Modifying the microstructure of low-fat yoghurt by microfluidisation of milk at different pressures to enhance rheological and sensory properties[J]. Food Chemistry, 2012, 130(3): 510-519.

[71] Colombo A, Daniel Ribotta P, Edel Leon A. Differential Scanning Calorimetry (DSC) Studies on the Thermal Properties of Peanut Proteins[J]. Journal of Agricultural and Food Chemistry, 2010, 58(7): 4434-4439.

[72] Dou X, Zhang L, Yang R, et al. Adulteration detection of essence in sesame oil based on headspace gas chromatography-ion mobility spectrometry[J]. Food Chemistry, 2022, 370: 131373.

[73] Du X, Zhao M, Pan N, et al. Tracking aggregation behaviour and gel properties induced by structural alterations in myofibrillar protein in mirror carp (Cyprinus carpio) under the synergistic effects of pH and heating[J]. Food Chemistry, 2021, 362: 130222.

[74] Fan Q, Wang P, Zheng X, et al. Effect of dynamic high pressure microfluidization on the solubility properties and structure profiles of proteins in water-insoluble fraction of edible bird’s nests[J]. Lwt-Food Science and Technology, 2020, 132: 109923.

[75] Felfoul I, Bouazizi A, Attia H, et al. Monitoring of acid-induced coagulation of dromedary and cows’ milk by untargeted and targeted techniques[J]. International Dairy Journal, 2022, 127: 105300.

[76] Feng X, Sun Y, Tan H, et al. Effect of oil phases on the stability of myofibrillar protein microgel particles stabilized Pickering emulsions: The leading role of viscosity[J]. Food Chemistry, 2023, 413: 135653.

[77] Fu Q, Liu R, Wang H, et al. Effects of Oxidation in Vitro on Structures and Functions of Myofibrillar Protein from Beef Muscles[J]. Journal of Agricultural and Food Chemistry, 2019, 67(20): 5866-5873.

[78] Gao S, Zhang Y, Wang J, et al. Influence of starch content on the physicochemical and antimicrobial properties of starch/PBAT/e-polylysine hydrochloride blown films[J]. Food Packaging and Shelf Life, 2022, 34: 101005.

[79] Giri S K, Mangaraj S. Processing Influences on Composition and Quality Attributes of Soymilk and its Powder[J]. Food Engineering Reviews, 2012, 4(3): 149-164.

[80] Gong K, Chen L, Xia H, et al. Driving forces of disaggregation and reaggregation of peanut protein isolates in aqueous dispersion induced by high-pressure microfluidization[J]. International Journal of Biological Macromolecules, 2019, 130: 915-921.

[81] Gong Q, Liu C, Tian Y, et al. Effect of cavitation jet technology on instant solubility characteristics of soymilk flour: Based on the change of protein conformation in soymilk[J]. Ultrasonics Sonochemistry, 2023, 96: 106421.

[82] Guo X, Chen M, Li Y, et al. Modification of food macromolecules using dynamic high pressure microfluidization: A review[J]. Trends in Food Science & Technology, 2020a, 100: 223-234.

[83] Guo Y, Ma M, Jiang F, et al. Protein quality and antioxidant properties of soymilk derived from black soybean after in vitro simulated gastrointestinal digestion[J]. International Journal of Food Science and Technology, 2020b, 55(2): 720-728.

[84] He X hong, Luo S jing, Chen M shun, et al. Effect of industry-scale microfluidization on structural and physicochemical properties of potato starch[J]. Innovative Food Science & Emerging Technologies, 2020, 60: 102278.

[85] He X T, Yuan D B, Wang J M, et al. Thermal aggregation behaviour of soy protein: characteristics of different polypeptides and sub-units[J]. Journal of the Science of Food and Agriculture, 2016, 96(4): 1121-1131.

[86] He X, Chen J, He X, et al. Industry-scale microfluidization as a potential technique to improve solubility and modify structure of pea protein[J]. Innovative Food Science & Emerging Technologies, 2021, 67: 102582.

[87] Horbanczuk O K, Wierzbicka A. Effects of packaging methods on shelf life of ratite meats[J]. Journal of Veterinary Research, 2017, 61(3): 279-285.

[88] Hu J, Yu B, Yuan C, et al. Influence of heat treatment before and/or after high-pressure homogenization on the structure and emulsification properties of soybean protein isolate[J]. International Journal of Biological Macromolecules, 2023, 253: 127411.

[89] Hu J, Zhao T, Li S, et al. Stability, microstructure, and digestibility of whey protein isolate - Tremella fuciformis polysaccharide complexes[J]. Food Hydrocolloids, 2019, 89: 379-385.

[90] Hu X, He Z, He P, et al. Microfluidization treatment improve the functional and physicochemical properties of transglutaminase cross-linked groundnut arachin and conarachin[J]. Food Hydrocolloids, 2022, 130: 107723.

[91] Huang L, Cai Y, Liu T, et al. Stability of emulsion stabilized by low-concentration soybean protein isolate: Effects of insoluble soybean fiber[J]. Food Hydrocolloids, 2019, 97: 105232.

[92] Huo C, Yang X, Li L. Non-beany flavor soymilk fermented by lactic acid bacteria: Characterization, stability, antioxidant capacity and in vitro digestion[J]. Food Chemistry-X, 2023, 17: 100578.

[93] Hutapea S, Al-Shawi S G, Chen T C, et al. Study on food preservation materials based on nano-particle reagents[J]. Food Science and Technology, 2022, 42.

[94] Jankowiak L, Kantzas N, Boom R, et al. Isoflavone extraction from okara using water as extractant[J]. Food Chemistry, 2014, 160: 371-378.

[95] Jayachandran M, Xu B. An insight into the health benefits of fermented soy products[J]. Food Chemistry, 2019, 271: 362-371.

[96] Ji X, Yin M, Hao L, et al. Effect of inulin on pasting, thermal, rheological properties and in vitro digestibility of pea starch gel[J]. International Journal of Biological Macromolecules, 2021, 193: 1669-1675.

[97] Jiang J, Xiong Y L, Newman M C, et al. Structure-modifying alkaline and acidic pH-shifting processes promote film formation of soy proteins[J]. Food Chemistry, 2012, 132(4): 1944-1950.

[98] Jiang P, Kang Z, Zhao S, et al. Effect of Dynamic High-Pressure Microfluidizer on Physicochemical and Microstructural Properties of Whole-Grain Oat Pulp[J]. Foods, 2023, 12(14): 2747.

[99] Jin J, Ma H, Wang K, et al. Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal[J]. Ultrasonics Sonochemistry, 2015, 24: 55-64.

[100] Jun S, Mu Y, Hui J, et al. Effects of single- and dual-frequency ultrasound on the functionality of egg white protein[J]. Journal of Food Engineering, 2020, 277: 109902.

[101] Kadian D, Kumar A, Badgujar P C, et al. Effect of homogenization and microfluidization on physicochemical and rheological properties of mayonnaise[J]. Journal of Food Process Engineering, 2021, 44(4): e13661.

[102] Kamboj A, Chopra R, Prabhakar P K. Perilla protein isolate exhibits synergistic techno-functionality through modification via sequential dynamic high-pressure microfluidization and enzymatic hydrolysis[J]. Innovative Food Science & Emerging Technologies, 2024, 94: 103683.

[103] Kaneko S, Kumazawa K, Nishimura O. Studies on the Key Aroma Compounds in Soy Milk Made from Three Different Soybean Cultivars[J]. Journal of Agricultural and Food Chemistry, 2011, 59(22): 12204-12209.

[104] Keerati-u-rai M, Corredig M. Effect of Dynamic High Pressure Homogenization on the Aggregation State of Soy Protein[J]. Journal of Agricultural and Food Chemistry, 2009, 57(9): 3556-3562.

[105] Kim M J, Kwak H S, Kim S S. Effects of salinity on bacterial communities, Maillard reactions, isoflavone composition, antioxidation and antiproliferation in Korean fermented soybean paste (doenjang)[J]. Food Chemistry, 2018, 245: 402-409.

[106] Kohli G, Jain G. Effect of non-thermal hurdles in shelf life enhancement of sugarcane juice[J]. Lwt-Food Science and Technology, 2019, 112: 108233.

[107] Kruszewski B, Zawada K, Karpinski P. Impact of High-Pressure Homogenization Parameters on Physicochemical Characteristics, Bioactive Compounds Content, and Antioxidant Capacity of Blackcurrant Juice[J]. Molecules, 2021, 26(6): 1802.

[108] Kuo H Y, Chen S H, Yeh A I. Preparation and Physicochemical Properties of Whole-Bean Soymilk[J]. Journal of Agricultural and Food Chemistry, 2014, 62(3): 742-749.

[109] Lee H, Yildiz G, dos Santos L C, et al. Soy protein nano-aggregates with improved functional properties prepared by sequential pH treatment and ultrasonication[J]. Food Hydrocolloids, 2016, 55: 200-209.

[110] Li J, Li Y, Guo S. The binding mechanism of lecithin to soybean 11S and 7S globulins using fluorescence spectroscopy[J]. Food Science and Biotechnology, 2014, 23(6): 1785-1791.

[111] Li K, Fu L, Zhao Y Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids, 2020, 98: 105275.

[112] Li Q, Hua Y, Li X, et al. Effects of heat treatments on the properties of soymilks and glucono- δ – Lactone induced tofu gels[J]. Food Research International, 2022a, 161: 111912.

[113] Li Y, Lyu S, Gao C, et al. Comparative analysis of aroma profiles in walnut, pecan and hickory nuts during the roasting process using E-nose, HS-SPME-GC-MS, and HS-GC-IMS[J]. Lwt-Food Science and Technology, 2024, 210: 116810.

[114] Li Y ting, Chen M shun, Deng L zhen, et al. Whole soybean milk produced by a novel industry-scale micofluidizer system without soaking and filtering[J]. Journal of Food Engineering, 2021, 291: 110228.

[115] Li Y, Wan Y, Mamu Y, et al. Protein aggregation and Ca2+-induced gelation of soymilk after heat treatment under slightly alkaline conditions[J]. Food Hydrocolloids, 2022b, 124: 107274.

[116] Li Y, Wan Y, Mamu Y, et al. Aggregation and gelation of soymilk protein after alkaline heat treatment: Effect of coagulants and their addition sequences[J]. Food Hydrocolloids, 2023, 135: 108178.

[117] Liao X, Miao Q, Yang J, et al. Changes in phenolic compounds and antioxidant activities of “nine steaming nine sun-drying” black soybeans before and after in vitro simulated gastrointestinal digestion[J]. Food Research International, 2022, 162: 111960.

[118] Liu H, Zhang J, Wang H, et al. High-intensity ultrasound improves the physical stability of myofibrillar protein emulsion at low ionic strength by destroying and suppressing myosin molecular assembly[J]. Ultrasonics Sonochemistry, 2021a, 74: 105554.

[119] Liu W, Lou H, Ritzoulis C, et al. Structural characterization of soybean milk particles during in vitro digestive/non-digestive simulation[J]. Lwt-Food Science and Technology, 2019, 108: 326-331.

[120] Liu Z, Guo Z, Wu D, et al. High-pressure homogenization influences the functional properties of protein from oyster (Crassostrea gigas)[J]. Lwt-Food Science and Technology, 2021b, 151: 112107.

[121] Loveday S M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins[J]. Annual Review of Food Science and Technology, 2019, 10(1): 311-339.

[122] Lu W, Chen J, Li X, et al. Flavor components detection and discrimination of isomers in Huaguo tea using headspace-gas chromatography-ion mobility spectrometry and multivariate statistical analysis[J]. Analytica Chimica Acta, 2023, 1243: 340842.

[123] Lv Y C, Song H L, Li X, et al. Influence of Blanching and Grinding Process with Hot Water on Beany and Non-Beany Flavor in Soymilk[J]. Journal of Food Science, 2011, 76(1): S20-S25.

[124] Martini S, Potter R, Walsh M K. Optimizing the use of power ultrasound to decrease turbidity in whey protein suspensions[J]. Food Research International, 2010, 43(10): 2444-2451.

[125] Matsui K, Takemoto H, Koeduka T, et al. 1-Octen-3-ol Is Formed from Its Glycoside during Processing of Soybean [Glycine max (L.) Merr.] Seeds[J]. Journal of Agricultural and Food Chemistry, 2018, 66(28): 7409-7416.

[126] Mediwaththe A, Bogahawaththa D, Grewal M K, et al. Structural changes of native milk proteins subjected to controlled shearing, and heating[J]. Food Research International, 2018, 114: 151-158.

[127] Mert I D. The applications of microfluidization in cereals and cereal-based products: An overview[J]. Critical Reviews in Food Science and Nutrition, 2020, 60(6): 1007-1024.

[128] Millan S, Swain B C, Tripathy U, et al. Effect of micro-environment on protein conformation studied by fluorescence-based techniques[J]. Journal of Molecular Liquids, 2020, 320: 114489.

[129] Moon H G, Jung Y, Han S D, et al. Chemiresistive Electronic Nose toward Detection of Biomarkers in Exhaled Breath[J]. Acs Applied Materials & Interfaces, 2016, 8(32): 20969-20976.

[130] Morales-Medina R, Dong D, Schalow S, et al. Impact of microfluidization on the microstructure and functional properties of pea hull fibre[J]. Food Hydrocolloids, 2020, 103: 105660.

[131] Mu Q, Su H, Zhou Q, et al. Effect of ultrasound on functional properties, flavor characteristics, and storage stability of soybean milk[J]. Food Chemistry, 2022, 381: 132158.

[132] Navicha W, Hua Y, Masamba K G, et al. Effect of soybean roasting on soymilk sensory properties[J]. British Food Journal, 2018, 120(12): 2832-2842.

[133] Oyedeji A B, Mellem J J, Ijabadeniyi O A. Improvement of some quality attributes of soymilk through optimization of selected soybean sprouting parameters using response surface methodology[J]. Cyta-Journal of Food, 2018, 16(1): 230-237.

[134] Park M, Lee K G. Effect of roasting temperature and time on volatile compounds, total polyphenols, total flavonoids, and lignan of omija (Schisandra chinensis Baillon) fruit extract[J]. Food Chemistry, 2021, 338: 127836.

[135] Peng X, Guo S. Texture characteristics of soymilk gels formed by lactic fermentation: A comparison of soymilk prepared by blanching soybeans under different temperatures[J]. Food Hydrocolloids, 2015, 43: 58-65.

[136] Peng X, Yue Q, Chi Q, et al. Microbial Diversity and Flavor Regularity of Soy Milk Fermented Using Kombucha[J]. Foods, 2023, 12(4): 884.

[137] Perez P F, Fernandez M V, Jagus R J, et al. Use of an eco-friendly preservation technology as a strategy to increase the microbiological shelf-life of a novel ready-to-eat salad containing vegetable by-products[J]. Journal of Food Process Engineering, 2024, 47(4): e14607.

[138] Poliseli-Scopel F H, Gallardo-Chacon J J, Juan B, et al. Characterisation of volatile profile in soymilk treated by ultra high pressure homogenisation[J]. Food Chemistry, 2013, 141(3): 2541-2548.

[139] Raikos V. Encapsulation of vitamin E in edible orange oil-in-water emulsion beverages: Influence of heating temperature on physicochemical stability during chilled storage[J]. Food Hydrocolloids, 2017, 72: 155-162.

[140] Ren C, Tang L, Zhang M, et al. Structural Characterization of Heat-Induced Protein Particles in Soy Milk[J]. Journal of Agricultural and Food Chemistry, 2009, 57(5): 1921-1926.

[141] Rodriguez-Roque M, Rojas-Graue M, Elez-Martinez P, et al. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion[J]. Food Chemistry, 2013, 136(1): 206-212.

[142] Shi X, Zou H, Sun S, et al. Application of high-pressure homogenization for improving the physicochemical, functional and rheological properties of myofibrillar protein[J]. International Journal of Biological Macromolecules, 2019, 138: 425-432.

[143] Silva K, Machado A, Cardoso C, et al. Rheological behavior of plant-based beverages[J]. Food Science and Technology, 2020, 40: 258-263.

[144] Singh A, Meena M, Kumar D, et al. Structural and Functional Analysis of Various Globulin Proteins from Soy Seed[J]. Critical Reviews in Food Science and Nutrition, 2015, 55(11): 1491-1502.

[145] Sun C, Yang J, Liu F, et al. Effects of Dynamic High-Pressure Microfluidization Treatment and the Presence of Quercetagetin on the Physical, Structural, Thermal, and Morphological Characteristics of Zein Nanoparticles[J]. Food and Bioprocess Technology, 2016, 9(2): 320-330.

[146] Toro-Funes N, Bosch-Fuste J, Veciana-Nogues M T, et al. Effect of ultra high pressure homogenization treatment on the bioactive compounds of soya milk[J]. Food Chemistry, 2014, 152: 597-602.

[147] Violalita F, Evawati, Syahrul S, et al. Characteristics of Gluten-Free Wet Noodles Substituted with Soy Flour[J]. International Conference of Sustainability Agriculture and Biosystem,2020.515: 012047.

[148] Wang C, Wang J, Zhu D, et al. Effect of dynamic ultra-high pressure homogenization on the structure and functional properties of whey protein[J]. Journal of Food Science and Technology-Mysore, 2020, 57(4): 1301-1309.

[149] Wang L, Xiong G, Peng Y bo, et al. The Cryoprotective Effect of Different Konjac Glucomannan (KGM) Hydrolysates on the Glass Carp (Ctenopharyngodon idella) Myofibrillar During Frozen Storage[J]. Food and Bioprocess Technology, 2014, 7(12): 3398-3406.

[150] Wang L, Yang K, Liu L. Comparative flavor analysis of four kinds of sweet fermented grains by sensory analysis combined with GC-MS[J]. International Journal of Food Engineering, 2022, 18(1): 75-85.

[151] Wehrmaker A M, de Groot W, van der Goot A J, et al. In vitro digestibility and solubility of phosphorus of three plant-based meat analogues[J]. Journal of Animal Physiology and Animal Nutrition, 2024, 108: 24-35.

[152] Wu C, Hua Y, Chen Y, et al. Effect of 7S/11S ratio on the network structure of heat-induced soy protein gels: a study of probe release[J]. Rsc Advances, 2016, 6(104): 101981-101987.

[153] Xu J, Mukherjee D, Chang S K C. Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization[J]. Food Chemistry, 2018, 240: 1005-1013.

[154] Yan X, Zhao J, Zeng Z, et al. Effects of preheat treatment and polyphenol grafting on the structural, emulsifying and rheological properties of protein isolate from Cinnamomum camphora seed kernel[J]. Food Chemistry, 2022, 377: 132044.

[155] Yang A, Smyth H, Chaliha M, et al. Sensory quality of soymilk and tofu from soybeans lacking lipoxygenases[J]. Food Science & Nutrition, 2016, 4(2): 207-215.

[156] Yang F, Kim Y. Application of yuba film as frozen dumpling wrappers[J]. LWT, 2021a, 151: 112245.

[157] Yang H, Kang W, Yu Y, et al. A new approach to evaluate the particle growth and sedimentation of dispersed polymer microsphere profile control system based on multiple light scattering[J]. Powder Technology, 2017, 315: 477-485.

[158] Yang Q, Zheng Q, Jin M, et al. Fabrication of gel-like emulsions with γ-zein particles using microfluidization: Structure formation and rheological properties[J]. Food Research International, 2022, 158: 111514.

[159] Yang X, Ke C, Li L, et al. Physicochemical, rheological and digestive characteristics of soy protein isolate gel induced by lactic acid bacteria[J]. Journal of Food Engineering, 2021b, 292: 110243.

[160] Yi J, Jiang B, Zhang Z, et al. Effect of Ultrahigh Hydrostatic Pressure on the Activity and Structure of Mushroom (Agaricus bisporus) Polyphenoloxidase[J]. Journal of Agricultural and Food Chemistry, 2012, 60(2): 593-599.

[161] Yildiz G, Andrade J, Engeseth N E, et al. Functionalizing soy protein nano-aggregates with pH-shifting and mano-thermo-sonication[J]. Journal of Colloid and Interface Science, 2017, 505: 836-846.

[162] Yu D, Xing K, Wang N, et al. Effect of dynamic high-pressure microfluidization treatment on soybean protein isolate-rutin non-covalent complexes[J]. International Journal of Biological Macromolecules, 2024, 259: 129217.

[163] Yuan S, Chang S K C. Selected odor compounds in soymilk as affected by chemical composition and lipoxygenases in five soybean materials[J]. Journal of Agricultural and Food Chemistry, 2007, 55(2): 426-431.

[164] Yue J, Gu Z, Zhu Z, et al. Impact of defatting treatment and oat varieties on structural, functional properties, and aromatic profile of oat protein[J]. Food Hydrocolloids, 2021, 112: 106368.

[165] Zhang K, Wen Q, Li T, et al. Comparison of interaction mechanism between chlorogenic acid/luteolin and glutenin/gliadin by multi-spectroscopic and thermodynamic methods[J]. Journal of Molecular Structure, 2021, 1246: 131219.

[166] Zhang L, Xiao Q, Wang Y, et al. Effects of sequential enzymatic hydrolysis and transglutaminase crosslinking on functional, rheological, and structural properties of whey protein isolate[J]. Lwt-Food Science and Technology, 2022a, 153: 112415.

[167] Zhang N, Xiong Z, Xue W, et al. Insights into the effects of dynamic high-pressure microfluidization on the structural and rheological properties of rapeseed protein isolate[J]. Innovative Food Science & Emerging Technologies, 2022b, 80: 103091.

[168] Zhang Y, Chang S K C, Liu Z. Isoflavone Profile in Soymilk as Affected by Soybean Variety, Grinding, and Heat-Processing Methods[J]. Journal of Food Science, 2015, 80(5): C983-C988.

[169] Zheng T, Li X, Taha A, et al. Effect of high intensity ultrasound on the structure and physicochemical properties of soy protein isolates produced by different denaturation methods[J]. Food Hydrocolloids, 2019, 97: 105216.

[170] Zhu Y, Fu S, Wu C, et al. The investigation of protein flexibility of various soybean cultivars in relation to physicochemical and conformational properties[J]. Food Hydrocolloids, 2020a, 103: 105709.

[171] Zhu Y Y, Thakur K, Feng J Y, et al. Riboflavin-overproducing lactobacilli for the enrichment of fermented soymilk: insights into improved nutritional and functional attributes[J]. Applied Microbiology and Biotechnology, 2020b, 104(13): 5759-5772.

[172] Zuo F, Peng X, Shi X, et al. Effects of high-temperature pressure cooking and traditional cooking on soymilk: Protein particles formation and sensory quality[J]. Food Chemistry, 2016, 209: 50-56.

中图分类号:

 TS2    

开放日期:

 2025-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式