中文题名: | 植物病毒挟持寄主ALBA蛋白诱导植物耐热性研究 |
姓名: | |
学号: | 2021102031 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090401 |
学科名称: | 农学 - 植物保护 - 植物病理学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 分子植物病毒 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
第三导师姓名: | |
完成日期: | 2024-06-13 |
答辩日期: | 2024-05-31 |
外文题名: | Study On The Induction Of Plant Heat Tolerance By Host ALBA Protein By Plant Viruses |
中文关键词: | 大豆症青病毒 ; 马铃薯卷叶病毒 ; 乙酰化降低结合亲和力蛋白 ; 耐热性 |
外文关键词: | soybean stay-green associated virus ; potato leafroll virus ; ALBA protein ; heat tolerance |
中文摘要: |
植物作为固着生物,必须依赖各种调控机制来适应不断变化的环境条件。随着大气中温室气体含量不断增加,全球变暖的速度正在加快,预计其造成的影响将在不久的将来进一步加剧,例如高温天气的频繁发生,这将严重威胁世界人口的粮食安全。因此,研究植物的耐热性机制,以及选育和栽培具有优良抗逆性和环境耐受性的作物,对于提高作物的生存和生产能力,推进农业可持续发展至关重要。 马铃薯卷叶病毒(potato leafroll virus, PLRV)是南方菜豆花叶一品红病毒科(Solemoviridae),马铃薯卷叶病毒属(Polerovirus)的一种单链RNA病毒。PLRV作为世界第四大粮食作物马铃薯上危害最大的韧皮部病毒之一,主要通过桃蚜(Myzus persicae)进行传播,会造成块茎的坏死,给世界各地马铃薯种植区造成巨大损失。课题组前期研究率先证实大豆“症青”的重要致病病原为大豆“症青”病毒(soybean stay-green associated virus, SoSGV),其为双生病毒科(Geminiviridae)的单链DNA病毒。我们课题组通过多年多地调查发现SoSGV有从黄淮海主栽区向其他栽培地区扩散的趋势,该病毒可以通过普通褐色叶蝉(Orosius orientalis)进行传播,导致大豆“贪青不育,荚而不实”,对我国大豆的产量和品质影响极大。多种病毒已被证实在植物抗逆过程中具有积极作用。因此,研究植物与病毒之间的相互作用,特别是在与气候变化相关的胁迫条件下两者的关系,对于理解植物病毒行为、保护作物安全和提高农业生产力具有重要意义。 本文首次发现感染SoSGV可以显著增强寄主耐热性。此外,PLRV提高植物耐热性也在原始寄主马铃薯上得到验证,进一步证实了病毒与植物耐热性之间的关联。通过质谱分析筛选到PLRV病毒粒子的本氏烟寄主互作因子ALBA(acetylation lowers binding affinity)。随后,酵母双杂交证实了PLRV和SoSGV的外壳蛋白(coat protein, CP)与NbALBA1/2/4的特异性互作关系,同时以NbALBA1为主要研究对象,双分子荧光互补同样证明了CP与NbALBA1的互作关系,GmALBA与SoSGV CP观察到相似的互作情况。观察亚细胞定位发现NbALBA1在细胞质中形成聚集体,NbALBA1与CP互作也会形成大而无规则的聚集体,这些聚集体都能与应激颗粒(stress granules, SGs)和加工小体(processing bodies, PBs)共定位,PLRV还会促进聚集体的形成。这些发现为理解NbALBA在应对非生物胁迫中的功能提供了重要线索。 PLRV和SoSGV虽同属于韧皮部病毒,但对NbALBA转录水平的影响却不相同。为明确NbALBA的生物学功能,使用病毒诱导的基因沉默体系(virus induced gene silencing, VIGS)在本氏烟中沉默NbALBA,导致参与对热胁迫的热休克蛋白(HSPs)相关基因的表达水平显著降低,热胁迫处理使其表现出比对照组更严重的热害症状;沉默NbALBA之后接种PLRV和SoSGV再进行热处理,感染PLRV和SoSGV赋予的寄主耐热性受到削弱,表现出更为严重的热害症状,说明NbALBA在植物抵御热胁迫中起正调控作用。热应激反应过程中会产生大量过氧化氢等活性氧,过氧化氢酶(catalase, CAT)的活性和含量变化则尤为重要,本研究结果显示瞬时表达NbALBA1没有显著改变CAT的活性,但同时共浸润NbALBA1和CP则可以显著增强CAT活性,揭示了CP与ALBA互作增强植物耐热性可能是通过增强CAT活性,清除由热胁迫诱导产生的大量H2O2实现的。本研究揭示了PLRV、SoSGV与寄主ALBA蛋白互作,在植物耐热性中共同发挥积极作用,为解析植物耐热性机制提供新的思路。 |
外文摘要: |
Plants as sessile organisms, rely on various regulatory mechanisms to adapt to continuously changing environmental conditions. With the increasing concentration of greenhouse gases in the atmosphere, the pace of global warming is accelerating, and its impact is expected to further intensify in the near future. For example, the frequent occurrence of hot weather, posing a serious threat to global food security. Therefore, studying the heat tolerance mechanisms of plants, as well as breeding and cultivating crops with excellent stress resistance and environmental tolerance, is crucial for enhancing the survival and productivity of crops and advancing agricultural sustainability. Potato leafroll virus (PLRV), as one of the major plant viruses affecting the world's fourth-largest food crop, potatoes, is primarily transmitted by peach aphids (Myzus persicae), causing necrosis in tubers and resulting in significant losses in potato-growing regions worldwide. Previous studies by our research team have confirmed that the major pathogen causing "stay-green" disease in soybeans is the soybean stay-green associated virus (SoSGV). Surveys conducted over many years and in various locations have revealed a trend of SoSGV spreading from the soybean planting areas in the Huang-Huai-Hai Plain to other cultivated regions. This virus can be transmitted by the common brown leafhopper (Orosius orientalis), leading to symptoms such as "excessive vegetative growth and reduced pod setting" in soybeans and significantly impacting both the yield and quality of soybeans. It is worth noting that several viruses have been shown to have beneficial effects on plant resilience processes. Therefore, studying the interaction between plants and viruses, especially their relationship under stress conditions related to climate change, is of significant importance for understanding plant virus behavior, safeguarding crop security, and enhancing agricultural productivity. This study, for the first time, discovered that SoSGV significantly enhances plant heat tolerance, which is of great significance for the study of plant heat tolerance. In addition, PLRV's contribution to plant heat tolerance has also been validated in potatoes, further confirming the association between viruses and plant heat tolerance. Mass spectrometry analysis identified the host interaction factor acetylation lowers binding affinity (ALBA) of PLRV virus particles. Yeast two-hybrid confirmed the specific interaction between the coat protein (CP) of PLRV and SoSGV and NbALBA1/2/4, at the same time, taking NbALBA1 as the main research object, bimolecular fluorescence complementation also proved the interaction between CP and NbALBA1, and similar interaction was observed between GmALBA and SoSGV CP. Subcellular localization studies revealed that NbALBA1 forms aggregates in the cytoplasm, and its interaction with CP also leads to the formation of large, irregular aggregates, both of which co-localize with stress granules (SGs) and processing bodies (PBs). PLRV and SoSGV also promote the formation of these aggregates. These findings provide important clues for understanding the function of NbALBA in response to abiotic stress. Although both PLRV and SoSGV are plant viruses primarily localized in the phloem, their effects on the transcription levels of NbALBA differ. To clarify the biological function of NbALBA, the NbALBA gene was silenced using the virus induced gene silencing (VIGS) system, resulting in a significant decrease in the expression levels of heat shock protein (HSPs) genes involved in heat stress responses. Heat stress treatment led to more severe heat damage symptoms compared to the control group. After silencing NbALBA, plants lost the heat tolerance conferred by PLRV and SoSGV, exhibiting more severe heat damage symptoms, indicating that NbALBA plays a positive regulatory role in plant resistance to heat stress. During the heat stress response, a large amount of reactive oxygen species, such as hydrogen peroxide, is inevitably generated. Changes in the activity and content of catalase (CAT), an enzyme involved in oxidative stress responses, are particularly important. However, our results showed that transient expression of NbALBA1 is not enough to significantly alter CAT activity, but co-infiltrating NbALBA1 and CP at the same time could significantly enhance CAT activity, revealing that the interaction between CP and ALBA to enhance plant heat tolerance may be achieved by enhancing CAT activity and removing a large amount of H2O2 induced by heat stress. This study elucidates the interaction between PLRV, SoSGV, and the host ALBA protein, which jointly play a positive role in plant heat tolerance, providing new insights into the mechanism of plant heat tolerance. |
参考文献: |
[1] 白艳菊, 文景芝, 杨明秀, 等. 西南地区与东北地区马铃薯主要病毒发生比较[J]. 东北农业大学学报, 2007(06):733-736. [2] 郭建秋, 马雯, 雷全奎, 等. 黄淮海夏大豆“症青”现象发生原因初步探讨[J]. 河南农业科学, 2012, 41(04):45-48. [3] 韩天富, 周新安, 关荣霞, 等. 大豆种业的昨天、今天和明天[J]. 中国畜牧业, 2021, (12):29-34. [4] 霍晓辉, 申永梅, 刘国富, 等. 马铃薯卷叶病毒P0蛋白抑制RNA沉默及其与AGO蛋白的相互作用[J]. 生物技术通报, 2013, (03):70-76. [5] 黄玉韬, 梅高甫, 吴华平, 等. 水稻种子发育过程中耐热性研究进展[J]. 浙江农业科学, 2023, 64(10):2349-2354. [6] 李海舰, 薛继亮. 气候变化影响中国粮食生产的区域差异分析[J]. 农业经济, 2013, (08):73-75. [7] 李梅, 卢若滨, 兰平秀, 等. 马铃薯卷叶病毒属病毒在云南的发生分布与种类鉴定[J]. 植物病理学报, 2024, 1-16. [8] 吕睿杰. 农业气象变化对农作物生长的影响及应对措施[J]. 现代农业科技, 2020, (07):201. [9] 沈文远, 陈昕钰, 余徐润, 等. 根际温度胁迫对小麦根系形态及生理影响的研究进展[J]. 作物杂志, 2022, 38(06):23-32. [10] 刘玮, 朱自强. 植物根部热形态建成的研究进展[J]. 植物研究, 2024, 44(01):1-7. [11] 史勇, 郑兰杰, 王晨, 等. 植物耐高温机制的研究进展[J]. 河南农业大学学报, 2023, 57(05):713-725. [12] 魏广彪. 马铃薯卷叶病毒的分子鉴定与检测技术[D]. 福建农林大学, 2005. [13] 王敬涛, 王素琴. 气候变暖下的中国农业[R]. 中国气象报, 2012. [14] 王涛, 田雪瑶, 谢寅峰, 等. 植物耐热性研究进展[J]. 云南农业大学学报, 2013, 28(05):719-726. [15] 杨淑培. 我国培育成功抗卷叶病毒转基因马铃薯[J]. 生物技术通报, 2001, (02):51. [16] 张玉梅, 盛芳芳, 陈志钢, 等. 中美经贸协议对世界大豆产业的潜在影响分析——基于双边贸易模块的全球农产品局部均衡模型[J]. 农业技术经济, 2021, (04):4-16. [17] 张延梅, 王璐, 刘清瑞. 新乡县种植大户大豆症青发生原因分析与综合防治[J]. 农业科技通讯, 2021, (06):276-278. [18] 祖英治. 马铃薯病毒病的症状及防治措施[J]. 现代畜牧科技, 2019, (10):51-52. [19] 郑治斌. 气候变化对我国农业发展的影响综述[J]. 现代农业科技, 2023, (22):141-146. [20] Aizer A, Kalo A, Kafri P, et al. Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage[J]. Journal of Cell Science, 2014, 127(20):4443-56. [21] Alves LR, Avila AR, Correa A, et al. Proteomic analysis reveals the dynamic association of proteins with translated mRNAs in Trypanosoma cruzi[J]. Gene, 2010, 452(2):72-8. [22] Anderson P, Kedersha N. Visibly stressed: The role of eIF2, TIA-1, and stress granules in protein translation[J]. Cell Stress Chaperones, 2002, 7(2): 213-221. [23] Anfoka G, Moshe A, Fridman L, et al., Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures[J]. Scientific Reports, 2016, 6:19715. [24] Aravind L, Iyer LM, Anantharaman V. The two faces of Alba: The evolutionary connection between proteins participating in chromatin structure and RNA metabolism[J]. Genome Biology and Evolution, 2003, 4:1-9. [25] Arribas-Layton M, Dennis J, Bennett EJ, et al. The C-terminal RGG domain of human Lsm4 promotes processing body formation stimulated by arginine dimethylation[J]. Molecular and Cellular Biology, 2016, 36(17):2226-35. [26] Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions[J]. Plant Physiology, 2006, 141(2):391-6. [27] Bell SD, Botting CH, Wardleworth BN, et al. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation[J]. Science, 2002, 296:148-151. [28] Brangwynne CP, Mitchison TJ, Hyman AA. Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(11):4334-9. [29] Briddon RW, Pinner MS, Stanley J, et al. Geminivirus coat protein gene replacement alters insect specificity[J]. Virology, 1990, 177(1):85-94. [30] Cao X, Jin X, Liu B. The involvement of stress granules in aging and aging-associated diseases[J]. Aging Cell, 2020,19(4):e13136. [31] Cao Y, Duan H, Yang L, et al. Effect of heat stress during meiosis on grain yield of rice cultivars differing in heat tolerance and its physiological mechanism[J]. Acta Agronomica Sinica, 2008, 34(12): 2134-2142. [32] Cheng R, Mei R, Yan R, et al. A new distinct geminivirus causes soybean stay-green disease[J]. Molecular Plant, 2022, 15(6):927-930. [33] Cheng, R, Yan, R, Mei, R, et al. Epidemiological evaluation and identification of the insect vector of soybean stay-green associated virus[J]. Phytopathology Research, 2023, 5(1):20. [34] Chen W, Zheng J, Li Y, et al. Effects of high temperature on photosynthesis, chlorophy II fluorescence, chloroplast ultrastructure, and antioxidant activities in fingered citron[J]. Russian Journal of Plant Physiology, 2012, 59:732-740. [35] Chinnusamy V, Zhu J, Zhou T, et al. Small RNAs: Big role in abiotic stress tolerance of plants[M]. In Advances in Molecular Breeding toward Drought and Salt Tolerant Crops, 2007, 223-260. [36] Chong PA, Vernon RM, Forman-Kay JD. RGG/RG motif regions in RNA binding and phase separation[J]. Journal of Molecular Biology, 2018, 430, 4650-4665. [37] Crafts-Brandner SJ, Salvucci ME. Sensitivity of photosynthesis in a C4 plant, maize, to heat stress[J]. Plant Physiology, 2002, 1773-1780. [38] Črnigoj M, Podlesek Z, Zorko M, et al. Interactions of archaeal chromatin proteins Alba1 and Alba2 with nucleic acids[J]. PLoS One, 2013, 8:e58237. [39] Csorba T, Lózsa R, Hutvágner G, et al. Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1[J]. Plant Journal, 2010, 62(3):463-72. [40] Ding Y, Yang S. Surviving and thriving: How plants perceive and respond to temperature stress[J]. Developmental Cell, 2022, 57(8):947-958. [41] Ding Y, Shi Y, Yang S. Molecular regulation of plant responses to environmental temperatures[J]. Molecular Plant, 2020, 13(4):544-564. [42] Djanaguiraman M, Prasad PVV, Al-Khatib K. Ethylene perception inhibitor 1-MCP decreases oxidative damage of leaves through enhanced antioxidant defense mechanisms in soybean plants grown under high temperature stress[J]. Environmental and Experimental Botany, 2011, 71, 215-223. [43] Djanaguiraman M, Prasad PVV, Seppanen M. Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system[J]. Plant Physiology and Biochemistry, 2010, 48, 999-1007. [44] Dupé A, Dumas C, Papadopoulou B. An Alba-domain protein contributes to the stage-regulated stability of amastin transcripts in Leishmania[J]. Molecular Microbiology, 2014, 91(3):548-61. [45] Dupé A, Dumas C, Papadopoulou B. Differential subcellular localization of Leishmania Alba-domain proteins throughout the parasite development[J]. PLoS One, 2015, 10(9):e0137243. [46] Fahad S, Bajwa AA, Nazir U, et al. Crop production under drought and heat stress: Plant responses and management options[J]. Frontiers in Plant Science, 2017, 8:1147. [47] Fan S, Zhang Y, Zhu S, et al. Plant RNA-binding proteins: Phase-separation dynamics and functional mechanisms underlying plant development and stress responses[J]. Molecular Plant, 2024, 1674-2052. [48] Gissot M, Walker R, Delhaye S, et al. Toxoplasma gondii Alba proteins are involved in translational control of gene expression[J]. Journal of Molecular Biology, 2013, 425:1287-301. [49] Gomes E, Shorter J. The molecular language of membraneless organelles[J]. Journal of Biological Chemistry, 2019, 294, 7115-7127. [50] González R, Butković A, Escaray FJ, et al. Plant virus evolution under strong drought conditions results in a transition from parasitism to mutualism[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(6):e2020990118. [51] Goyal M, Banerjee C, Nag S, et al. The Alba protein family: Structure and function[J]. Acta Biochimica et Biophysica Sinica, 2016, 1864:570-83. [52] Guan QM, Lu XY, Zeng HT, et al. Heat stress induction of miR398 triggers a regulatory loop that is critical for thermotolerance in Arabidopsis[J]. Plant Journal, 2013, 840-851. [53] Guerrero J, Regedanz E, Lu L, et al. Manipulation of the plant host by the Geminivirus AC2/C2 protein, a central player in the infection cycle[J]. Frontiers in Plant Science, 2020, 11:591. [54] Guihur A, Fauvet B, Finka A, et al. Quantitative proteomic analysis to capture the role of heat-accumulated proteins in moss plant acquired thermotolerance[J]. Plant Cell and Environment, 2021, 44(7):2117-2133. [55] Guillen-Boixet J, Kopach A, Holehouse AS, et al. RNA-induced conformational switching and clustering of G3BP drive stress granule assembly by condensation[J]. Cell, 2020, 181(2): 346-361. [56] Guo R, Xue H, Huang L. Ssh10b, a conserved thermophilic archaeal protein, binds RNA in vivo[J]. Molecular Microbiology, 2003, 50:1605-15. [57] Gutierrez-Beltran E, Moschou PN, Smertenko AP, et al. Tudor staphylococcal nuclease links formation of stress granules and processing bodies with mRNA catabolism in Arabidopsis[J]. Plant Cell, 2015, 27, 926-943. [58] Jaag HM, Kawchuk L, Rohde W, et al. An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein[J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(15):8939-44. [59] Hasanuzzaman M, Nahar K, Alam MM, et al. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants[J]. International Journal of Molecular Sciences, 2013, 14(5):9643-9684. [60] Hatfield JL. Increased temperatures have dramatic effects on growth and grain yield of three maize hybrids[J]. Agriculture and Environmental Letters, 2016, 11:150006. [61] Haupt S, Cowan GH, Ziegler A, et al. Two plant-viral movement proteins traffic in the endocytic recycling pathway[J]. Plant Cell, 2005, 17(01):164-181. [62] Högy P, Poll C, Marhan S, et al. Impacts of temperature increase and change in precipitation pattern on crop yield and yield quality of barley[J]. Food Chemistry, 2013, 136, 1470-1477. [63] Howell SH. Endoplasmic reticulum stress responses in plants[J]. Annual Review of Plant Biology, 2013, 477-499. [64] Huang J, Zhao X, Bürger M, et al. The role of ethylene in plant temperature stress response[J]. Trends in Plant Science, 2023, 28(7):808-824. [65] Huang J, Zhao X, Bürger M, et al. Two interacting ethylene response factors regulate heat stress response[J]. Plant Cell, 2021, 33(2):338-357. [66] Iwasaki S, Takeda A, Motose H, et al. Characterization of Arabidopsis decapping proteins AtDCP1 and AtDCP2, which are essential for post-embryonic development[J]. FEBS Letters, 2007, 581(13):2455-9. [67] Kalinina NO, Makarova S, Makhotenko A, et al. The multiple functions of the nucleolus in plant development, disease and stress responses[J]. Frontiers in Plant Science, 2018, 9:132. [68] Kan Y, Mu XR, Gao J, et al. The molecular basis of heat stress responses in plants[J]. Molecular Plant, 2023, 16(10):1612-1634. [69] Kaur S, Ghai N, Jindal SK. Improvement of growth characteristics and fruit set in bell pepper (Capsicum annuum L.) through IAA application[J]. Indian Journal of Plant Physiology, 2017, 22(2):213-220. [70] Kepova KD, Holzer R, Stoilova LS, et al. Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, rubisco binding protein and rubisco activase in wheat leaves[J]. Biologia Plantarum, 2005, 49, 521-525. [71] Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. Journal of Experimental Botany, 2012, 63(4):1593-608. [72] Kumari P, Kumar J, Kumar RR, et al. Inhibition of potato leafroll virus multiplication and systemic translocation by siRNA constructs against putative ATPase fold of movement protein[J]. Scientific Reports, 2020, 10(01):22016. [73] Kumar RR, Ansar M, Rajani K, et al. First report on molecular basis of potato leafroll virus (PLRV) aggravation by combined effect of tuber and prevailing aphid[J]. BMC Research Notes, 2020, 13(01):523. [74] Lamke J, Brzezinka K, Altmann S, et al. A hit-and-run heat shock factor governs sustained histone methylation and transcriptional stress memory[J]. The EMBO Journal, 2016, 162-175. [75] LaTourrette K, Holste NM, Garcia-Ruiz H. Polerovirus genomic variation[J]. Virus Evolution, 2021, 7(2):102. [76] Laurens N, Driessen RP, Heller I, et al. Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA[J]. Nature Communications, 2012, 3:1328. [77] Li Q, Zhang Y, Lv W, et al. Identification and characterization of a new geminivirus from soybean plants and determination of V2 as a pathogenicity factor and silencing suppressor[J]. BMC Plant Biology, 2022, 22(1):362. [78] Li Z, Tang J, Srivastava R, et al. The transcription factor bZIP60 links the unfolded protein response to the heat stress response in maize[J]. Plant Cell, 2020, 32(11):3559-3575. [79] Longstaff M, Brigneti G, Boccard F, et al. Extreme resistance to potato virus X infection in plants expressing a modified component of the putative viral replicase[J]. EMBO Journal, 1993, 12(2):379-86. [80] Luo Y, Na Z, Slavoff SA. P-bodies: Composition, properties, and functions[J]. Biochemistry, 2018, 57:2424-31. [81] Machyna M, Heyn P, Neugebauer KM. Cajal bodies: Where form meets function[J]. Wiley Interdisciplinary Reviews: RNA, 2013, 4(1):17-34. [82] Magwanga RO, Kirungu JN, Lu P, et al. Knockdown of ghAlba_4 and ghAlba_5 proteins in cotton inhibits root growth and increases sensitivity to drought and salt stresses[J]. Frontiers in Plant Science, 2019, 10:1292. [83] Mair GR, Lasonder E, Garver LS, et al. Universal features of post-transcriptional gene regulation are critical for Plasmodium zygote development[J]. PLoS Pathogens, 2010, 6(2):e1000767. [84] Martin RR, Keese PK, Young MJ, et al. Evolution and molecular biology of Luteoviruses[J]. Annual Review of Phytopathology, 1990, 28(1):341-363. [85] Mitra R, Bhatia CR. Bioenergetic cost of heat tolerance in wheat crop[J]. Current Science, 2008, 94, 1049-1053. [86] Mittler R, Vanderauwera S, Van Breusegem Gollery MF. Reactive oxygen gene network of plants[J]. Trends in Plant Science, 2004, 9:490-498. [87] Mortimer-Jones SM, Jones MG, Jones RA, et al. A single tube, quantitative real-time RT-PCR assay that detects four potato viruses simultaneously[J]. Journal of Virological Methods, 2009, 161(2):289-96. [88] Motomura K, Le QT, Hamada T, et al. Diffuse decapping enzyme DCP2 accumulates in DCP1 foci under heat stress in Arabidopsis thaliana[J]. Plant and Cell Physiology, 2015, 56(1):107-15. [89] Náprstková A, Malínská K, Záveská Drábková L, et al. Characterization of ALBA family expression and localization in Arabidopsis thaliana generative organs[J]. International Journal of Molecular Sciences, 2021, 22:1652. [90] Nickel H, Kawchuk L, Twyman RM, et al. Plantibody-mediated inhibition of the potato leafroll virus P1 protein reduces virus accumulation[J]. Virus Research, 2008, 136(1-2):140-5. [91] Patton MF, Bak A, Sayre JM, et al. A polerovirus, potato leafroll virus, alters plant-vector interactions using three viral proteins[J]. Plant Cell and Environment, 2020, 43(02):387-399. [92] Pomeranz MC, Hah C, Lin PC, et al. The Arabidopsis tandem zinc finger protein AtTZF1 traffics between the nucleus and cytoplasmic foci and binds both DNA and RNA[J]. Plant Physiology and Biochemistry, 2010, 152(1):151-65. [93] Raja V, Qadir SU, Alyemeni MN, et al. Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum[J]. 3 Biotech, 2020, 10(5):208. [94] Rai AN, Saini N, Yadav R, et al. A potential seedling-stage evaluation method for heat tolerance in Indian mustard (Brassica juncea L. Czern and Coss)[J]. 3 Biotech, 2020, 10(3):114. [95] Robertson NL, Smeenk J, Anderson JM. Molecular characterization of potato leafroll virus, potato virus A, and potato virus X isolates from potatoes in alaskan cities and villages[J]. Plant Health Progress, 2011, 12:151. [96] Rothkamm K, Barnard S, Moquet J, et al. DNA damage foci: Meaning and significance[J]. Environmental and Molecular Mutagenesis, 2015, 56:491-504. [97] Sadura I, Janeczko A. Brassinosteroids and the tolerance of cereals to low and high temperature stress: Photosynthesis and the physicochemical properties of cell membranes[J]. International Journal of Molecular Sciences, 2021, 23(1):342. [98] Sakata T, Oshino T, Mura S, et al. Auxins reverse plant male serlily caused by high temperatures[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(19):8569-8574. [99] Sanders DW, Kedersha N, Lee DSW, et al. Competing protein-RNA interaction networks control multiphase intracellular organization[J]. Cell, 2020, 181(2):306-324. [100] Settlage SB, See RG, Hanley-Bowdoin L. Geminivirus C3 protein: Replication enhancement and protein interactions[J]. Journal of Virology, 2005, 79, 9885-9895. [101] Sharkey TD. Effects of moderate heat stress on photosynthesis: Importance of thylakoid reactions, rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene[J]. Plant, Cell and Environment, 2005, 28:269-277. [102] Shedge V, Davila J, Arrieta-Montiel MP, et al. Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance[J]. Plant Physiology, 2010, 1960-1970. [103] She Q, Singh RK, Confalonieri F, et al. The complete genome of the crenarchaeon Sulfolobus solfataricus P2[J]. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98:7835-40. [104] Sheth U, Parker R. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies[J]. Science, 2003, 805-808. [105] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58, 221-227. [106] Smirnova E, Andrew E, Miller WA, et al. Discovery of a small non-AUG-initiated ORF in Poleroviruses and Luteoviruses that is required for long-distance movement[J]. PLoS Pathogens, 2015, 11(05):e1004868. [107] Srivastava A, Singh K, Khar A, et al. Morphological, biochemical and molecular insights on responses to heat stress in chilli[J]. Indian Journal of Horticulture, 2022, 78(1):15-22. [108] Subota I, Rotureau B, Blisnick T, et al. ALBA proteins are stage regulated during trypanosome development in the tsetse fly and participate in differentiation[J]. Molecular Biology of the Cell, 2011, 22(22):4205-19. [109] Sumesh KV, Sharma-Natu P, Ghildiyal MC. Starch synthase activity and heat shock protein in relation to thermal tolerance of developing wheat grains[J]. Biologia Plantarum, 2008, 52, 749-753. [110] Thandapani P, O’Connor TR, Bailey TL, et al. Defining the RGG/RG motif[J]. Molecular and Cellular Biochemistry, 2013, 50, 613-623. [111] Tomas MG, Loschi M, Desbats MA, et al. RNA granules: the good, the bad and the ugly[J]. Cell Signal, 2011, 23, 324-334. [112] Tong J, Ren Z, Sun L, et al. ALBA proteins confer thermotolerance through stabilizing HSF messenger RNAs in cytoplasmic granules[J]. Nature Plants, 2022, 8(7):778-791. [113] Verma JK, Gayali S, Dass S, et al. OsAlba1, a dehydration-responsive nuclear protein of rice (Oryza sativa L. ssp. indica), participates in stress adaptation[J]. Phytochemistry, 2014, 100:16-25. [114] Wai AH, Cho LH, Peng X, et al. Genome-wide identification and expression profiling of Alba gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.)[J]. BMC Plant Biology, 2021, 21(1):530. [115] Wai AH, Naing AH, Lee DJ, et al. Molecular genetic approaches for enhancing stress tolerance and fruit quality of tomato[J]. Plant Biotechnology Reports, 2020, 14:515-537. [116] Wang X, Fan X, Zhang J, et al. hnRNPA2B1 represses the disassembly of arsenite-induced stress granules and is essential for male fertility[J]. Cell Reports Physical Science, 2024, 43(2):113769. [117] Wang Y, Wang Q, Zhao Y, et al. Systematic analysis of maize class III peroxidase gene family reveals a conserved subfamily involved in abiotic stress response[J]. Gene, 2015, 566(1):95-108. [118] Wardleworth BN, Russell RJ, Bell SD, et al. Structure of Alba: An archaeal chromatin protein modulated by acetylation[J]. EMBO Journal, 2002, 21(17):4654-62. [119] Weber L, Bartek L, Brancoli P, et al. Climate change impact of food distribution: The case of reverse logistics for bread in Sweden[J]. Sustain Prod Consump, 2023, 36:386-396. [120] Xie J, Chen Y, Cai G, et al. Tree Visualization By One Table (tvBOT): A web application for visualizing, modifying and annotating phylogenetic trees[J]. Nucleic Acids Research, 2023, 51(W1):W587-W592. [121] Xu J, Chua NH. Processing bodies and plant development[J]. Current Opinion in Plant Biology, 2011, 14(1):88-93. [122] Yuan W, Zhou J, Tong J, et al. ALBA protein complex reads genic R-loops to maintain genome stability in Arabidopsis[J]. Science Advances, 2019, 5(5):eaav9040. [123] Zhao C, Liu B, Piao S, et al. Temperature increase reduces global yields of major crops in four independent estimates[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(35):9326-9331. [124] Zhao J, Lu Z, Wang L, et al. Plant responses to heat stress: Physiology, transcription, noncoding RNAs, and epigenetics[J]. International Journal of Molecular Sciences, 2021, 22(1):117. [125] Zhao W, Wu S, Barton E, et al. Tomato yellow leaf curl virus V2 protein plays a critical role in the nuclear export of V1 protein and viral systemic infection[J]. Frontiers in Microbiology, 2020, 11:1243. [126] Zhu S, Gu J, Yao J, et al. Liquid-liquid phase separation of RBGD2/4 is required for heat stress resistance in Arabidopsis[J]. Developmental cell, 2022, 57(5):583-597. [127] Zinn KE, Tunc-Ozdemir M, Harper JF. Temperature stress and plant sexual reproduction: Uncovering the weakest links[J]. Journal of Experimental Botany, 2010, 61(7):1959-68. |
中图分类号: | S43 |
开放日期: | 2024-06-15 |