中文题名: | 硅酸盐矿物与Pseudomonas azotoformans ZY-1互作效应与机制研究 |
姓名: | |
学号: | 2020116059 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 071005 |
学科名称: | 理学 - 生物学 - 微生物学 |
学生类型: | 硕士 |
学位: | 理学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 微生物-矿物相互作用机制 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2023-06-16 |
答辩日期: | 2023-05-27 |
外文题名: | Interaction between Silicate Minerals and Pseudomonas azotoformans ZY-1 and the Mechanisms Involved |
中文关键词: | Pseudomonas azotoformans ZY-1 ; 黑云母 ; 钾长石 ; 代谢组学 ; 基因敲除 ; 矿物风化 |
外文关键词: | Pseudomonas azotoformans ZY-1 ; Biotite ; Potassium feldspar ; Metabolomics ; Gene knockout ; Mineral weathering |
中文摘要: |
硅酸盐矿物与微生物相互作用对于矿物风化、土壤形成、元素生物地球化学循环和长时间尺度大气CO2的固定有重要的作用,细菌对硅酸盐矿物的风化效应与机制研究已有不少报道。然而有关不同硅酸盐矿物与细菌相互作用机制的研究还比较薄弱。本研究进一步开展了硅酸盐矿物与矿物风化细菌相互作用机制的研究,研究结果对矿物与微生物相互作用机制的深入认识有重要的意义。 本文以黑云母和钾长石为供试矿物,以本课题组保藏的一株高效矿物风化细菌Pseudomonas azotoformans ZY-1作为供试菌株,开展了不同硅酸盐矿物和不同粒径大小矿物对菌株ZY-1生长代谢和矿物风化相关基因表达的影响;基于代谢组学技术分析了黑云母和钾长石对菌株ZY-1分泌代谢产物的影响;通过RT-qPCR和基因敲除技术验证了菌株ZY-1中与矿物风化相关的基因功能。本文主要结果如下: (1)硅酸盐矿物对菌株ZY-1生长代谢及矿物风化相关基因表达的影响 BHm培养基中20 h时添加黑云母和钾长石发酵液中细胞数量比不添加矿物增加了26%-71%,添加黑云母的发酵液中细胞数量比添加钾长石的增加了35%。添加钾长石的发酵液pH值与不添加矿物无显著差异,添加黑云母的发酵液pH值显著高于添加钾长石。添加黑云母和钾长石后,菌株ZY-1葡萄糖脱氢酶基因(gcd)相比与无矿物上调了1.53-3.43倍,黏附素基因(adh)相比与无矿物上调了1.29-1.50倍。添加黑云母后菌株ZY-1葡萄糖脱氢酶基因(gcd)相比与添加钾长石上调了2.24倍,黏附素基因(adh)下调了1.16倍。 (2)菌株ZY-1风化黑云母和钾长石的机制研究——基于代谢组学分析 菌株发酵液中共鉴定到799种代谢物质,主要包括脂类和类脂分子、有机酸及其衍生物、有机杂环化合物、有机氧化物、苯环型化合物等;添加黑云母后,显著改变的代谢途径包括辅因子的生物合成、色氨酸代谢、嘌呤代谢、谷胱甘肽代谢等;添加钾长石后,显著改变的代谢途径包括精氨酸生物合成、赖氨酸生物合成、戊糖和葡萄糖醛酸的相互转化、脂肪酸生物合成等;黑云母组与钾长石组相比,显著改变的代谢途径包括嘌呤代谢、酪氨酸代谢、辅因子的生物合成、苯丙氨酸代谢等;前二十丰度的代谢物较多与葡萄糖代谢产物有关,如D-葡萄糖、D-葡萄糖酸、2-酮-D-葡萄糖酸、D-葡萄糖庚糖;添加黑云母后,N-乙酰丙氨酸、苯丙氨酰脯氨酸、γ-谷氨酰半胱氨酸等代谢物质发生了上调;添加钾长石后,S-亚硝基谷胱甘肽、天冬氨酰-色氨酸、N-癸酰甘氨酸等物质发生了上调;添加黑云母与添加钾长石相比,N-乙酰-L-蛋氨酸、半乳糖酸、5-羟基吲哚乙酰甘氨酸等物质发生了上调;添加黑云母与添加钾长石这两组比较中,共有的上调代谢物是N-乙酰-L-蛋氨酸、半乳糖酸、D-2-羟基戊二酸等物质;上述三组比较中同时上调的代谢物质为5-羟基吲哚乙酰甘氨酸;KEGG代谢通路和基因组查找,共找到不同比较中上调的与矿物风化相关的8种代谢物、9种代谢途径、14种相关的酶和基因。 (3)代谢组学中矿物风化相关基因功能验证 RT-qPCR分析表明,添加黑云母后,菌株ZY-1 argD(编码乙酰鸟氨酸氨基转移酶)、cysE(编码L-丝氨酸O-乙酰转移酶)、ilvE(编码支链氨基酸氨基转移酶)基因分别上调了1.30倍、2.30倍、2.85倍;添加钾长石后,菌株ZY-1 argD、phhA-PAH (编码苯丙氨酸4-单加氧酶)、orf00874_1(编码醛脱氢酶)、cysE基因分别上调了4.35倍、1.44倍、1.22倍、1.45倍,黑云母与钾长石组比较中,基因ilvE、cysE分别上调了4.32倍、1.59倍;利用同源重组技术构建突变株ZY-1ΔargD、ZY-1ΔphhA-PAH、ZY-1Δorf00874_1、ZY-1ΔcysE、ZY-1ΔilvE;菌株风化黑云母效果显示,突变株ZY-1ΔargD、ZY-1ΔphhA-PAH、ZY-1Δorf00874_1与野生株相比,发酵液中铁浓度降低了19%-32%,铝浓度降低了17%-27%;菌株风化钾长石效果显示,突变株ZY-1ΔargD、ZY-1ΔphhA-PAH、ZY-1ΔilvE与野生株相比,发酵液中铁浓度降低了31%-42%,铝浓度降低了17%-28%。 本文主要结论:(1)不同硅酸盐矿物和不同粒径大小的矿物对菌株ZY-1生长代谢、风化矿物及基因表达都有不同的影响;(2)添加黑云母和钾长石改变了菌株ZY-1与矿物风化相关的代谢通路和代谢产物;(3)乙酰鸟氨酸氨基转移酶基因argD和苯丙氨酸4-单加氧酶基因phhA-PAH对菌株ZY-1风化黑云母和钾长石有着重要影响,醛脱氢酶基因orf00874_1和支链氨基酸氨基转移酶基因ilvE分别对菌株ZY-1风化黑云母和钾长石有着重要影响。 |
外文摘要: |
The interaction between silicate minerals and microorganisms plays an important role in mineral weathering, soil formation, element biogeochemistry cycle and long-term atmospheric CO2 fixation. There have been many reports on the weathering effect and mechanism of bacteria on silicate minerals. However, research on the interaction mechanism between different silicate minerals and bacteria is still relatively weak. This study further investigated the interaction mechanism between silicate minerals and mineral weathering bacteria, and the research results are of great significance for a deeper understanding of the interaction mechanism between mineral and microorganisms. This article uses biotite and potassium feldspar as the test minerals, and a highly efficient mineral weathering bacterium Pseudomonas azotoformans ZY-1 as the test strain, which is preserved by our research group. The effects of different silicate minerals and minerals with different particle sizes on the growth metabolism and mineral weathering related gene expression of strain ZY-1 were studied; Based on metabolomics techniques, the effects of biotite and potassium feldspar on the metabolites of strain ZY-1 were analyzed; The gene function related to mineral weathering in strain ZY-1 was verified through RT-qPCR and gene knockout techniques. The main results of this article are as follows: (1) Effects of silicate minerals on the growth metabolism and weathering related genes of strain ZY-1 At 20 hours in BHm culture medium, the number of cells in the fermentation broth with biotite and potassium feldspar added increased by 26%-71% compared to without minerals. The number of cells in the fermentation broth with biotite added increased by 35% compared to that with potassium feldspar added. The pH value of the fermentation broth with and without the addition of potassium feldspar showed no significant difference, while the pH value of the fermentation broth with the addition of biotite was significantly higher than that with the addition of potassium feldspar. After adding biotite and potassium feldspar, the glucose dehydrogenase gene (gcd) of strain ZY-1 was up-regulated 1.53-3.43 times compared to no minerals, and the adhesin gene (adh) was up-regulated 1.29-1.50 times compared to no minerals. After adding biotite, the glucose dehydrogenase gene (gcd) of strain ZY-1 was up-regulated by 2.24 times compared to adding potassium feldspar, and the adhesin gene (adh) was down-regulated by 1.16 times. (2) Mechanism study on the weathering of biotite and potassium feldspar by strain ZY-1 based on metabolomics analysis A total of 799 metabolic substances were identified in the fermentation broth of the strain, mainly including lipids and lipid molecules, organic acids and their derivatives, organic heterocyclic compounds, organic oxides, benzene ring compounds, etc; After adding biotite, the metabolic pathways significantly changed include cofactor biosynthesis, tryptophan metabolism, purine metabolism, glutathione metabolism, etc; After the addition of potassium feldspar, the significantly altered metabolic pathways include arginine biosynthesis, lysine biosynthesis, mutual conversion of pentose and glucuronic acid, and fatty acid biosynthesis; Compared with potassium feldspar group, biotite group has significantly changed metabolic pathways including purine metabolism, tyrosine metabolism, cofactor biosynthesis, phenylalanine metabolism, etc; The first twenty abundances of metabolites are mostly related to glucose metabolites, such as D-glucose, D-gluconic acid, 2-keto-D-gluconic acid, and D-glucoheptose; After adding biotite, some metabolic substances are up-regulated such as N-acetylalanine, phenylalanylproline, γ-glutamylcysteine; After adding potassium feldspar, some metabolic substances are up-regulated such as S-nitrosoglutathione, aspartyl-tryptophan, N-decanoylglycine; Compared with potassium feldspar, after adding biotite, N-acetyl-L-methionine, galactose acid, 5-hydroxyindole acetylglycine and other substances were up-regulated; In the comparison between biotite and potassium feldspar, the common up-regulated metabolites are N-acetyl-L-methionine, galactose acid, D-2-hydroxyglutaric acid, etc; The metabolic substance up-regulated simultaneously in the above three groups of comparisons is 5-hydroxyindole acetylglycine; KEGG metabolic pathway and genome search, a total of 8 up-regulated metabolites related to mineral weathering, 9 metabolic pathways, 14 related enzymes and genes were found in different comparisons. (3) Functional verification of genes related to mineral weathering in metabonomics RT-qPCR analysis showed that the genes of ZY-1 argD (encoding acetylornithine aminotransferase), cysE (encoding L-serine O-acetyltransferase), and ilvE (encoding branched chain amino acid aminotransferase) were up-regulated by 1.30, 2.30, and 2.85 times respectively after biotite addition; After adding potassium feldspar, strains ZY-1 argD, phhA-PAH (encoding phenylalanine 4-monooxygenase), orf00874_1 (encoding aldehyde dehydrogenase) and cysE genes were up-regulated 4.35, 1.44, 1.22, and 1.45 times respectively. In comparison with biotite and potassium feldspar groups, genes ilvE and cysE were up-regulated 4.32 and 1.59 times respectively; Mutant ZY-1ΔargD, ZY-1ΔphhA-PAH, ZY-1Δorf00874_1, ZY-1ΔcysE, ZY-1ΔilvE were structured using homologous recombination technology; The weathered biotite effect of the strain showed that the mutant ZY-1ΔargD, ZY-1ΔphhA-PAH, ZY-1Δorf00874_1 of iron concentration in the fermentation broth decreased by 19%-32%, and the aluminum concentration decreased by 17%-27% compared to wild strains; The weathered potassium feldspar effect of the strain showed that the mutant ZY-1ΔargD, ZY-1ΔphhA-PAH, ZY-1ΔilvE of iron concentration in the fermentation broth decreased by 31%-42%, and the aluminum concentration decreased by 17%-28% compared to wild strains. The main conclusions of this article are as follows: (1) Different silicate minerals and minerals with different particle sizes have different effects on the growth metabolism, weathered minerals, and gene expression of strain ZY-1; (2) The addition of biotite and potassium feldspar altered the metabolic pathways and metabolic substances related to strain ZY-1; (3) The acetylornithine aminotransferase gene argD and phenylalanine 4-monooxygenase gene phhA-PAH have important effects on the weathering biotite and potassium feldspar of strain ZY-1, and the aldehyde dehydrogenase gene orf00874_1 and the branched chain amino acid aminotransferase gene ilvE have significant effects on the weathering biotite and potassium feldspar of strain ZY-1, respectively. |
参考文献: |
Abdulla H. Bioweathering and Biotransformation of Granitic Rock Minerals by Actinomycetes[J]. Microbial Ecology, 2009, 58(4):753-761. Ahmed E, Holmstrom SJM. Siderophores in environmental research: roles and applications[J]. Microbial Biotechnology, 2014, 7(3):196-208. Ahmed E, Holmstrom SJM.. Microbe-mineral interactions: The impact of surface attachment on mineral weathering and element selectivity by microorganisms[J]. Chemical Geology, 2015, 403:13-23. Bhatti TM, Bigham JM. Vuorinen A, et al. Weathering of biotite in Acidithiobacillus ferrooxidans Cultures[J]. Geomicrobiology Journal, 2011, 28(2):130-134. Borovicka J, Kubrova J, Rohovec J, et al. Uranium, thorium and rare earth elements in macrofungi: what are the genuine concentrations?[J]. Biometals, 2011, 24(5):837-845. Branysova T, Demnerova K, Durovic M, et al. Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades[J]. Journal of Cultural Heritage, 2022, 55:245-260. Byloos B, Maan H, Van Houdt R, et al. The ability of basalt to leach nutrients and support growth of Cupriavidus metallidurans CH34 depends on basalt composition and element release[J]. Geomicrobiology Journal, 2018, 35(5):438-446. Chen J, Blume HP, Beyer L. Weathering of rocks induced by lichen colonization-a review[J]. Catena, 2000, 39(2):121-146. Chizhikova NP, Lessovaia SN, Gorbushina AA. Biogenic weathering of mineral substrates (review)[J]. Biogenic-Abiogenic Interactions in Natural and Anthropogenic Systems, 2016:7-14. David SR, Geoffroy VA. A review of asbestos bioweathering by siderophore-producing Pseudomonas: a potential strategy of bioremediation[J]. Microorganisms, 2020, 8(12):1870. Dong HL, Huang LQ, Zhao LD, et al. A critical review of mineral–microbe interaction and co-evolution: mechanisms and applications[J]. National Science Review, 2022, 9(10):nwac128. Ehrlich HL. Geomicrobiology: its significance for geology[J]. Earth-Science Reviews, 1998, 45(1-2):45-60. Fang Q, Lu AH, H HL, et al. Mineral weathering is linked to microbial priming in the critical zone[J]. Nature Communications, 2023, 14(1):345. Federica G, Giuseppina F, Veronica L, et al. An untargeted metabolomic approach to investigate antiviral defence mechanisms in memory leukocytes secreting anti-SARS-CoV-2 IgG in vitro[J]. Sci Rep, 2023, 13(1):629. Fomina M, Skorochod I. Microbial interaction with clay minerals and its environmental and biotechnological implications[J]. Minerals, 2020, 10(10):861. Feng LY, Xu JZ, Zhang WG. Improved l-Leucine Production in Corynebacterium glutamicum by optimizing the aminotransferases[J]. Molecules, 2018, 23(9):2102. Fredrickson JK, Romine MF. Beliaev AS, et al. Towards environmental systems biology of Shewanella[J]. Nature Reviews Microbiology, 2008, 6(8):592-603. Gao ZY, Zhou W, Lv XY, et al. Metabolomics as a critical tool for studying clinical surgery[J]. Critical Reviews In Analytical Chemistry, 2022, https://doi.org/10.1080/10408347.2022.2162810. Geng YY, Pan S, Zhang L, et al. Phosphorus biogeochemistry regulated by carbonates in soil[J]. Environmental Research, 2022, 214(2):113849. Gerrits R, Wirth R, Schreiber A, et al. High-resolution imaging of fungal biofilm-induced olivine weathering[J]. Chemical Geology, 2021, 559:119902. Gutarowska B. The use of -omics tools for assessing biodeterioration of cultural heritage: A review[J]. Journal of Cultural Heritage, 2020, 45:351-361. He LY, Zhang ZD, Zhong XM, et al. Isolation and characterization of Rumex acetosa-Associated mineral-weathering bacteria[J]. Geomicrobiology Journal, 2018, 35(2):148-155. Hill RA, Hunt J, Sanders E, et al. Effect of Biochar on Microbial Growth: A Metabolomics and Bacteriological Investigation in E.coli[J]. Environmental Science & Technology, 2019, 53(5):2635-2646. Hoffland E, Kuyper TW, Wallander H, et al. The role of fungi in weathering[J]. Frontiers in Ecology and the Environment, 2004, 2(5):258-264. Hu R, Li S, Li F, et al. Mineral-microbe interactions: bacterially induced hydration of biotite[J]. Applied Ecology and Environmental Research, 2021,19(3):2037-2047. Huang JH, Huang F, Evans L, et al. Vanadium: global (bio)geochemistry[J]. Chemical Geology, 2015, 417:68-89. Jaaskelainen E, Jakobsen LMA, Hultman J, et al. Metabolomics and bacterial diversity of packaged yellowfin tuna (Thunnus albacares) and salmon (Salmo salar) show fish species-specific spoilage development during chilled storage[J]. International Journal of Food Microbiology, 2019, 293:44-52. Kalu CM, Ogola HJO, Selvarajan R, et al. Correlations between root metabolomics and bacterial community structures in the Phragmites australis under acid mine drainage-polluted wetland ecosystem[J]. Current Microbiol, 2021, 79(1):34. Karlsson A, Einarsson P, Schnurer A, et al. Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester[J]. Journal of Bioscience and Bioengineering, 2012, 114(4):446-452. Kondoh M, Hirasawa T. L-Cysteine production by metabolically engineered Corynebacterium glutamicum[J]. Applied Microbiology and Biotechnology, 2019, 103(6):2609-2619. Lewis D, van der Zwan T. Richards A, et al. The oomycete MAMP, arachidonic acid, and an Ascophyllum nodosum-derived plant biostimulant induce defense metabolome remodeling in tomato [J]. Phytopathology, 2023, https://doi.org/10.1094/PHYTO-10-22-0368-R. Li J, Lu JJ, Lu XC, et al. Sulfur Transformation in microbially mediated pyrite oxidation by Acidithiobacillus ferrooxidans: insights from x-ray photoelectron spectroscopy-based quantitative depth profiling[J]. Geomicrobiology Journal, 2016, 33(2):118-134. Li XF, Yu YG, Li Y, et al. Molecular mechanism of increasing extracellular polysaccharide production of Paenibacillus mucilaginosus K02 by adding mineral powders[J]. International Biodeterioration & Biodegradation, 2022, 167:105304. Liu CY, You XQ, Qiu QC, et al. Study on morphological traits, nutrient compositions and comparative metabolomics of diploid and tetraploid Tartary buckwheat sprouts during sprouting[J]. Food Research International, 2023, 164:112334. Liu LL, Wang W, Wu SH, et al. Recent advances in the siderophore biology of Shewanella[J]. Frontiers in Microbiology, 2022, 13:823758. Liu L, Wu QC. Miao XY, et al. Study on toxicity effects of environmental pollutants based on metabolomics: a review[J]. Chemosphere, 2022, 286(2):131815. Locci E, Noto A, Lanari M, et al. Metabolomics: a new tool for the investigation of metabolic changes induced by cytomegalovirus[J]. The Journal of Maternal-Fetal & Neonatal Medicine, 2013, 26:17-19. Lovley DR, Coates JD, BluntHarris EL, et al. Humic substances as electron acceptors for microbial respiration[J]. Nature, 1996, 382(6590):445-448. Lv Y, Li J, Ye HP, et al. Bioleaching of silicon in electrolytic manganese residue (EMR) by Paenibacillus mucilaginosus: impact of silicate mineral structures[J]. Chemosphere, 2020, 256:127043. Maluckov BS. Biorecovery of nanogold and nanogold compounds from gold-containing ores and industrial wastes[J]. Applied Microbiology and Biotechnology, 2021, 105(9):3471-3484. Manning DAC. Mineral stabilities in soils: how minerals can feed the world and mitigate climate change[J]. Clay Minerals, 2022, 57(1):31-40. Mapelli F, Marasco R, Balloi A, et al. Mineral-microbe interactions: biotechnological potential of bioweathering[J]. Journal of Biotechnology, 2012, 157(4):473-481. Myers CR, Nealson KH. Bacterial manganese reduction and growth with manganese oxide as the sole electron-acceptor[J]. Science, 1988, 240(4857):1319-1321. Napieralski SA, Buss HL, Brantley SL, et al. Microbial chemolithotrophy mediates oxidative weathering of granitic bedrock[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(52):26394-26401. Nehvi IB, Quadir N, Khubaib M, et al. ArgD of Mycobacterium tuberculosis is a functional N-acetylornithine aminotransferase with moonlighting function as an effective immune modulator[J]. International Journal of Medical Microbiology, 2022, 312(1):151544. Payne D, Spietz RL, Boyd ES. Reductive dissolution of pyrite by methanogenic archaea[J]. The ISME Journal, 2021, 15(12):3498-3507. Peng Z, Wang R, Xia XF, et al. Engineered acetaldehyde dehydrogenase for the efficient degradation of acetaldehyde[J]. Journal of Environmental Management, 2023, 331:117258. Pfeffer C, Larsen S. Song J, et al. Filamentous bacteria transport electrons over centimetre distances[J]. Nature, 2012, 491(7423):218-221. Picard L, Paris C, Dhalleine T, et al. The mineral weathering ability of Collimonas pratensis PMB3(1) involves a malleobactin-mediated iron acquisition system[J]. Environmental Microbiology, 2022, 24(2):784-802. Qiu JJ, Wang DQ, Ma YF, et al. Identification and characterization of serine acetyltransferase encoded by the Mycobacterium tuberculosis Rv2335 gene[J]. International Journal of Molecular Medicine, 2013, 31(5):1229-1233. Raddadi N, Cherif A, Olizari H, et al. Bacillus thuringiensis beyond insect biocontrol: plant growth promotion and biosafety of polyvalent strains[J]. Annals of Microbiology, 2007, 57(4):481-494. Reguera G, McCarthy KD. Mehta T, et al. Extracellular electron transfer via microbial nanowires[J]. Nature, 2005, 435(7045):1098-1101. Ribeiro IDA, Volpiano CG. Vargas LK, et al. Use of mineral weathering bacteria to enhance nutrient availability in crops: a review[J]. Frontiers in Plant Science, 2020, 11:590774. Richardson DJ, Butt JN. Clarke TA. Controlling electron transfer at the microbe-mineral interface[J]. Proceedings of the national Academy of Sciences of the United States of America, 2013, 110(19):7537-7538. Rogers JR, Bennett PC. Mineral stimulation of subsurface microorganisms: release of limiting nutrients from silicates[J]. Chemical Geology, 2004, 203(1-2):91-108. Rotaru AE, Shrestha PM, Liu F, et al. Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri[J]. Applied and Environmental Microbiology, 2014, 80(15):4599-4605. Santiago B, Marek M, Faustoferri RC, et al. The Streptococcus mutans aminotransferase encoded by ilvE is regulated by CodY and CcpA[J]. Journal of Bacteriology, 2013, 195(16):3552-3562. Schwartzman DW, Volk T. Biotic enhancement of weathering and the habitability of earth[J]. Nature, 1989, 340(6233):457-460. Shirvani M, Nourbakhsh F. Desferrioxamine-B adsorption to and iron dissolution from palygorskite and sepiolite[J]. Applied Clay Science, 2010, 48(3):393-397. Smits MM, Herrmann AM, Duane M, et al. The fungal-mineral interface: challenges and considerations of micro-analytical developments[J]. Fungal Biology Reviews, 2009, 23(4):122-131. Sokolova TA. The role of soil biota in the weathering of minerals: a review of literature[J]. Eurasian Soil Science, 2011, 44(1):56-72. Spietz RL., Payne Devon, Szilagyi R, et al. Reductive biomining of pyrite by methanogens[J]. Trends in Microbiology, 2022, 30(11):1072-1083. Štyriaková I, Štyriak I, Oberhänsli H. Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: a laboratory experiment[J]. Mineralogy and Petrology, 2012, 105(3-4):135-144. Sun Q, Fu Z, Finlay R, et al. Transcriptome Analysis provides novel insights into the capacity of the ectomycorrhizal fungus Amanita pantherina to weather k-containing feldspar and apatite[J]. Applied and Environmental Microbiology, 2019, 85(15): e00719-19. Sun Y, Wang YL, Li L, et al. Distinct biotite-weathering activities of Arthrobacter pascens F74 under different contact conditions[J]. Journal of Basic Microbiology, 2020, 60(4):362-371. Tolli J, King GM. Diversity and structure of bacterial chemolithotrophic communities in pine forest and agroecosystem soils[J]. Applied and Environmental Microbiology, 2005, 71(12):8411-8418. Tuohy KM, Gougoulias C, Shen Q, et al. Studying the human gut microbiota in the trans-omics era - focus on metagenomics and metabonomics[J]. Current Pharmaceutical Design, 2009, 15(13):1415-1427. Upendra B, Ciba M, Aiswarya A, et al. Mechanisms controlling the dissolved load, chemical weathering and CO2 consumption rates of Cauvery River, South India: role of secondary soil minerals[J]. Environmental Earth Sciences, 2022, 81(3):103. Uroz S, Calvaruso C, Turpault MP, et al. Mineral weathering by bacteria: ecology, actors and mechanisms[J]. Trends in Microbiology, 2009, 17(8):378-387. Uroz S, Kelly LC, Turpault MP, et al. The mineralosphere concept: mineralogical control of the distribution and function of mineral-associatec bacterial communities[J]. Trends in Microbiology, 2015, 23(12):751-762. Uroz S, Picard L, Turpault MP, et al. Dual transcriptomics and proteomics analyses of the early stage of interaction between Caballeronia mineralivorans PML1(12) and mineral.[J]. Environmental Microbiology, 2020,22(9):3838-3862. Uroz S, Picard L, Turpault MP. Recent progress in understanding the ecology and molecular genetics of soil mineral weathering bacteria[J]. Trends in Microbiology, 2022, 30(9):882-897. Valentino G, Graziani V, D'Abrosca B, et al. NMR-based plant metabolomics in nutraceutical research: an overview[J]. Molecules, 2020, 25(6):1444. Wang WY, Sun QB, Lian B. redox of fungal multicopper oxidase: a potential driving factor for the silicate mineral weathering[J]. Geomicrobiology Journal, 2018, 35(10):879-886. Wang WY, Sun JJ, Dong CL, et al. Biotite weathering by Aspergillus niger and its potential utilisation[J]. Journal of Soils and Sediments, 2016, 16(7):1901-1910. Wang WY, Lian Bin, Pan Ling. An RNA-Sequencing study of the genes and metabolic pathways involved in Aspergillus niger weathering of potassium feldspar[J]. Geomicrobiology Journal, 2015, 32(8):689-700. Wang YL, Dong W, Xiang KX, et al. A combination of genomics, transcriptomics, and genetics provides insights into the mineral weathering phenotype of Pseudomonas azotoformans ZY-1[J]. Applied and Environmental Microbiology, 2021, 87(24): e01552-21. Wang YL, Li L, Sun Y, et al. Impact of the fliF gene on biotite weathering of Rhizobium pusense S41[J]. Geomicrobiology journal, 2020, 37(4):308-314. Wang YL, Sun LJ, Xian CM, et al. Interactions between biotite and the mineral-weathering bacterium Pseudomonas azotoformans ZY-1[J]. Applied and Environmental Microbiology, 2020, 86(7):e02568-19. Wild B, Gerrits R. Bonneville S. The contribution of living organisms to rock weathering in the critical zone[J]. npj Materials Degradation, 2022, 6(1):98. Xi J, Qian KQ, Shan LD, et al. The potential of mineral weathering of halophilic-endophytic bacteria isolated from Suaeda salsa and Spartina anglica[J]. Archives of microbiology, 2022, 204(9):561. Xu JN, Guo Li, Zhao N, et al. Response mechanisms to acid stress of acid-resistant bacteria and biotechnological applications in the food industry[J]. Critical reviews in biotechnology, 2023, 43(2):258-274. Yi Q, Wu SL, Southam G, et al. Acidophilic iron- and sulfur-oxidizing bacteria, Acidithiobacillus ferrooxidans, drives alkaline pH neutralization and mineral weathering in fe ore tailings[J]. Environmental Science & Technology, 2021, 55(12):8020-8034. Yu GH, Chi ZL. Teng HH, et al. Fungus-initiated catalytic reactions at hyphal-mineral interfaces drive iron redox cycling and biomineralization[J]. Geochimica et Cosmochimica Acta, 2019, 260:192-203. Zhang CY, Cooper TE, Krause DJ, et al. Augmenting the genetic toolbox for Sulfolobus islandicus with a stringent positive selectable marker for agmatine prototrophy[J]. Applied and Environmental Microbiology, 2013, 79(18):5539-5549. Zhang KD, Lu MY, Qiu YX, et al. Transcriptomic and proteomic analysis of Gardnerella vaginalis responding to acidic pH and hydrogen peroxide stress[J]. Microorganisms, 2023, 11(3):695. Zhu YG, Duan GL, Chen BD, et al. Mineral weathering and element cycling in soil-microorganism-plant system[J]. Science China Earth Sciences, 2014, 57(5):888-896. 程良娟, 李福春, 李莎. 硅酸盐细菌在矿物表面上的吸附及其选择性——以正长石和黑云母为例[J]. 高校地质学报, 2007(04):669-674. 丁嘉. 硅酸盐风化菌对可液化土的改性研究[D]. 南京林业大学, 2021. 董翠玲, 连宾. 细菌与真菌对黑云母的风化作用比较:以胶质芽孢杆菌和黑曲霉为例[J]. 矿物岩石地球化学通报, 2014, 33(06):772-777. 李福春, 程良娟, 李莎, 等. 伯克霍尔德菌作用下黑云母的风化作用——对次生矿物的初步研究[J]. 矿物岩石地球化学通报, 2011, 30(03):292-298. 李名悦, 林向成, 赵萌萌. 核磁共振光谱和质谱在代谢组学中的优势和劣势[J]. 桂林电子科技大学学报, 2022, 42(04):311-317. 李术艺, 冯旗, 董依然. 地质封存二氧化碳与深地微生物相互作用研究进展[J]. 微生物学报, 2021, 61(06):1632-1649. 连宾, 肖波, 肖雷雷,等. 含钾岩石微生物转化的分子机制及其碳汇效应[J]. 地学前缘, 2020,27(05):238-246. 梁艳华, 包麒钰, 孙德四, 等. 典型硅酸盐细菌和真菌对钾长石动态溶蚀效果对比研究[J]. 中国有色金属学报, 2022, 32(05):1469-1478. 刘凡. 地质与地貌学[M]. 中国农业出版社, 2018. 孙海, 张淋淋, 金桥, 等. 基于非靶向代谢组学分析假单胞菌P1解磷作用[J]. 西北农业学报, 2019, 28(09):1452-1459. 孙晶晶, 余诚峰, 付紫玉, 等. 过表达Na, K-ATPase基因增强了黑曲霉对硅灰石的风化能力[J]. 微生物学报, 2019, 59(06):1164-1173. 谭文峰, 刘永红, 李学垣, 等. 原子力显微镜研究Pb~(2+)在黑云母表面吸附的形貌[J]. 土壤学报, 2004(06):976-977. 王远丽. 高效矿物风化细菌Pseudomonas azotoformans ZY-1风化黑云母分子机制研究[D]. 南京农业大学, 2020. 吴涛, 陈骏, 连宾. 微生物对硅酸盐矿物风化作用研究进展[J]. 矿物岩石地球化学通报, 2007(03):263-268. 谢庆东, 何琳燕, 王琪, 等. 一株高效溶解钾长石芽孢杆菌的分离鉴定与生物学特性研究[J]. 土壤, 2017, 49(02):302-307. 印万忠, 孙传尧. 硅酸盐矿物表面特性的X射线光电子能谱分析[J]. 东北大学学报, 2002(02):156-159. 赵飞, 黄智, 何琳燕, 等. 不同风化程度钾长石表面矿物分解细菌的筛选及遗传多样性[J]. 微生物学报, 2010, 50(05):647-653. 周吉奎, 钮因健, 邱冠周, 等. 茚三酮比色法测定矿物表面吸附浸矿细菌蛋白质含量[J]. 中南工业大学学报(自然科学版), 2003(02):128-131. |
中图分类号: | Q93 |
开放日期: | 2023-06-16 |