- 无标题文档
查看论文信息

中文题名:

 粉唑醇生产废水处理及资源化利用研究——以江苏某农化股份有限公司为例     

姓名:

 陈洁    

学号:

 20145103001    

保密级别:

 秘密    

论文语种:

 chi    

学科代码:

 085700    

学科名称:

 工学 - 资源与环境    

学生类型:

 硕士    

学位:

 工程硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 环境工程(专业学位)    

研究方向:

 废水处理    

第一导师姓名:

 赵言文    

第一导师单位:

 南京农业大学    

完成日期:

 2017-12-20    

答辩日期:

 2021-08-20    

外文题名:

 Research On The Teratment And Rosource Utilization Of The Wastewater From Flutriafol Production——JiangSu Agricultural Chemical Company As Example    

中文关键词:

 粉唑醇废 ; 清洁生产 ; 树脂吸附 ; 上流式厌氧污泥床 ; 接触氧化    

外文关键词:

 Flutriafol wastewater ; Clean production ; dynamic adsorption ; Upflow anaerobic sludge bed ; Contact oxidation    

中文摘要:

目前,杀菌剂是全球使用量第二的农药,而三唑类杀菌剂因其高效、稳定的杀菌活性,在农药市场占有极其重要的地位。粉唑醇是一种新型广谱性三唑类内吸杀菌剂,但其生产废水具有有机物及硫酸盐浓度高、碱性强、含有不可生物降解或对微生物有抑制作用的物质等特点,治理难度大,因此开发先进的原药生产清洁工艺和有效的废水处理技术,已成为粉唑醇制造企业亟须解决的重要课题。

本研究以环氧化反应、缩合反应过程中产生的废水为研究对象,进行了粉唑醇清洁生产工艺研究。一方面,对粉唑醇的生产工艺进行优化,针对性地提出了洗涤废水逆向套用方案,在保证中间体和产品质量稳定、合格的同时,废水总水量能够减少50%。另一方面,采用“甲硫醚萃取回收环氧化物—蒸馏回收甲硫醚—树脂吸附除环氧化物、二氟苯酮—中和—蒸馏回收甲醇、硫酸钾”工艺,对环氧化合成废水进行资源化回收。1吨环氧化合成废水可回收硫酸钾770kg、甲醇143kg、甲硫醚43.5kg以及中间体环氧化物2kg。

实验确定了环氧化合成废水萃取回收环氧化物的工艺条件。首先对动态参数进行了优化:萃取剂使用甲硫醚,相比1:1,温度25℃(常温)。之后通过静态吸附实验,比较TC99、TC150、XAD-4 三种树脂对环氧化物、二氟苯酮的吸附性能, TC150表现最优;在控制动态吸附流速2 BV/h,处理水量15 BV内,环氧化物、二氟苯酮的去除率均高于99%;采用甲醇作脱附剂,控制流速1 BV/h,环氧化物、二氟苯酮的脱除率均为99%,经常压蒸馏回收的硫酸钾,能够达到GB/T20406-2017农业用硫酸钾标准。

实验确定了混合废水的处理工艺,并对工艺的各项参数进行优化,优化后的参数分分别为:铁炭微电解pH为2~4、停留时间3 h、铁炭比为2、膨胀率12%;Fenton氧化的pH为3、停留时间1~1.5 h、30%双氧水与废水的体积比为1:10;UASB水力停留时间为5 d , 容积负荷2.86 kgCOD/(m3·D) ;接触氧化的水力停留时间1.5 d,容积负荷1.96 kgCOD/( m3·D)。实验结果表明“铁炭微电解—Fenton氧化—混凝沉淀”预处理对COD的去除率为82%,“UASB—接触氧化”生化处理对COD的去除率高达95%,可实现企业废水的达标排放。

 

外文摘要:

Fungicides are currently the second most used pesticide in the world, and triazole fungicides play an important role in the pesticide market for their high efficiency and stable bactericidal activity. Flutriafol is a new broad-spectrum triazole systemic bactericide. The production wastewater of flutriafol is strongly alkaline, has high concentration of organic matter and sulfate, and contains substances which are non-biodegradable or have an inhibitory effect on microorganisms. These features greatly increase the difficulty of the wastewater treatment. So the development of cleaner production processes of raw flutriafol and more efficient wastewater treatment technologies has become a major issue for flutriafol manufacturing enterprises.

In this study, the main components and concentration in wastewater produced by the epoxidation reaction and condensation reaction were measured. The production process of flutriafol was then optimized, reducing the water consumption and the amount of wastewater while recycling the source. On the one hand, the reverse application of washing wastewater was proposed for the production process of flutriafol. The collected epoxidized washing wastewater was applied to the first washing of the next batch of epoxidized materials. Similarly, the collected condensed washing wastewater was applied to the first washing of the next batch of condensed materials. Through this method, the quality of intermediates and products are stable and qualified, and the total amount of wastewater could be reduced by 50%. On the other hand, “Extraction and recovery of epoxides using methyl sulfide—Distillation to recovery of methyl sulfide—Adsorption of epoxides and difluorophenone with resin—Neutralization—Distillation to recover methanol and potassium sulfate” process was adopted for the recycling of epoxidized synthetic wastewater. A total of 770 kg potassium sulfate, 143 kg methanol, 43.5 kg methyl sulfide and 2 kg intermediate epoxides can be recovered from one ton of epoxidized wastewater.

Experiments were performed to determine the process conditions for the extraction of epoxides from epoxidized wastewater and the adsorption of epoxides and difluorophenone with resin. Methyl sulfide was used as extractant, temperature was set as 25℃, phase ratio was 1:1. The adsorption performance of TC99, TC150, XAD-4 was compared through the static adsorption experiments, TC150 performed best and was chosen for the following study. When the dynamic adsorption flow rate was 2BV/h and the treated water volume was less than 15BV, the removal rate of epoxide and difluorophenone was over 99%. When methanol was used as the desorbent and the flow rate was below 1BV/h, the removal rate of epoxide and difluorophenone reached 99%. The potassium sulfate recovered through atmospheric distillation could meet the standard for agricultural potassium sulfate in GB/T20406-2017.

The experiment determined the mixed wastewater treatment process of the sewage treatment station of the wastewater treatment station in the raw pesticide production enterprises, and optimized the parameters of the wastewater treatment process. The PH for iron carbon micro-electrolysis is 2~4, the residence time is 3h, the ratio of iron to carbon is 2, the expansion rate is 12%. The PH for Fenton oxidation is 3, the residence time is 1~1.5h, the volume ratio of 30% hydrogen peroxide to wastewater is 1:10. The hydraulic retention time of UASB is 5 days, the volume load is 2.86kg COD/(m3.D). The hydraulic retention time of contact oxidation is 1.5 days, the volume load is 1.96kg COD/(m3.D). “Iron carbon micro-electrolysis—Fenton oxidation—Coagulation precipitation” pretreatment could remove 82% of COD, and “UASB—Contact oxidation process” biochemical treatment could remove 95% of COD, which can make the industry wastewater meet the strict discharge standards.

参考文献:

[1] 杨益军.2019年全球农药市场状况与主要特点分析[J].农药科学与管理,2019,40(8):13-19.

[2] 周宗远,谢明明,马信,邱童,夏晨娇,张炜铭.农药原料药生产废水处理工程实例[J].化工环保,2021,41(04):529-535.

[3] 蒋旭华,朱乐辉.某微生物杀菌剂生产废水处理实例[J].水处理技术,2014,40(2):123-124.

[4] 张耀辉,李军,周军,白永刚,涂勇.厌氧消化—A/O—臭氧催化氧化—BAF工艺处理农药废水生化出水的中试研究[J].化工环保,2020,40(02):137-141.

[5] 刘睿谦,李天伊,刘思琪,王连军,孙秀云,李健生,沈锦优.微电解、Fenton氧化和生化组合工艺处理杀菌剂生产工艺废水[J].现代农药,2018,17(3):22-26.

[6] 吴孝举,孔勇,王宝林,谢邦伟,徐海鹏,汪国庆.仿生杀虫剂联苯菊酯清洁生产关键技术及产业化应用[J].世界农药,2020,42(02):38-39+44.

[7] 陈国斌,冯应江,梁俊芳,温沛宏,孙久社.戊唑醇清洁生产关键技术的研究与产业化[J].化工管理,2015,(20):49.

[8] Tales Souza Silva,Luciano Ferreira da Fonseca,Jaqueline Kiyomi Yamada,Nadson de Carvalho Pontes. Flutriafol and azoxystrobin: An efficient combination to control fungal leaf diseases in corn crops[J]. Crop Protection,2021,140:

[9] 严海昌,王文.三氮唑类杀菌剂——粉唑醇的合成[J].浙江化工,2003,34(10):7-8.

[10] 朱振亚,李超,何永利,胡春红,邵培吉.一种粉唑醇的连续化制备方法[P].CN109336830A,2018-11-01.

[11] 张立江.顶空色谱法测定硫醇、硫醚类物质的研究[D]:[硕士学位论文].北京:华北电力大学,2005.

[12] 周春何,潘伊,朱艳虹,田小翠.水中N,N-二甲基甲酰胺气相色谱测定方法的改进[J].环境与可持续发展,2017,(2):108-109.

[13] A.M. Li, C. Long, Y. Sun, Q.X. Zhang, F.Q. Liu, J.L. Chen, A New Phenolic Hydroxyl Modified Polymeric Adsorbent for the Removal of Phenolic Compounds from Their Aqueous Solutions, Sep. Sci. Technol., 37/14, (2002) 3211.

[14] 刘素清,修绍迪,王玉路,张斐斐,靳丽强.明胶/聚乙烯胺凝胶珠的制备及其对Cr(Ⅵ)/Cu(Ⅱ)的吸附性能[J].皮革科学与工程,2021,31(04):22-26+34.

[15] Shi Huanyu,Dong Zhibao,Xiao Nan,Huang Qinni. Applicability of the Langmuir equation to simulate the vertical mass flux profile[J]. Arabian Journal of Geosciences,2021,14(16):

[16] 唐明云,张海路,段三壮,姚冠霖,郑春山,张亮伟.基于Langmuir模型温度对煤吸附解吸甲烷影响研究[J].煤炭科学技术,2021,49(05):182-189.

[17] Felipe de O. Apoliná,rio,Adolfo P. Pires. Oil displacement by multicomponent slug injection: An analytical solution for Langmuir adsorption isotherm[J]. Journal of Petroleum Science and Engineering,2020:

[18] Sandberg Thomas,Weinberger Christian,?en Karaman Didem,Rosenholm Jessica M. Modeling of a Hybrid Langmuir Adsorption Isotherm for Describing Interactions Between Drug Molecules and Silica Surfaces.[J]. Journal of pharmaceutical sciences,2018,107(5):

[19] 姚晨曦,杨春信,周成龙.Langmuir吸附等温式推导浅析[J].化学与生物工程,2018,35(01):31-35.

[20] Saba A. Obaid,Obaid Saba A.. Langmuir, Freundlich and Tamkin Adsorption Isotherms and Kinetics For The Removal Aartichoke Tournefortii Straw From Agricultural Waste[J]. Journal of Physics: Conference Series,2020,1664(1):

[21] 陈祝海.基于Freundlich吸附等温方程测定氰化提金工艺用活性炭的吸附金容量[J].冶金分析,2020,40(02):29-35.

[22] 史济斌,刘国杰.评Freundlich吸附等温式的推导[J].大学化学,2015,30(03):76-79.

[23] Rohollah Ezzati. Derivation of Pseudo-First-Order, Pseudo-Second-Order and Modified Pseudo-First-Order rate equations from Langmuir and Freundlich isotherms for adsorption[J]. Chemical Engineering Journal,2020,392:

[24] Tamer A. Elbana,H. Magdi Selim,Nazanin Akrami,April Newman,Sabry M. Shaheen,J?rg Rinklebe. Freundlich sorption parameters for cadmium, copper, nickel, lead, and zinc for different soils: Influence of kinetics[J]. Geoderma,2018,324:

[25] J. J. T. I. Boesten. Effects of Random and Systematic Errors on Freundlich Parameters for Pesticide Sorption[J]. Soil Science Society of America Journal,2015,79(5):

[26] 米鹏,温建利,王建文,王维涛.Fe/C微电解-Fenton氧化法预处理餐厨垃圾液的研究[J].山东化工,2020,49(22):263-264.

[27] 殷洪晶,崔康平.微电解/芬顿/蒸发/AO工艺处理丙硫菌唑农药废水[J].中国给水排水,2021,37(06):112-116.

[28] 秦芳玲,雷富强,詹顺,孟令鹏,平双荣.铁碳微电解-Fenton预处理煤化工厂固体废弃物渗滤液研究[J].西安石油大学学报(自然科学版),2020,35(06):86-91.

[29] 马宁,周稳,鲁腾飞.铁碳微电解联用Fenton氧化法预处理煤化工废水研究[J].西安航空学院学报,2020,38(03):34-40.

[30] 邓觅,梁培瑜,涂文清,刘煜,刘丽贞,万金保,王建永,吴永明.微电解-芬顿-ABR-两级好氧-混凝处理有机硅生产废水[J].给水排水,2020,56(01):67-72.

[31] Li Xiang,Jia Yan,Qin Yang,Zhou Minghua,Sun Jianhui. Iron-carbon microelectrolysis for wastewater remediation: Preparation, performance and interaction mechanisms[J]. Chemosphere,2021,278:

[32] 赵仲婧,郝庆菊,张尧钰,熊维霞,曾唯,陈俊江,江长胜.铁碳微电解及沸石组合人工湿地的废水处理效果[J].环境科学,2021,42(06):2875-2884.

[33] 吴秋萍,邢明敏,谢文杰.铁碳微电解法处理含吡啶废水工艺研究[J].广东化工,2020,47(11):167-169.

[34] 刘华锋,魏利军,刘金刚,刘银亚.芬顿氧化+生化工艺处理精细化工废水工程实例[J].环境与发展,2020,32(12):60-61.

[35] 吴伟,刘伟京,涂勇,韩卫清,张耀辉. 微电解+Fenton氧化+二级A/O组合工艺处理农药杀菌剂废水[J]. 环境工程,2012,30(4):10-12,42.

[36] de Freitas Melo Déborah,Neves Priscila Natalie,Bressani Ribeiro Thiago,de Lemos Chernicharo Carlos Augusto,Passos Fabiana. The effect of seasonality in biogas production in full-scale UASB reactors treating sewage in long-term assessment[J]. International Journal of Sustainable Energy,2021,40(3):

[37] Song Qi,Chen Xiaoguang,Tang Lijuan,Zhou Weizhu. Treatment of polyvinyl alcohol containing wastewater in two stage spiral symmetrical stream anaerobic bioreactors coupled a sequencing batch reactor.[J]. Bioresource technology,2021,340:

[38] 陶冉,贾学斌,马玉新,何国鹏.厌氧膜生物反应器处理有机废水研究进展[J].水利水电技术,2020,51(10):130-140.

[39] 冯章标,邱廷省,陈江安,邱仙辉.混凝法在选矿废水处理中的应用现状及发展[J].有色金属科学与工程,2016,7(05):86-92.

[40]薛诚.污水处理厂二级出水中混凝沉淀工艺的应用[J].中国资源综合利用,2017,35(03):18-19.

[41] 吴伟,刘伟京,涂勇,韩卫清,张耀辉.微电解+Fenton氧化+二级A/O组合工艺处理农药杀菌剂废水[J].环境工程,2012,30(04):10-12+42.

中图分类号:

 X7    

开放日期:

 2024-01-11    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式