中文题名: | 不同植物生长延缓剂对热带睡莲小型化的效果及水培营养液氮磷钾配比的研究 |
姓名: | |
学号: | 2022804177 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095131 |
学科名称: | 农学 - 农业 - 农艺与种业 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 花卉生产原理与良种繁育 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2024-04-01 |
答辩日期: | 2024-05-26 |
外文题名: | Effectiveness of Different Plant Growth Retardants on Miniaturization of Tropical Water Lilies and Study on The Ratio of Nitrogen, Phosphorus and Potassium in Hydroponic Nutrient Solution |
中文关键词: | |
外文关键词: | Tropical Water Lily ; Miniaturization ; Plant growth retardant ; Hydroponic ; NPK |
中文摘要: |
睡莲为睡莲科(Nymphaeaceae)睡莲属(Nymphaea)植物的统称,属于多年生浮叶型水生草本花卉。热带睡莲是一类原产于热带地区的睡莲,其花色丰富、花姿优雅,可常年开花,具有很高的观赏价值和经济价值。但大多数热带睡莲品种株型较大,冠幅延展性强,适宜种植在大田、池塘等大面积水域。在盆栽条件下,需要种植在大规格容器内,大大限制了其在家庭园艺的推广应用。因此,亟待解决热带睡莲在小容器内栽培的小型化技术。已知植物生长延缓剂可使植株矮化,全株小型化,可能是睡莲实现小型化的主要技术手段。除此之外,目前睡莲的盆栽以土壤栽培为主,容易污染家庭环境且因容器较重不方便挪动,而水培是解决这一问题的途径,但目前缺乏热带睡莲专用的营养液配方。对此,为解决热带睡莲小型化和水培两大技术问题。本研究以3种热带睡莲‘多贝’、‘伊斯兰达’、‘黑美人’作为小型化试验材料,探究了2种植物生长延缓剂(矮壮素(CCC)和多效唑(PP333))对热带睡莲生长发育及生理生化特性的影响,筛选出适宜的植物生长延缓剂种类、施用浓度及处理方法;另外,选用‘黑美人’进行水培试验,调整基础配方的氮磷钾比例,筛选出热带睡莲专用的水培营养液氮磷钾配方,为热带睡莲的小型化和水培提供技术支持。主要研究结果如下: (1)植物生长延缓剂对热带睡莲生长开花的影响 设置20 mg·L-1、50 mg·L-1、80 mg·L-1的CCC和10 mg·L-1、20 mg·L-1、30 mg·L-1的PP333两种植物生长延缓剂各3个处理浓度,分别间隔6 d、9 d进行处理。在处理后,对生长状态进行四次数据记录,记录指标包括:冠幅、叶片长、叶片宽、叶面积、叶厚、花朵直径、花朵数量、花叶比、整株最大长度、生物量等。结果表明:3种试验材料的对照组(ACK、BCK、CCK)一直维持着较强生长趋势,显著区别于各处理组下的营养指标。在延缓剂的作用下,Day 7-Day 14属于试验材料的营养生长阶段各指标参数有一定的涨幅,但在Day 21时生长趋势降低并在吸收利用充分后的Day 51各试验材料的生长得到了明显的控制并保持着稳定状态。总体上,3种热带睡莲的生长与对照组相比冠幅降低、叶面积缩小、叶片变厚等。花、叶数量以未经过处理的对照组(ACK、BCK、CCK)占一定的优势,但整体上对照组与各处理组的花叶比无显著性差异,说明延缓剂虽影响了花叶的数量但整体上不影响观赏价值。两种植物生长延缓剂处理下的表型效果:PP333>CCC,施用间隔天数上:6 d>9 d。各处理组总体处理效果表现为:L-B3-6>L-B3-9>L-B2-6>L-B2-9>L-B1-6>L-B1-9>L-A3-6>L-A3-9>L-A2-6>L-A2-9>L-A1-6>>L-A1-9>CK。其中:L-B3-6(多效唑30 mg·L-1,施用间隔6 d)处理下,小型化效果最佳。 (2)热带睡莲对植物生长延缓剂的生理响应 在表型观测结束后,对3种试验材料进行一次叶片采样测定生理指标。植物生长延缓剂处理下3种试验材料的生理指标如叶绿素、可溶性蛋白、总糖、MDA、激素含量及SOD、POD、CAT活性都发生了变化。3种试验材料的叶绿素、可溶性蛋白、总糖含量及抗氧化酶(SOD、POD、CAT)活性均以L-B3-6显著高于对照(ACK、BCK、CCK)及各处理组,而MDA含量降低。L-B3-6的IAA、GA3、ZR含量最低,ABA含量最高。各处理组IAA、GA3、ZR激素含量随着浓度升高而降低,ABA随着浓度升高而增加。 (3)植物生长延缓剂对热带睡莲小型化效果综合评价 采用隶属函数法分别将3种试验材料测定的表型、生理共计26项指标数据进行标准化处理,最后利用主成分分析法进行综合排名。植物生长延缓剂处理下生长开花效果最佳处理组‘多贝’:L-B3-6、L-B2-6、L-A3-6,‘伊斯兰达’:L-B3-6、L-B3-9、L-B1-6,‘黑美人’:L-B3-6、L-B2-6、L-B3-9。综合得出3种热带睡莲共同的最佳处理组:L-B3-6,可作为热带睡莲小型化处理的参考技术。植物生长延缓剂对3种热带睡莲效果排序:‘伊斯兰达’>‘多贝’>‘黑美人’,推荐使用外口径300 mm-350 mm的盆进行种植。 (4)水培条件下氮、磷、钾配比对热带睡莲生长及生理生化特性的影响 以改良版霍格兰营养液为基础配方,通过L 9(34)正交试验,组合出9种不同氮磷钾配比的营养液配方对热带睡莲‘黑美人’进行水培处理。对筛选出生长发育良好的四组营养液配方:1 N1 P1 K、0.5 N0.5 P1.5 K、0.5 N1.5 P1 K、1.5 N0.5 P1 K及清水(CK)处理组,进行生理指标、表型指标的测定。最终利用模糊隶属函数法对各配方所测得的指标参数,进行综合评价、排名。排名顺序:1.5 N 0.5 P1 K>0.5 N1.5 P1 K>1 N1 P1 K>0.5 N0.5 P1.5 K。其中1.5 N0.5 P1 K营养液配方的综合排名最佳,可作为热带睡莲的专用营养液配方进行推广。 |
外文摘要: |
Water lily for the Nymphaeaceae Nymphaea plants, belonging to the perennial floating leaf aquatic herbaceous flowers. Tropical water lily is a class of water lilies native to the tropics, its flowers are rich in color, elegant flowers, can bloom year-round, has a high ornamental value and economic value. However, most tropical water lily varieties are large, crown extension, suitable for planting in large fields, ponds and other large areas of water. Under potting conditions, they need to be planted in large-size containers, which greatly limits their popular use in home gardening. Therefore, there is an urgent need to address miniaturization techniques for the cultivation of tropical water lilies in small containers. Plant growth retardants are known to dwarf the plant and miniaturize the whole plant, and may be the main technical means by which water lilies can be miniaturized. In addition, the current water lily potted plants to soil cultivation, easy to pollute the home environment and because of the container is heavy and inconvenient to move, and hydroponics is the way to solve this problem, but there is a lack of special nutrient solution formulations for tropical water lilies. In this regard, in order to solve the two major technical problems of miniaturization and hydroponics of tropical water lilies. In this study, three species of tropical water lilies, 'Daubenyana', 'Islamorada' and 'Black Beauty', were used as miniaturized test materials to investigate the effects of two plant growth retardants (Chlormequat chloride (CCC) and Paclobutrazol (PP333)) on the growth, development and physiological and biochemical characteristics of tropical water lilies,screening for suitable plant growth retardant types, application concentrations and treatments; In addition, 'Black Beauty' was selected for the hydroponic test to adjust the ratio of nitrogen, phosphorus and potassium of the basic formula, and screened out the nitrogen, phosphorus and potassium formula of the hydroponic nutrient solution specialized for tropical water lilies, Technical support for miniaturization and hydroponics of tropical water lilies. The main research results are as follows: (1) Effect of plant growth retardants on the growth and flowering of tropical water lilies Three treatment concentrations of each of the two-plant growth retardant CCC at 20 mg·L-1, 50 mg·L-1, 80 mg·L-1 and PP333 at 10 mg·L-1, 20 mg·L-1, 30 mg·L-1, were set up and treated at intervals of 6 d and 9 d, respectively. After the treatments, data were recorded four times on the growth status for the following metrics: crown breadth, leaf length, leaf width, leaf area, leaf thickness, flower diameter, number of flowers, Flower to leaf ratio, maximum length of the whole plant, and biomass, etc. The results showed that the control group of the three test materials (ACK, BCK, CCK) consistently maintained a strong growth trend, significantly different from the nutrient indexes under each treatment group. Under the action of retardant, Day 7-Day 14 belongs to the nutrient growth stage of the test material of each index parameter has a certain increase, but in Day 21 the growth trend is reduced and, in the absorption and utilization of the full Day 51 the growth of the test material has been significantly controlled and maintained a stable state. Overall, the growth of the three tropical water lilies was characterized by smaller crown size, reduced leaf area, thicker leaves, compared to the control. The number of flowers and leaves was somewhat dominated by the untreated control group, but overall there was no significant difference in the flower-to-leaf ratio between the control group and the treatment groups, indicating that the retardant affected the number of flowers and leaves but overall did not affect the ornamental value. Phenotypic effects under the two-plant growth retardant treatments: PP333 > CCC, and on days between applications: 6 d > 9 d. The overall treatment effect for each treatment group was shown to be: L-B3-6>L-B3-9>L-B2-6>L-B2-9>L-B1-6>L-B1-9>L-A3-6>L-A3-9>L-A2-6>L-A2-9>L-A1-6>L-A1-9>CK. Among them: the best miniaturization was achieved under L-B3-6 (Paclobutrazol 30 mg·L-1, application interval 6 d) treatment. (2) Physiological response of tropical water lilies to plant growth retardants At the end of the phenotypic observation, the three experimental materials were sampled once for leaf sampling to determine the physiological indexes. Physiological indexes such as chlorophyll, soluble protein, total sugar, MDA, hormone content and SOD, POD and CAT activities were changed in the three experimental materials under the treatment of plant growth retardant. Chlorophyll, soluble protein, total sugar content and antioxidant enzymes (SOD, POD, CAT) activities of the three test materials were significantly higher in L-B3-6 than in the control (ACK, BCK, CCK) and the treatment groups, while MDA content was reduced. L-B3-6 had the lowest IAA, GA3, and ZR content and the highest ABA content. IAA, GA3, and ZR hormone contents decreased with increasing concentration in each treatment group, and ABA increased with increasing concentration. (3) Comprehensive evaluation of the effects of plant growth retardants on the miniaturization of tropical water lilies Phenotypic and physiological data of a total of 26 indexes measured for the three experimental materials were standardized using the method of affiliation function, respectively, and finally ranked comprehensively using principal component analysis. The best treatment group for growth and flowering under plant growth retardant treatment for 'Daubenyana':L-B3-6, L-B2-6, L-A3-6, 'Islamorada': L-B3-6, L-B3-9, L-B1-6, 'Black Beauty': L-B3-6, L-B2 -6, L-B3-9. Synthesis resulted in the best treatment group common to all three tropical waterlilies: L-B3-6, It can be used as a reference technology for the miniaturization treatment of tropical water lilies. Three kinds of tropical water lily treatment effect: 'Islamorada'>'Daubenyana'>'Black Beauty', a 300 mm-350 mm outer caliber pot is recommended for planting. (4) Effects of nitrogen, phosphorus and potassium ratios on the growth and physiological and biochemical characteristics of tropical water lilies under hydroponic conditions Nine nutrient solution formulations with different ratios of nitrogen, phosphorus and potassium were combined to treat tropical water lily 'Black Beauty' hydroponically by using the modified version of Hoagland's nutrient solution as the basic formula in the L 9 (34) orthogonal test. Physiological and phenotypic indexes were determined for the four groups of nutrient solution formulations screened for good growth and development: 1 N1 P1 K, 0.5 N0.5 P1.5 K, 0.5 N1.5 P1 K, 1.5 N0.5 P1 K and clear water (CK) treatment groups. Finally, the fuzzy affiliation function method was utilized to comprehensively evaluate and rank the index parameters measured for each formulation. Ranking order: 1.5N0.5P1K>0.5N1.5P1K>1N1P1K>0.5N0.5P1.5K. 1.5N0.5P1K nutrient solution formula has the best overall ranking, and it can be promoted as the exclusive nutrient solution formula for tropical water lilies. |
参考文献: |
[1]陈发棣,崔娜欣,丁跃生.南京地区新引耐寒睡莲主要观赏性状初步评价[J].上海农业学报,2002,(03):51-55. [2]陈岩.三种微量元素及营养液浓度对蝴蝶兰生长的影响[D].东北林业大学,2008. [3]陈业臻,季京京,蒋励,等.不同氮磷钾配比对蝴蝶兰开花的影响[J].亚热带植物科学,2022,51(06):451-458. [4]丁雪梅.不同氮磷钾组合对大丽花生长发育的影响[D].山东农业大学,2012. [5]董志君,张建军,范永明,等.3种植物生长延缓剂对盆栽芍药的矮化效应[J].东北林业大学学报,2020,48(09):62-66. [6]范杨杨.热带睡莲营养成分分析及睡莲精油生物活性评价[D].海南大学,2020. [7]龚湉,陈建芳,吴沙沙,等.不同植物生长延缓剂对切花百合花序轴及花梗的影响[C].中国林业出版社,2014:410-413. [8]何栋,姚晓妍,史莹莹,等.矮壮素对永福报春苣苔形态特征的影响[J].分子植物育种,2021,19(14):4804-4811. [9]黄国振,黄蓉.耐寒睡莲的家庭栽培(三)[J].花木盆景(花卉园艺),2009,(08):16-17. [10]贺菡莹. 比久和多效唑调控切花菊‘Mona Lisa Sunny’的株型的研究[D].中国林业科学研究院,2018. [11]何启平,陈莹.校园常见植物叶绿素提取方法比较及其含量测定[J].黑龙江农业科学2015,(10):117-120. [12]黄巧义,唐拴虎,陈建生,等.氮磷钾配比对木薯养分吸收动态及产量影响[J].植物营养与肥料学报,2014,20(04):947-956. [13]何武江,王艳霞.植物生长延缓剂在花卉生产中的应用研究进展[J].内蒙古民族大学学报,2007,(05):40-41. [14]胡玥.切花菊盆栽的株型调控技术研究[D].南京农业大学,2013. [15]贾海慧.叶面喷施矮壮素对一串红生长与开花的影响[J].山东林业科技,2010,40(04):65-66. [16]孔维喜,吕维梧,廖承飞,等.观赏植物山海带水培配方的研究[J].热带农业科学2015,35(10):39-43+50. [17]廖德志,吴际友,王旭军,等.氮磷钾不同配比施肥对台湾桤木抗氧化酶的影响[J].林业科技开发,2010,24(03):72-74. [18]刘飞,王代容,吕长平,等.我国花卉水培研究及应用[J].广东农业科学,2009,(05):69-71. [19]梁根桃,沈锡康,方星.多效唑对菊花株型和开花的影响[J].浙江林学院学报,1993,(01):101-104. [20]廖杰鹏.三种植物生长延缓剂对花叶鸭跖草的生长和生理影响研究[D].中南林业科技大学,2023. [21]刘柳姣,刘震,黄虹心,等.不同外源激素对墨兰开花结果的影响[J].农业研究与应用,2018,31(05):10-14. [22]李润,蔡正兴,臧涛,等.蓝药睡莲花茶饮料的研究[J].当代化工研究,2024(01) :156-160. [23]李伸,李玲,常琛颉,等.多效唑与矮壮素对盆栽元宝枫的控冠效应[J].园艺与种苗,2023,43(07):28-30. [24]李素华,韩浩章,赵荣,等.基于主成分分析的多肉植物营养液配方筛选[J].中国野生植物资源,2022,41(08):8-13. [25]李淑娟,尉倩,陈尘,等.中国睡莲属植物育种研究进展[J].植物遗传资源学报,2019,20(04):7. [26]李世平.睡莲及其栽培技术[J].云南农业科技,2010(01):27-29. [27]李舜伟,王世琛,王龙,等.不同浓度营养液对黄瓜壮苗效果的影响[J].浙江农业科学,2023,64(10):2403-2408. [28]刘婷.营养液浓度对无土栽培叶类蔬菜的影响分析[J].安徽农学通报,2023,29(12):42-44. [29]刘皖慧.多效唑对不同品种苎麻农艺性状及生理特性的影响[D].湖南农业大学,2023. [30]刘文孟,孙莹,苏彩霞,等.不同植物生长延缓剂对水仙叶绿素含量的影响[J].现代农业研究,2022,28(11):35-38. [31]廖卫伟,杨志娟,朱天龙,等.睡莲的植物学性状及其分类[J].现代农业科技,2016,(24):148+154. [32]李欣,江君,徐君,等.不同质量浓度多效唑对碗莲品种‘火花’生长和叶片部分生理指标的影响[J].植物资源与环境学报,2017,26(03):51-58. [33]刘晓.紫薇水培生理生根特性及营养液研究[D].河南农业大学,2018. [34]刘晓静.植物生长延缓剂对草坪植物生长和生理特性的影响[J].草原与草坪,2003(04):12-15. [35]刘晓然,李岚,周大庆.睡莲属植物资源及栽培应用[J].现代园艺,2022,45(12):156-158. [36]卢秀秀,刘云根,王妍,等.典型挺水植物应用于湿地生态修复工程污染净化效应差异性研究[J].环境污染与防治,2024,46(01):87-91+98. [37]刘亚丽,范红军.生长调节剂对牡丹切花保鲜及生理效应的影响[J].湖北农业科学,2006,(05):627-630. [38]李亚茹.海南珍稀水生花卉延药睡莲资源调查及遗传多样性研究[D].海南大学,2022. [39]李志华,穆婷婷,杨金慧,等.多效唑和矮壮素对糜子抗倒伏性及产量的影响[J].山西农业科学,2023,51(10):1219-1225. [40]李卓雨,吕红桃,伏轩仪,等.不同浓度营养液对切花月季水培的影响[J].种子科技,2022,40(14):13-16. [41]刘子毓,杨光穗,奚良,等.睡莲研究现状及展望[J].热带农业科学,2023,43(01):38-43. [42]毛静,童俊,董艳芳,等.四种植物生长延缓剂喷施对除虫菊盆栽矮化效应的初探[J].湖北农业科学,2020,59(20):124-126+133. [43]米建华.台湾香水莲在郑州地区的引种及繁殖技术研究[J].河南林业科技,2016,36(03):11-13. [44]蒙琼,陈夏艳.香水莲的栽培管理及花茶制作[J].花木盆景(花卉园艺),2016,(01):40-41. [45]潘庆龙,付瑛格,谷佳,等.海南引种睡莲表型多样性分析及评价[J].热带作物学报,2021,42(10):2777-2788. [46]潘瑞炽.植物生长延缓剂的生理作用及其应用[J].华南师范大学学报(自然科学版),1984,(02):121-129. [47]潘远智.植物生长延缓剂对花卉植物矮化效应的研究[J].四川林业科技,2000,(04):36-40. [48]屈连伟,崔玥晗,赵展,等.郁金香室内水培技术[J].花木盆景(花卉园艺),2021,(03):28-30. [49]孙纪霞,王丽辉,刘学卿,等.蝴蝶兰叶片内源激素对植物生长延缓剂的响应[J].中国农业大学学报,2013,18(05):77-82. [50]唐毓玮,毛立彦,於艳萍,等.我国睡莲属植物育种研究进展[J].农业研究与应用,2019,32(01):36-41. [51]王凤英.4种观叶花卉水培营养液的效果比较[J].甘肃科学学报,2000,(03):67-70. [52]万茜,胡志辉.万寿菊水培营养液的调试[J].种子,2002(01):37+87 [53]武荣花,李勇,王升,等.植物生长延缓剂对盆栽月季生长发育的影响[J].西北植物学报,2012,32(04):767-773. [54]魏素玲,畅凌冰,王治军,等.多效唑对牛心柿树新梢生长抑制效应初试[J].科技视界,2015,(02):385-386. [55]吴思琳,孔丛玉,王利芬.不同配方营养液对万寿菊生长的影响[J].江苏农业科学,2019,47(22):167-169. [56]王书妹,王忠红,曾秀丽.我国睡莲栽培研究进展[J].西藏农业科技,2020,42(S1):132-136. [57]王绍云.DNS法测定鸡屎藤中总糖含量的研究[J].中国调味品,2013,38(11):59-62+69. [58]王小红,田丽萍,薛琳,等.矮壮素对油莎豆生理特性及内源激素含量变化的影响[J].北方园艺,2016,(24):26-31. [59]王延峰,杨宗保,郭丹丹,等.3种生长延缓剂对盆栽山丹丹株高和开花的影响[J].湖北农业科学,2012,51(17):3765-3768. [60]王月英,郭秀珠,黄品湖,等.不同类型花卉植物体营养分析及其在营养液配制中的应用[J].浙江林学院学报,2004(04):55-59. [61]徐成文.睡莲的繁殖与栽培管理[J].花木盆景(花卉园艺),2007,(07):24. [62]薛光卿.荷花睡莲难进家庭[N].中国花卉报,2015-06-27(007). [63]荀晓晓.睡莲国内市场推广长期受限[N].中国花卉报,2007-06-14(002). [64]薛艳.植物生长延缓剂对不同作物的作用及其机理研究[D].华中农业大学,2014. [65]于春雷,金迪.现代园艺中无土花卉的栽培技术[J].现代园艺,2023,46(17)81-83. [66]余翠薇,陈煜初,余东北,等.热带睡莲引种试验初报[C]//中国风景园林学会.中国风景园林学会2013年会论文集(下册).浙江人文园林有限公司;杭州天景水生植物园,2013:6. [67]余翠薇,陈煜初,余东北,等.不同类型睡莲的特点及栽培技术[J].浙江农业科学,2016,57(10):1694-1695. [68]杨军.乌鲁木齐耐寒睡莲的适应性分析及观赏性状评价[J].山东林业科技,2020,50(04):13-17. [69]宇胜.睡莲的家庭盆栽[J].花木盆景(花卉园艺),2022,(08):42-43. [70]杨炜茹,张彦广,石秀霞.矮壮素对地榆株高及内源激素含量变化的影响[J].河北农业大学学报,2006,(01):12-15. [71]杨亚涵,苏群,田敏,等.桂南地区芳香型睡莲切花优良品种筛选[J].热带农业科学,2019,39(06):24-31. [72]杨志娟,廖卫伟,覃琳琳,等.热带睡莲的栽培技术规程[J].热带农业科学,2020,40(07):18-21. [73]张朝阳.盆土混加多效唑对盆菊的矮化效应[J].中国园林,2000(05):87-88. [74]张钢.关于两种新型植物生长延缓剂诱导植物抗逆性的研究[J].山西林业科技,1996,(03)34-37. [75]甄红丽,苑兆和,冯立娟,等.矮壮素对大丽花生长发育和内源激素含量的影响及相关性分析[J].草业科学,2012,29(01):76-82. [76]朱娇,杨柳燕,周琳,等.氮磷钾配比对西红花光合作用及叶绿素荧光的影响[J].西北农林科技大学学报(自然科学版),2022,50(09):111-118. [77]祝连彩,唐士金,周丽.考马斯亮蓝G250法测定蛋白质含量的教学实践及方法学探讨[J].教育教学论坛,2020,(23):266-269. [78]周强.多效唑对宿根福禄考的矮化效应研究[D].吉林农业大学,2013. [79]张庆,李佳秋,李保会,等.矮壮素对金莲花幼苗生长及生理生化的影响[J].河北科技师范学院学报,2023,37(02):33-39. [80]张文波,刘海衡,侯倩茹,等.植物生长延缓剂对蝴蝶兰开花特性的效应研究[J].陕西农业科学,2018(05):53-56. [81]张肖娟,徐冰,徐秋宾.睡莲在园林中的应用及栽培技术[J].农业与技术,2021,41(18):120-122. [82]周炜.睡莲、荷花品种耐阴性比较及水培装置研究[D].南京农业大学,2019. [83]Aebi H. Catalase in vitro[M] //Methods in enzymology. Academic press, 1984, 105:121-126. [84]Allison J. Plant Research: A feast of information for water lily researchers[J]. Water Garden Journal, 2019, 34(02):14-17. [85]Al-Rukabi, Maad, et al. Production of Tomato Hybrids in Soilless Cultivation (Hydroponic System)[M]. Springer Nature Singapore, 2022:201-210. [86]Beauchamp C, Fridovich I. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels[J]. Analytical biochemistry, 1971, 44(01):276-287. [87]Berard L S, Senecal M, and Vigier B. " Effects of nitrogen fertilization on stored cabbage. II. Mineral composition in midrib and head tissues of two cultivars." Journal of Horticultural Science, 1990, 65(04):409-416. [88]Bubnova T V, Sokolov O A, Srnagin B I. Features of the transport and accumulation of nitrogen and potassium in vegetable crops: I. Effects of the conditions of mineral nutritioa on the xylem transport of ions[J]. Agrokhimiya, 1995, 5:13-22. [89]Graham D, Ellis and Lisa O, Knowles and N, Richard Knowles. Increasing the Production Efficiency of Potato with Plant Growth Retardants[J]. American Journal of Potato Research: The Official Journal of the Potato Association of America, 2020, 97(04):88-101. [90]Grossmann K. Plant growth retardants as tools in physiological research[J]. Physiologia Plantarum, 1990, 78(04):640-648. [91]Jayanta S . Effect of paclobutrazol on physiology, growth and yield of sunflower (Helianthus annuus L.)[J]. Plant Physiology Reports, 2023, 28(02):231-237. [92]Kentelky, Endre, et al. Enhance Growth and Flower Quality of Chrysanthemum indicum L. with Application of Plant Growth Retardants[J]. Horticulturae,2021,7(12):532-532. [93]Kirk GJD. Plant-mediated processes to acquire nutrients: nitrogen uptake by rice plants[J]. Plantand Soil, 2001, 232(1-2):129-134. [94]Kumar G N M, Knowles N R. Changes in lipid peroxidation and lipolytic and free-radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers[J]. Plant Physiology, 1993, 102(01):115-124. [95]Lan L ,Weizhen H ,Heng Z , et al. Integrated Metabolome and Lipidome Strategy to Reveal the Action Pattern of Paclobutrazol, a Plant Growth Retardant, in Varying the Chemical Constituents of Platycodon Root[J]. Molecules, 2022, 27(20):6902-6902. [96]Meng J S, Li M, Hao Z J, et al. Paclobutrazol Can Enhance the Thermal-Tolerant on Herbaceous Peony (Paeonia lactiflora)[J]. Russian Journal of Plant Physiology, 2022, 69(03):1-12. [97]Muñoz-Muñoz J L, García-Molina F, García-Ruiz P A, et al. Enzymatic and chemical oxidation of trihydroxylated phenols[J]. Food Chemistry, 2009, 113(02):435-444. [98]Quintanilla-Guerrero F, Duarte-Vázquez M A, García-Almendarez B E, et al. Polyethylene glycol improves phenol removal by immobilized turnip peroxidase[J]. Bioresource Technology, 2008, 99(18):8605-8611. [99]Xuqin R. Effects of different plant growth inhibitors on growth and flowering of narcissus[J]. Agricultural ence & Technology, 2003, 4(04):6-9. [100]Yildirim A B, Karakas F P, Turker A U. In vitro antibacterial and antitumor activities of some medicinal plant extracts, growing in Turkey[J]. Asian Pacific Journal of Tropical Medicine, 2013, 6(08):616-624. [101]Yin D D, Yuan R Y, Wu Q, et al. Assessment of flavonoids and volatile compounds in tea infusions of water lily flowers and their antioxidant activities[J]. Food Chemistry, 2015, 187:20-28. [102]Zhou W, Zhao D, Lin X. Effects of waterlogging on nitrogen accumulation and alleviation of waterlogging damage by application of nitrogen fertilizer and mixtalol in winter rape (Brassica napus L.)[J]. Journal of Plant Growth Regulation, 1997, 16: 47-53. |
中图分类号: | S68 |
开放日期: | 2024-06-11 |