- 无标题文档
查看论文信息

中文题名:

 基于四氮杂冠醚配体的新型MOFs及其复合材料制备与锂电性能研究    

姓名:

 喻佳颖    

学号:

 2022111016    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 070303    

学科名称:

 理学 - 化学 - 材料化学    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 南京农业大学    

院系:

 理学院    

专业:

 化学    

研究方向:

 功能材料化学    

第一导师姓名:

 吴华    

第一导师单位:

 南京农业大学    

完成日期:

 2025-05-22    

答辩日期:

 2025-05-23    

外文题名:

 Study on the Preparation and Lithium Battery Performance of Novel MOFs and Their Composites Based on Tetraaza-Crown Ether Ligand    

中文关键词:

 四氮杂冠醚 ; 金属有机框架材料 ; SnO2复合材料 ; 锂离子电池    

外文关键词:

 Tetraaza-crown ether ; Metal-organic framework ; SnO2 composite ; Lithium-ion batteries.    

中文摘要:

随着现代社会的发展,能源的需求也日益增长,其不可再生性和与日俱增的需求有着不可调和的矛盾。因此,开发高效储能元件成为解决这个问题的主要方式。在目前的主流储能技术中,电化学储能因其灵活性和高效性得到广泛应用,尤其是电池技术已经成为重要的电化学储能形式。锂离子电池(LIBs)具有能量密度高、循环寿命长和环境友好等特点,设计适于储锂电极材料对于提高LIBs性能十分重要。金属有机框架材料(MOFs),是一种由有机配体和金属离子或团簇通过配位键自组装而成的一类具有分子内孔隙的有机-无机杂化材料,具有丰富的活性位点、灵活的孔隙和独特的氧化还原性,在锂离子电池电极材料中有较大的应用潜力。

基于此,本文合成了一种四氮杂冠醚有机配体,即11,23-二甲基-3,7,15,19-四氮杂-三环[19,13,1,19,13]二十六-1(25),9,11,13(26),21,23-己烯-25,26-二醇(L),并选取过渡金属、无机酸或多金属氧酸盐为无机构件,利用溶剂热法成功合成出三种新型氮杂冠醚基金属有机框架材料:[Cu2(L)(H2O)2](HPO4)2 (MOF-1)、[Ni2(L)](Mo2O7) (MOF-2)和[Ni5(L)2.5(H2O)5](PNiW11O39)·2H2O (MOF-3)。利用单晶X-射线衍射(SCXRD)、X-射线粉末衍射(PXRD)、傅里叶红外光谱(FT-IR)、热重分析(TGA)、扫描电子显微镜(SEM)和X-射线光电子能谱(XPS)对材料的结构及锂化性质进行了表征。三种晶体材料均具有电化学活性,为了提升材料的电化学储能性能和导电性,通过湿浸法引入SnO2制备了相应的复合材料(SnO2@MOF-n,n = 1-3),并详细研究了复合材料的电化学储能性能与机理。主要研究内容与结果如下:

单晶X-射线衍射数据表明,MOF-1的Cu(II)金属中心与配体L、磷酸氢根阴离子和水分子相连形成六配位八面体构型,呈零维结构。MOF-2的Ni(II)金属中心与配体中的N、O相连形成变形八面体构型,配体L-Ni单元间通过[Mo2O7]2-阴离子团簇桥连形成一维链状结构。MOF-3的金属中心Ni(II)与配体中的N、O原子呈螯合配位模式,磷钨酸中的一个W被过渡金属Ni取代形成过渡金属杂多酸[PNiW11O39]5-,并与金属中心相连形成零维结构。通过PXRD、IR和TGA分析了MOFs-1-3及其复合材料的理化性质,结果表明,三种晶体材料纯度较高并且复合成功,且具有较好的热稳定性。电化学性能测试结果表明,MOFs-1-3材料的可逆比容量分别为53.1、216.9以及353.2 mA h g-1,说明不同阴离子与过渡金属构建的MOFs材料,在电化学储能性能方面存在较大差异。为提升晶体材料的电化学性能,采用湿浸法引入SnO2制备MOFs-1-3的复合材料SnO2@MOFs-1-3,其可逆比容量分别提升至643、754.6以及771 mA h g-1。通过XPS和SEM对于MOFs-1-3及其复合材料SnO2@MOFs-1-3循环前后的形貌特征以及价态变化进行分析,探究了其可能的储锂机理。研究结果表明,SnO2@MOFs-1-3复合材料的储能机理与过渡金属离子(Cu,Ni)、多金属氧酸盐(Mo,W)、富氮有机配体和SnO2可逆转化的协同作用有关。

外文摘要:

With the development of modern society, the demand for energy continues to grow, which leads to an irreconcilable contradiction between its non-renewable nature and the ever-increasing needs. Therefore, developing high-efficiency energy storage components has become a primary solution to this issue. Among current mainstream energy storage technologies, electrochemical energy storage is widely adopted due to its flexibility and high efficiency with battery technology, emerging as a crucial form of electrochemical energy storage. Lithium-ion batteries (LIBs) are characterized by high energy density, long cycle life, and environmental friendliness, making the design of suitable lithium storage electrode materials essential for enhancing LIB performance. Metal-organic frameworks (MOFs), as a class of organic-inorganic hybrid materials with intrinsic porosity formed through the self-assembly of organic ligands and metal ions or clusters via coordination bonds, exhibit abundant active sites, tunable pores, and unique redox properties. These features grant them significant potential for application in lithium-ion battery electrode materials.

Based on this, this study synthesized a nitrogen-containing crown ether organic ligand, namely 11,23-dimethyl-3,7,15,19-tetraaza-tricyclo[19,13,1,19,13]hexacosa-1(25),9,11,13(26),21,23-hexaene-25,26-diol (L). Using transition metals, inorganic acids, or polyoxometalates as inorganic building blocks, three novel nitrogen-containing crown ether-based metal-organic frameworks (MOFs) have been successfully synthesized via a solvothermal method, which were [Cu2(L)(H2O)2](HPO4)2 (MOF-1), [Ni2(L)](Mo2O7) (MOF-2), and [Ni5(L)2.5(H2O)5](PNiW11O39)·2H2O (MOF-3).The structures and lithiation properties of these materials were characterized using single-crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD), Fourier-transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Given the electrochemical activity of these three crystalline materials, to enhance their electrochemical energy storage performance and conductivity, SnO2 was introduced via a wet impregnation method to prepare corresponding composite materials (SnO2@MOF-n, n = 1-3). The electrochemical energy storage performance and mechanisms of these composites were thoroughly investigated. The main research contents and results are as follows:

Single-crystal X-ray diffraction data reveal that in MOF-1, the Cu (II) metal center is coordinated with ligand L, hydrogen phosphate anions, and water molecules, forming a six-coordinated octahedral configuration, resulting in a zero-dimensional structure. In MOF-2, the Ni(II) metal center is connected to N and O atoms of the ligand, forming a distorted octahedral configuration. The L-Ni units are bridged by [Mo2O7]2- anion clusters to form a one-dimensional chain structure. In MOF-3, the Ni (II) metal center chelates with N and O atoms of the ligand, while one W atom in the phosphotungstic acid is substituted by the transition metal Ni, forming a transition metal-substituted heteropolyacid [PNiW11O39]5-, which connects with the metal center to form a zero-dimensional structure. The physicochemical properties of MOFs-1-3 and their composites were analyzed by PXRD, IR, and TGA. The results indicate that the three crystalline materials are of high purity, successfully composited, and exhibit good thermal stability. Electrochemical performance tests show that the reversible specific capacities of MOFs-1-3 are 53.1, 216.9, and 353.2 mA h g-1, respectively, suggesting significant differences in electrochemical energy storage performance due to the different anions and transition metals used in their construction. To enhance the electrochemical performance of the crystalline materials, SnO2 was introduced via a wet impregnation method to prepare SnO2@MOFs-1-3 composites. Their reversible specific capacities increased to 643, 754.6, and 771 mA h g-1, respectively. XPS and SEM were employed to analyze the morphological features and valence state changes of MOFs-1-3 and their composites SnO2@MOFs-1-3 before and after cycling, revealing their lithium storage mechanisms. The results demonstrate that the energy storage mechanism of the SnO2@MOFs-1-3 composite materials is associated with the synergistic effects of transition metal ions (Cu, Ni), polyoxometalates (Mo, W), nitrogen-rich organic ligands, and the reversible conversion of SnO2

参考文献:

[1]巨星, 徐超, 郝俊红等: 新型储能技术进展与挑战I:电化学储能技术[J]. 太阳能, 2024, 7: 98-108.

[2]冉明皓, 朱华清, 梁海峰: 改性金属有机骨架超级电容器材料的制备及其性能研究[J]. 化工新型材料, 2025, 53: 157-162+169.

[3]公维洁, 2010: 臂式含苯酚基团冠醚配合物的合成及结构研究[M]. 硕士.

[4]Abánades Lázaro I, Forgan R S. Application of zirconium MOFs in drug delivery and biomedicine[J]. Coordination Chemistry Reviews, 2019, 380: 230-259.

[5]Ahmad N, Younus H A, Chughtai A H, et al. Metal–organic molecular cages: applications of biochemical implications[J]. Chemical Society Reviews, 2015, 44: 9-25.

[6]Aravindan V, Lee Y-S, Madhavi S. Research Progress on Negative Electrodes for Practical Li-Ion Batteries: Beyond Carbonaceous Anodes[J]. Advanced Energy Materials, 2015, 5: 1402225.

[7]Armand M, Axmann P, Bresser D, et al. Lithium-ion batteries – Current state of the art and anticipated developments[J]. Journal of Power Sources, 2020, 479: 228708.

[8]Ates M, Chebil A, Yoruk O, et al. Reliability of electrode materials for supercapacitors and batteries in energy storage applications: a review[J]. Ionics, 2022, 28: 27-52.

[9]Bai S, Liu X, Zhu K, et al. Metal-organic framework-based separator for lithium-sulfur batteries[J]. Nature Energy, 2016, 1: 16094.

[10]Baig M M, Khan M A, Gul I H, et al. A review of Advanced Electrode Materials for Supercapacitors: Challenges and Opportunities[J]. Journal of Electronic Materials, 2023, 52: 5775-5794.

[11]Baruah B, Phillips G D, Ferreira D R, et al. Comparing Cs+ binding affinity of Keggin type polyoxometalate and sodium Tetrakis(4-florophenyl)borate in solution and from Cs-doped pure phase vermiculite[J]. Journal of Environmental Radioactivity, 2022, 253-254: 107008.

[12]Bi H-X, Guo M-S, Du J, et al. Polyoxometalate chemistry of {M[P4Mo6]2}: From structure assembly to functional application[J]. Coordination Chemistry Reviews, 2024, 518: 216092.

[13]Boskovic C. Rare Earth Polyoxometalates[J]. Accounts of Chemical Research, 2017, 50: 2205-2214.

[14]Cabanero M A, Boaretto N, Roeder M, et al. Direct Determination of Diffusion Coefficients in Commercial Li-Ion Batteries[J]. Journal of the Electrochemical Society, 2018, 165: A847-A855.

[15]Chao H, Li Y, Lu Y, et al. Mxene-mediated regulation of local electric field surrounding polyoxometalate nanoparticles for improved lithium storage[J]. Science China Materials, 2022, 65: 2958-2966.

[16]Chatterjee D P, Nandi A K. A review on the recent advances in hybrid supercapacitors[J]. Journal of Materials Chemistry A, 2021, 9: 15880-15918.

[17]Chen K, Xue D. How to efficiently utilize electrode materials in supercapattery?[J]. Functional Materials Letters, 2018, 12: 1830005.

[18]Chen Y, Wang L, Yang B, et al. Reticulated carbon nanofiber-encapsulated SnO2 hollow spheres as high performance anode material for lithium-ion batteries[J]. Chemical Communications, 2025, 61: 3544-3547.

[19]Cheng H, Shapter J G, Li Y, et al. Recent progress of advanced anode materials of lithium-ion batteries[J]. Journal of Energy Chemistry, 2021, 57: 451-468.

[20]Choudhury S. Review of energy storage system technologies integration to microgrid: Types, control strategies, issues, and future prospects[J]. Journal of Energy Storage, 2022, 48: 103966.

[21]Courtney Ian A, Dahn J R. Electrochemical and In Situ X-ray Diffraction Studies of the Reaction of Lithium with Tin Oxide Composites[J]. Journal of the Electrochemical Society, 1997, 144: 2045-2052.

[22]Dai L, Xie M, Liu J, et al. Fe-based porphyrin MOFs as high performance anode for lithium ion battery[J]. Journal of Electroanalytical Chemistry, 2023, 949: 117843.

[23]Dai Z, Long Z, Shi C, et al. Porous MOFs–Zinc Cobaltite/Carbon Composite Nanofibers for High Lithium Storage[J]. Advanced Electronic Materials, 2022, 8: 2100592.

[24]Dehghani-Sanij A R, Tharumalingam E, Dusseault M B, et al. Study of energy storage systems and environmental challenges of batteries[J]. Renewable and Sustainable Energy Reviews, 2019, 104: 192-208.

[25]Detka K, Górecki K. Selected Technologies of Electrochemical Energy Storage—A review[J]. Energies, 2023, 16: 5034.

[26]Dhanasekaran G, Parthiban N, Keerthana T, et al. Enhanced electrochemical performance of (MoSe2@NiSe2) (0D/1D) hybrid nanostructures for supercapacitors[J]. Materials Science and Engineering: B, 2025, 313: 117975.

[27]Dou F, Shi L, Chen G, et al. Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries[J]. Electrochemical Energy Reviews, 2019, 2: 149-198.

[28]Elalfy D A, Gouda E, Kotb M F, et al. Comprehensive review of energy storage systems technologies, objectives, challenges, and future trends[J]. Energy Strategy Reviews, 2024, 54: 101482.

[29] Ezpeleta I, Freire L, Mateo-Mateo C, et al. Characterization of Commercial Li-Ion Batteries Using Electrochemical Impedance Spectroscopy[J]. ChemistrySelect, 2022, 7: e202104464.

[30]Fang G, Zhou J, Liang C, et al. MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications[J]. Nano Energy, 2016, 26: 57-65.

[31]Fleischmann S, Mitchell J B, Wang R, et al. Pseudocapacitance: From Fundamental Understanding to High Power Energy Storage Materials[J]. Chemical Reviews, 2020, 120: 6738-6782.

[32]Fong R, von Sacken U, Dahn J R. Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells[J]. Journal of the Electrochemical Society, 1990, 137: 2009.

[33]Ganaie Z N, Johari P. Biphenylene concentric nanorings as high-performance anode materials for lithium-ion batteries: A DFT-based study on lithium intercalation and capacity enhancement[J]. Physical Chemistry Chemical Physics, 2025, 27: 6193-6204.

[34]Gao C, Jiang Z, Wang P, et al. Optimized assembling of MOF/SnO2/Graphene leads to superior anode for lithium ion batteries[J]. Nano Energy, 2020, 74: 104868.

[35]Gao D, Luo Z, Liu C, et al. A survey of hybrid energy devices based on supercapacitors[J]. Green Energy & Environment, 2023, 8: 972-988.

[36]Górecki K, Dąbrowski J, Krac E. SPICE-Aided Modeling of Daily and Seasonal Changes in Properties of the Actual Photovoltaic Installation[J]. Energies, 2021, 14: 6247.

[37]Gu F, Fen Wang S, Feng Song C, et al. Synthesis and luminescence properties of SnO2 nanoparticles[J]. Chemical Physics Letters, 2003, 372: 451-454.

[38]Guo X, Chen G, Zhao L, et al. Systematic overview of equalization methods for battery energy storage systems[J]. Journal of Power Sources, 2025, 640: 236766.

[39]Han J, Gao S, Wang R, et al. Thermal Modulation of MOF and Its Application in Lithium–Sulfur Batteries[J]. ACS Applied Materials & Interfaces, 2019, 11: 46792-46799.

[40]Han Z, Li X, Li Q, et al. Construction of the POMOF@Polypyrrole Composite with Enhanced Ion Diffusion and Capacitive Contribution for High-Performance Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13: 6265-6275.

[41]Hashmi S M, Noor S, Parveen W. Advances in water splitting and lithium-ion batteries: Pioneering sustainable energy storage and conversion technologies[J]. Frontiers in Energy Research, 2025, 12: 1465349.

[42]Hossain M H, Chowdhury M A, Hossain N, et al. Advances on synthesis and performance of li-ion anode batteries-a review[J]. Chemical Engineering Journal Advances, 2024, 17: 100588.

[43]Hou J, Ning Y, Guo K, et al. Application of metal-organic framework materials in supercapacitors[J]. Journal of Energy Storage, 2025, 113: 115535.

[44]Hsu C-Y, Kumar A, Kanjariya P, et al. Polyoxometalates as multifunctional electrolyte and electrode materials: Innovations in supercapacitors, sensors, and batteries[J]. Journal of Alloys and Compounds, 2025, 1022: 179736.

[45]Hu H, Lou X, Li C, et al. A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries[J]. New Journal of Chemistry, 2016, 40: 9746-9752.

[46]Huang C, Liu C, Chen X, et al. A Metal–Organic Framework Nanosheet-Assembled Frame Film with High Permeability and Stability[J]. Advanced Science, 2020a, 7: 1903180.

[47]Huang H, Shen K, Chen F, et al. Metal-Organic Frameworks as a Good Platform for the Fabrication of Single-Atom Catalysts[J]. ACS Catalysis, 2020b, 10: 6579-6586.

[48]Huang J Y, Zhong L, Wang C M, et al. In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode[J]. Science, 2010, 330: 1515-1520.

[49]Huang Q, Wei T, Zhang M, et al. A highly stable polyoxometalate-based metal–organic framework with π–π stacking for enhancing lithium ion battery performance[J]. Journal of Materials Chemistry A, 2017, 5: 8477-8483.

[50]Iqbal B, Jia X, Hu H, et al. Fabrication of redox-active polyoxometalate-based ionic crystals onto single-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries[J]. Inorganic Chemistry Frontiers, 2020, 7: 1420-1427.

[51]Jaini R R, Setzler B P, Fuller T F. Investigating Changes in the Morphological Structure of High-Temperature, Calendar-Aged Li-Ion Cells[J]. Journal of the Electrochemical Society, 2018, 165: A3125.

[52]Jang J, Ku J H, Oh S M, et al. Co-activated Conversion Reaction of MoO2:CoMoO3 as a Negative Electrode Material for Lithium-Ion Batteries[J]. ACS Applied Materials & Interfaces, 2021, 13: 9814-9819.

[53]Jin H, Xin S, Chuang C, et al. Black phosphorus composites with engineered interfaces for high-rate high-capacity lithium storage[J]. Science, 2020, 370: 192-197.

[54]Kalpakli A O, Ilhan S, Kahruman C, et al. Thermal decomposition mechanism of ammonium phosphotungstate hydrate in air atmosphere[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31: 14-20.

[55]Kim H J, Yeon J S, Park H R, et al. Intercalation Pseudocapacitance of Cation-Exchanged Molybdenum-Based Polyoxometalate for the Fast and Stable Zinc-Ion Storage[J]. ACS Applied Materials & Interfaces, 2023, 15: 9350-9361.

[56]Kondinski A. Metal–metal bonds in polyoxometalate chemistry[J]. Nanoscale, 2021, 13: 13574-13592.

[57]Kong L, Cheng M, Huang H, et al. Metal-organic frameworks for advanced aqueous ion batteries and supercapacitors[J]. EnergyChem, 2022, 4: 100090.

[58]Kong Y, Zheng G, Du Y, et al. Chalcophosphates: A plentiful source of infrared nonlinear optical materials[J]. Coordination Chemistry Reviews, 2025, 533: 216524.

[59]Kwon N A, Lee J-w. Surface modification of lithium metal anode with lithium silicate-lithium phosphate composite layer for enhanced cycling stability[J]. Materials Chemistry and Physics, 2023, 307: 128177.

[60]Lee M, Xie J, Oh J-M, et al. Phase change-induced heterointerface engineering of hollow sphere structured graphene oxide/layered double hydroxide composites for superior pseudocapacitive energy storage in lithium-ion batteries[J]. Chemical Engineering Journal, 2025, 506: 159671.

[61]Li C, Lou X, Shen M, et al. High-capacity cobalt-based coordination polymer nanorods and their redox chemistry triggered by delocalization of electron spins[J]. Energy Storage Materials, 2017, 7: 195-202.

[62]Li H, Eddaoudi M, O'Keeffe M, et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework[J]. Nature, 1999, 402: 276-279.

[63]Li M, Hu L, Yuan Y, et al. Single-atom copper anchored on algal-based carbon induce peroxydisulfate activation for tetracycline degradation: DFT calculation and toxicity evaluation[J]. Separation and Purification Technology, 2024, 332: 125823.

[64]Li W, Qian J, Zhao T, et al. Boosting High-Rate Li–S Batteries by an MOF-Derived Catalytic Electrode with a Layer-by-Layer Structure[J]. Advanced Science, 2019, 6: 1802362.

[65]Li W H, Deng W H, Wang G E, et al. Conductive MOFs[J]. EnergyChem, 2020, 2: 100029.

[66]Li X, Chen L, Qu Y, et al. Carbon-assisted conversion reaction-based oxide nanomaterials for lithium-ion batteries[J]. Sustainable Energy & Fuels, 2018, 2: 1124-1140.

[67]Li X, Cheng F, Zhang S, et al. Shape-controlled synthesis and lithium-storage study of metal-organic frameworks Zn4O(1,3,5-benzenetribenzoate)2[J]. Journal of Power Sources, 2006, 160: 542-547.

[68]Libich J, Sedlaříková M, Máca J, et al. Supercapacitors vs. Lithium-ion Batteries: Properties and Applications[J]. Chemie Ingenieur Technik, 2024, 96: 279-285.

[69]Lin Y, Zhang Q, Zhao C, et al. An exceptionally stable functionalized metal-organic framework for lithium storage[J]. Chemical Communications, 2015, 51: 697-699.

[70] Liu C, Wu B, Liu T, et al. Metal-organic frameworks and their composites for advanced lithium-ion batteries: Synthesis, progress and prospects[J]. Journal of Energy Chemistry, 2024a, 89: 449-470.

[71]Liu H, Wang S, Zhao J, et al. Sn-based anode materials for lithium-ion batteries: From mechanism to modification[J]. Journal of Energy Storage, 2024b, 80: 109862.

[72]Liu J, Xie D, Xu X, et al. Reversible formation of coordination bonds in Sn-based metal-organic frameworks for high-performance lithium storage[J]. Nature Communications, 2021a, 12: 3131.

[73]Liu L-L, Wang Y-H, Xiao X-Y, et al. Engineering in amino acid-functionalized double-layer heteropolymolybdates: From structural control to catalytic activity[J]. Rare Metals, 2023, 42: 3345-3353.

[74]Liu L, Wang T, Zhao J, et al. Insight into lithiation mechanism of Co3S4 anode for lithium-ion batteries triggered by Keggin POMs and GO[J]. Chemical Engineering Journal, 2025a, 506: 159999.

[75]Liu L, Zhang X, Liu Y, et al. Electrochemical Energy Storage Devices─Batteries, Supercapacitors, and Battery–Supercapacitor Hybrid Devices[J]. ACS Applied Electronic Materials, 2025b, 7: 2233-2270.

[76]Liu X, Wu Y, Yang F, et al. An effective dual-channel strategy for preparation of polybenzimidazole separator for advanced-safety and high-performance lithium-ion batteries[J]. Journal of Membrane Science, 2021b, 626: 119190.

[77]Liu Y, Hou T, Zhang W, et al. Anion-repulsive polyoxometalate@MOF-modified separators for dendrite-free and high-rate lithium batteries[J]. Interdisciplinary Materials, 2025c, 4: 190-200.

[78]Lu Y, Yu L, Lou X W. Nanostructured Conversion-type Anode Materials for Advanced Lithium-Ion Batteries[J]. Chem, 2018, 4: 972-996.

[79]Lyu F, Yu S, Li M, et al. Supramolecular hydrogel directed self-assembly of C- andN-doped hollow CuO as high-performance anode materials for Li-ion batteries[J]. Chemical Communications, 2017, 53: 2138-2141.

[80]Mao Y, Li G, Guo Y, et al. Foldable interpenetrated metal-organic frameworks/carbon nanotubes thin film for lithium-sulfur batteries[J]. Nature Communications, 2017, 8: 14628.

[81]Meng F, Wang F, Yu H, et al. Liquid Metal-Modified Nanoporous SiGe Alloy as an Anode for Li-Ion Batteries and Its Self-Healing Performance[J]. Acs Applied Energy Materials, 2021, 4: 14575-14581.

[82]Meng Z, Qiu Z, Shi Y, et al. Micro/nano metal–organic frameworks meet energy chemistry: A review of materials synthesis and applications[J]. eScience, 2023, 3: 100092.

[83]Mitali J, Dhinakaran S, Mohamad A A. Energy storage system: A review[J]. Energy Storage and Saving, 2022, 1: 166-216.

[84]Monie S W, Gustafsson M, Önnered S, et al. Renewable and integrted energy system resilience – A review and generic resilience index[J]. Renewable and Sustainable Energy Reviews, 2025, 215: 115554.

[85]Nasajpour-Esfahani N, Garmestani H, Bagheritabar M, et al. Comprehensive review of lithium-ion battery materials and development challenges[J]. Renewable and Sustainable Energy Reviews, 2024, 203: 114783.

[86]Nazir A, Le H T T, Nguyen A-G, et al. Graphene analogue metal organic framework with superior capacity and rate capability as an anode for lithium ion batteries[J]. Electrochimica Acta, 2021, 389: 138750.

[87]Olabi A G, Abdelkareem M A. Energy Storage Systems Towards 2050[J]. Energy, 2021, 219: 119634.

[88]Osaka T, Nakade S, Rajamäki M, et al. Influence of capacity fading on commercial lithium-ion battery impedance[J]. Journal of Power Sources, 2003, 119-121: 929-933.

[89]Otun K O, Diop N F, Fasakin O, et al. Engineering the structures of ZnCo-MOFs via a ligand effect for enhanced supercapacitor performance[J]. RSC Advances, 2025, 15: 4120-4136.

[90]Peng Y, Huang H, Zhang Y, et al. A versatile MOF-based trap for heavy metal ion capture and dispersion[J]. Nature Communications, 2018, 9: 187.

[91]Pirdosti S F, Khoshnavazi R, Naseri E. Solid-state rearrangement of sandwich-type polyoxometalate-dopamine nanohybrid to the nanoflower Keggin polyoxometalate: Synthesis, characterization, and catalytic efficiency[J]. Journal of Coordination Chemistry, 2020, 73: 723-736.

[92]Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries[J]. Nature, 2000, 407: 496-499.

[93]Reddy R C K, Lin J, Chen Y, et al. Progress of nanostructured metal oxides derived from metal–organic frameworks as anode materials for lithium–ion batteries[J]. Coordination Chemistry Reviews, 2020, 420: 213434.

[94]Ren Z, Xu X, Wang X, et al. FTIR, Raman, and XPS analysis during phosphate, nitrate and Cr(VI) removal by amine cross-linking biosorbent[J]. Journal of Colloid and Interface Science, 2016, 468: 313-323.

[95]Şahin M E, Blaabjerg F, Sangwongwanich A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies, 2022, 15: 674.

[96]Saini H, Vishwanathan S, Sil S, et al. Micro/Nanostructured Co3O4 as an Anode Material for Lithium-Ion Batteries[J]. ACS Applied Nano Materials, 2025, 8: 917-923.

[97]Saravanan K, Nagarathinam M, Balaya P, et al. Lithium storage in a metal organic framework with diamondoid topology - a case study on metal formates[J]. Journal of Materials Chemistry, 2010, 20: 8329-8335.

[98]Shaker M, Ghazvini A A S, Shahalizade T, et al. A review of nitrogen-doped carbon materials for lithium-ion battery anodes[J]. New Carbon Materials, 2023, 38: 247-278.

[99]Sieffert J M, Bazylevych S, McCalla E. Anode Materials for High-Power Lithium-Ion Batteries[J]. Annual Review of Materials Research, 2025, 55: 1-23.

[100]Su M, Song Y, Cai L, et al. Carbon and Li3Bo3 Co-Modified SiOx as Anode for High-Performance Lithium-Ion Batteries[J]. Energy Technology, 2023, 11: 2300019.

[101]Tamtam M R, Wang R, Koutavarapu R, et al. Core-shell Mn@Al-MOF: A multidimensional hierarchical advanced electrode material for high-performance supercapacitors[J]. Journal of Alloys and Compounds, 2025, 1013: 178517.

[102]Tebbe J, Hartwig A, Jamali A, et al. Innovations and prognostics in battery degradation and longevity for energy storage systems[J]. Journal of Energy Storage, 2025, 114: 115724.

[103]Varshney K, Varshney P K, Gautam K, et al. Current trends and future perspectives in the recycling of spent lead acid batteries in India[J]. Materials Today: Proceedings, 2020, 26: 592-602.

[104]Vásquez F C, Paraguay-Delgado F, Morales-Mendoza J E, et al. Shape and size controlled growth of SnO2 nano-particles by efficient approach[J]. Superlattices and Microstructures, 2016, 90: 274-287.

[105]Venkatesan S V, Nandy A, Karan K, et al. Recent Advances in the Unconventional Design of Electrochemical Energy Storage and Conversion Devices[J]. Electrochemical Energy Reviews, 2022, 5: 16.

[106]Wang C, Wang B, Yang H, et al. A review on polyoxometalates-based materials in addressing challenges faced by electrochemical energy storage systems[J]. Chemical Engineering Journal, 2024, 483: 149143.

[107]Wang H, Kawasaki N, Yokoyama T, et al. Molecular cluster batteries of nano-hybrid materials between Keggin POMs and SWNTs[J]. Dalton Transactions, 2012, 41: 9863-9866.

[108]Wang J, Guo X, Jing Q, et al. Rational design of self-sacrificial template derived quasi-Cu-MOF composite as anodes for high-performance lithium-ion batteries[J]. Chinese Chemical Letters, 2023a, 34: 107675.

[109]Wang L, Dang H, Ran F. Lattice disorder induced pseudocapacitive-type anode materials copper tetrathiovanadate for fast lithium-ion storage[J]. Journal of Power Sources, 2025a, 635: 236521.

[110]Wang L, Feng X, Ren L, et al. Flexible Solid-state Supercapacitor Based on a Metal-Organic Framework Interwoven by Electrochemically-Deposited PANI[J]. Journal of the American Chemical Society, 2015, 137: 4920-4923.

[111]Wang L, Wu M, Liu Y, et al. Synthesis and Characterizations of TiO2/Carbon Nanofibers Anode Materials for Lithium-Ion Battery Applications[J]. Journal of Nanoelectronics and Optoelectronics, 2023b, 18: 396-401.

[112]Wang Z, Bi R, Liu J, et al. Polyoxometalate-based Cu/Zn-MOFs with Diverse Stereo Dimensions as Anode Materials in Lithium Ion Batteries[J]. Chemical Engineering Journal, 2021, 404: 127117.

[113]Wang Z, Zhao Z, Li T, et al. High-performance tin dioxide/graphdiyne composite anode materials for lithium/sodium-ion batteries[J]. Journal of Power Sources, 2025b, 638: 236609.

[114]Wen K, Xia M, Deng P, et al. A sandwich-structured double-battery device for direct evaluation of lithium diffusion coefficients and phase transition in electrodes of lithium ion batteries[J]. Chemical Engineering Science, 2019, 200: 80-86.

[115]Winton A J, Allen M A. Rational Design of a Bifunctional Peptide Exhibiting Lithium Titanate Oxide and Carbon Nanotube Affinities for Lithium-Ion Battery Applications[J]. ACS Applied Materials and Interfaces, 2023, 15: 8579-8589.

[116]Wu L, Yuan G, Gao F, et al. Self-assembly of polyoxometalate-based metal-organic framework with trefoil sign structural feature as efficient anode for lithium ion batteries[J]. Solid State Sciences, 2025, 159: 107774.

[117]Wu Y P, Rahm E, Holze R. Carbon anode materials for lithium ion batteries[J]. Journal of Power Sources, 2003, 114: 228-236.

[118]Xie J, Yin J, Xu L, et al. Nanostructured anode materials for high-performance lithium-ion batteries[J]. Journal of Alloys and Compounds, 2024, 1008: 176620.

[119]Xiong D, Deng X, Cao Z, et al. 2D Metal–Organic Frameworks for Electrochemical Energy Storage[J]. Energy & Environmental Materials, 2023, 6: e12521.

[120]Xiong Y, He M, Wu Y, et al. A comprehensive review on the utilization of industrial solid waste in thermal energy storage field[J]. Solar Energy Materials and Solar Cells, 2025, 285: 113562.

[121]Xue R, Liu Y-S, Wang M-Y, et al. Combination of covalent organic frameworks (COFs) and polyoxometalates (POMs): The preparation strategy and potential application of COF–POM hybrids[J]. Materials Horizons, 2023, 10: 4710-4723.

[122]Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal–organic framework[J]. Nature, 1995, 378: 703-706.

[123]Yan Q, Duan X, Liu Y, et al. A hybridization cage-confinement pyrolysis strategy for ultrasmall Ni3Fe alloy coated with N-doped carbon nanotubes as bifunctional oxygen electrocatalysts for Zn–air batteries[J]. Journal of Materials Chemistry A, 2023, 11: 1430-1438.

[124]Yang Q, Song R, Wang Y, et al. One-pot synthesis of Zr-MOFs on MWCNTs for high-performance electrochemical supercapacitor[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127665.

[125]Yang X, Zhu P, Ma X, et al. Graphite-like polyoxometalate-based metal–organic framework as an efficient anode for lithium ion batteries[J]. CrystEngComm, 2020, 22: 1340-1345.

[126]Yuan S, Lai Q, Duan X, et al. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review[J]. Journal of Energy Storage, 2023, 61: 106716.

[127]Zhang D, Lu J, Pei C, et al. Electrochemical Activation, Sintering, and Reconstruction in Energy-Storage Technologies: Origin, Development, and Prospects[J]. Advanced Energy Materials, 2022, 12: 2103689.

[128]Zhang H, Zou R, Zhao Y. Macrocycle-based metal-organic frameworks[J]. Coordination Chemistry Reviews, 2015, 292: 74-90.

[129]Zhang W, Ahmed R, Habibi S. Understanding the impact of recent usage on lithium-ion battery impedance through the relaxation phenomena[J]. Journal of Power Sources, 2025, 630: 236108.

[130]Zhao T, Luo F, Xiao P, et al. Strategies for the preparation of MOFs-based composites and their research progress in electrocatalysis[J]. Microporous and Mesoporous Materials, 2025, 389: 113560.

[131]Zheng M, Tang H, Hu Q, et al. Tungsten-Based Materials for Lithium-Ion Batteries[J]. Advanced Functional Materials, 2018, 28: 1707500.

[132]Zhong C, Deng Y, Hu W, et al. A review of electrolyte materials and compositions for electrochemical supercapacitors[J]. Chemical Society Reviews, 2015, 44: 7484-7539.

[133]Zhong M, Kong L, Li N, et al. Synthesis of MOF-derived nanostructures and their applications as anodes in lithium and sodium ion batteries[J]. Coordination Chemistry Reviews, 2019, 388: 172-201.

[134]Zhou X, Yu L, Lou X W. Formation of Uniform N-doped Carbon-Coated SnO2 Submicroboxes with Enhanced Lithium Storage Properties[J]. Advanced Energy Materials, 2016, 6: 1600451.

[135]Zhu Y, Connell J G, Tepavcevic S, et al. Dopant-Dependent Stability of Garnet Solid Electrolyte Interfaces with Lithium Metal[J]. Advanced Energy Materials, 2019, 9: 1803440.

[136]Zoller F, Böhm D, Bein T, et al. Tin Oxide Based Nanomaterials and Their Application as Anodes in Lithium-Ion Batteries and Beyond[J]. ChemSusChem, 2019, 12: 4140-4159

中图分类号:

 O61    

开放日期:

 2025-06-17    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式