中文题名: | 基于复杂网络的城市轨道交通站点级联过载分析与 鲁棒性优化 |
姓名: | |
学号: | 2022819062 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085400 |
学科名称: | 工学 - 电子信息 |
学生类型: | 硕士 |
学位: | 电子信息硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 复杂网络 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2024-01-01 |
答辩日期: | 2024-05-30 |
外文题名: | Cascade Overload Analysis and Robust Optimization of Urban Rail Transit Stations Based on Complex Networks |
中文关键词: | |
外文关键词: | Complex networks ; Urban rail transit ; Cascading failure ; Load distribution ; Robust optimization |
中文摘要: |
城市轨道交通系统承担着巨大的日常客流量,是城市交通网络的关键组成部分。随着城市的快速发展和人口增长,轨道交通网络的复杂性和运营压力也随之增加。在这种背景下,研究基于复杂网络的轨道交通级联过载模型具有重要的现实意义和应用价值。 然而目前对此的研究仍有不足:一是目前的模型过于理论化,实际上站点的容量跟列车发车频率息息相关,二是大部分模型在节点失效时会直接删除站点,破坏了网络原有的完整性。为此,本文研究通过构建一个基于复杂网络的轨道交通级联过载模型,深入分析并优化轨道交通网络的鲁棒性。本模型充分考虑了失效随时间的演变过程、失效传播机制、站点负载容量变化、列车发车频率以及网络拓扑结构贡献系数等多重因素。区别于以往的研究方法,模型保留了网络的拓扑结构完整性,以更真实地反映网络在面对各种挑战时的响应和适应能力。为了更加贴合实际运营情况,通过动态调整列车发车频率来改变网络中节点的容量,进而影响网络的整体运行状态。同时本文还提出了多个指标来评估和优化网络的鲁棒性,包括网络非拥挤站点数量比例、网络非拥挤线路总长度比例、网络非拥挤线路介数之和、非拥挤站点负载占网络站点总负载比例以及网络效率和网络运营效率等。 以南京市轨道交通网络为例,通过调整关键接驳站点的发车频率,探索了提高网络鲁棒性的策略。实验结果揭示了网络对节点度的依赖性,表明度较小的节点更容易发生失效。此外,本文还研究了如何通过调整接驳站点的发车频率来控制级联过载的规模,以1号线为例在βl 城市轨道交通系统承担着巨大的日常客流量,是城市交通网络的关键组成部分。随着城市的快速发展和人口增长,轨道交通网络的复杂性和运营压力也随之增加。在这种背景下,研究基于复杂网络的轨道交通级联过载模型具有重要的现实意义和应用价值。 然而目前对此的研究仍有不足:一是目前的模型过于理论化,实际上站点的容量跟列车发车频率息息相关,二是大部分模型在节点失效时会直接删除站点,破坏了网络原有的完整性。为此,本文研究通过构建一个基于复杂网络的轨道交通级联过载模型,深入分析并优化轨道交通网络的鲁棒性。本模型充分考虑了失效随时间的演变过程、失效传播机制、站点负载容量变化、列车发车频率以及网络拓扑结构贡献系数等多重因素。区别于以往的研究方法,模型保留了网络的拓扑结构完整性,以更真实地反映网络在面对各种挑战时的响应和适应能力。为了更加贴合实际运营情况,通过动态调整列车发车频率来改变网络中节点的容量,进而影响网络的整体运行状态。同时本文还提出了多个指标来评估和优化网络的鲁棒性,包括网络非拥挤站点数量比例、网络非拥挤线路总长度比例、网络非拥挤线路介数之和、非拥挤站点负载占网络站点总负载比例以及网络效率和网络运营效率等。 以南京市轨道交通网络为例,通过调整关键接驳站点的发车频率,探索了提高网络鲁棒性的策略。实验结果揭示了网络对节点度的依赖性,表明度较小的节点更容易发生失效。此外,本文还研究了如何通过调整接驳站点的发车频率来控制级联过载的规模,以1号线为例在βl |
外文摘要: |
As Urban rail transit systems handle significant daily passenger volumes and are a crucial component of urban transportation networks. With rapid urban development and population growth, the complexity and operational pressure on these networks have increased. In this context, studying rail transit cascading overload models based on complex networks holds substantial practical significance and application value. However, current research in this area has certain limitations: firstly, existing models are overly theoretical and do not adequately consider the correlation between station capacity and train dispatch frequency; secondly, most models directly remove stations upon node failure, disrupting the network's integrity. This study addresses these issues by constructing a cascading overload model for rail transit based on complex networks, providing an in-depth analysis and optimization of the network's robustness. The model comprehensively considers multiple factors, including the evolution of failures over time, failure propagation mechanisms, variations in station load capacity, train dispatch frequency, and the contribution coefficients of network topology. Unlike previous research methods, this model maintains the integrity of the network topology, thereby more accurately reflecting the network's response and adaptability to various challenges. To better align with actual operational conditions, the study dynamically adjusts train dispatch frequency to alter the capacity of nodes within the network, consequently affecting the overall operational state of the network. Additionally, the study introduces several metrics to evaluate and optimize network robustness, including the proportion of non-congested stations, the total length of non-congested lines, the betweenness of non-congested lines, the load ratio of non-congested stations to total station load, and network efficiency and operational efficiency. Using Nanjing's rail transit network as a case study, the research explores strategies to enhance network robustness by adjusting the dispatch frequency at critical transfer stations. Experimental results reveal the network's dependence on node degree, indicating that nodes with smaller degrees are more prone to failure. Furthermore, the study examines how adjusting the dispatch frequency at transfer stations can control the scale of cascading overloads. For instance, reducing the dispatch frequency of Line 1 within the range of β_l from -0.2 to -0.6 shows favorable network responses, with only minor adjustments (an increase of 0.02) needed for Line 2 at β_l = -0.6. As the reduction in Line 1's dispatch frequency continues, especially when β_l reaches -0.8 and -1, significant increases in dispatch frequency for Lines 2 and 10 are required. Finally, the study develops an optimized simulation visualization platform based on Python GUI integrated with ArcGIS data. This platform intuitively displays algorithm results, enabling users to easily simulate the impact of different operational strategies on network robustness and observe the network's evolution over time, including the identification of overloaded nodes, the process of traffic redistribution, and the effectiveness of network robustness optimization strategies. |
参考文献: |
[1] 汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 清华大学出版社有限公司, 2006. [2] 邢茹茹. 城市区域路网级联失效主动防控理论及方法研究[D]. 吉林大学, 2018. [3] 胡海波,王林. 幂律分布研究简史[J]. 物理, 2005, 34(12): 889-896. [4] 吴建军,高自友,孙会君,等. 城市交通系统复杂性[M]. 北京:科学出版社, 2010. [5] 彭刚. 因特网拓扑结构复杂性研究[D]. 武汉:华中师范大学, 2006. [6] 郭世泽,陆哲明. 复杂网络基础理论[M]. 北京:科学出版社, 2012. [7] Liu W, Tang Y, Yang F, et al. A multi-objective decision-making approach for the optimal location of electric vehicle charging facilities[J]. Computers, Materials & Continua, 2019, 60(2): 813-834. [8] Ding R, Ujang N, Hamid H B, et al. Application of complex networks theory in urban traffic network researches[J]. Networks and Spatial Economics, 2019, 19: 1281-1317. [9] Yin R R, Yuan H , Wang J , et al. Modeling and analyzing cascading dynamics of the urban road traffic network[J]. Physica A: Statistical Mechanics and its Applications, 2021, 566. [10] Erdös P, Renyi A. On random graphs[J]. Publicationes Mathematicae, 1959,6(4):290-297. [11] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’networks[J]. Nature, 1998, 393(6684): 440-442. [12] Barabási A L, Albert R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512. [13] Dobson I, Carreras B A, Lynch V E, et al. An initial model for complex dynamics in electric power system blackouts[C]//hicss,2001,28: 50-53. [14] Dobson I, Carreras B A, Newman D E. A probabilistic loading-dependent model of cascading failure and possible implications for blackouts[C]//36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the. IEEE, 2003,30: 10-15. [15] Motter A E, Lai Y C. Cascade-based attacks on complex networks[J]. Physical Review E, 2012, 66(6): 065102. [16] Lei Y, Zhang C, Shen X, et al. Fragility Induced by Interdependency of Complex Networks and Their Higher-Order Networks[J]. Entropy, 2022, 25(1): 22. [17] Chen C Y, Zhou Y, Wang Y, et al. Vulnerable Line Identification of Cascading Failure in Power Grid Based on New Electrical Betweenness[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 53: 18-21. [18] Zhang D, Jia L, Ning J, et al. Power Grid Structure Performance Evaluation Based on Complex Network Cascade Failure Analysis[J]. Energies, 2023, 16(2): 990. [19] Li T, Rong L. A comprehensive method for the robustness assessment of high-speed rail network with operation data: A case in China[J]. Transportation Research Part A: Policy and Practice, 2020, 132: 666-681. [20] Jing K, Du X, Shen L, et al. Robustness of complex networks: Cascading failure mechanism by considering the characteristics of time delay and recovery strategy[J]. Physica A: Statistical Mechanics and its Applications, 2019, 534: 122061. [21] Hao Y, Wang Y, Jia L, et al. Cascading failures in networks with the harmonic closeness under edge attack strategies[J]. Chaos, Solitons & Fractals, 2020, 135: 109772. [22] Xia Y, Wang C, Shen H L, et al. Cascading failures in spatial complex networks[J]. Physica A: Statistical Mechanics and its Applications, 2020, 559: 125071. [23] Yang S, Chen W, Zhang X, et al. A graph-based method for vulnerability analysis of renewable energy integrated power systems to cascading failures[J]. Reliability Engineering & System Safety, 2021, 207: 107354. [24] Peng H, Qian C, Zhao D, et al. Targeting attack hypergraph networks[J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2022, 32(7): 073121. [25] Yin X, Wu J. Simulation Study on Topology Characteristics and Cascading Failure of Hefei Subway Network[J]. Sustainability, 2023, 15(1): 422. [26] Peng S. Disaster sprawling dynamics model for the cascading failure in urban road traffic network[J]. Changsha University of Science & Technology, Changsha, China, 2014. [27] Li C, Yue W, Mao G, et al. Congestion propagation based bottleneck identification in urban road networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69(5): 4827-4841. [28] Dui H, Meng X, Xiao H, et al. Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game[J]. Reliability Engineering & System Safety, 2020, 199: 106919. [29] Xing R, Yang Q, Zheng L. Research on cascading failure model of urban regional traffic network under random attacks[J]. Discrete Dynamics in Nature and Society, 2018, 2018: 1-14. [30] Wu J J, Sun H J, Gao Z Y. Cascading failures on weighted urban traffic equilibrium networks[J]. Physica A: Statistical Mechanics and its Applications, 2007, 386(1): 407-413. [31] Fan Y, Zhang F, Jiang S, et al. Dynamic robustness analysis for subway network with spatiotemporal characteristic of passenger flow[J]. IEEE Access, 2020, 8: 45544-45555. [32] Fu X, Yang Y. Modeling and analyzing cascading failures for Internet of Things[J]. Information Sciences, 2021, 545: 753-770. [33] Kornbluth Y, Cwilich G, Buldyrev S V, et al. Distribution of blackouts in the power grid and the Motter and Lai model[J]. Physical Review E, 2021, 103(3): 032309. [34] Xu J, Wang X F. Cascading failures in scale-free coupled map lattices[C]//2005 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE, 2005: 3395-3398. [35] Sun L, Huang Y, Chen Y, et al. Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China[J]. Transportation Research Part A: Policy and Practice, 2018, 108: 12-24. [36] Xiong Z H, Yao Z Y. Influence scope of cascading failure on rail transit system[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(1): 12. [37] Kermanshah A, Derrible S, Robustness of road systems to extreme flooding: Using elements of GIS, travel demand, and network science[J]. Natural Hazards ,2017, 86: 151–164. [38] Hong L, Ouyang M, Xu M, et al. Time-varied accessibility and vulnerability analysis of integrated metro and high-speed rail systems[J]. Reliability Engineering and System Safety 2020, 193:106622. [39] Santos J R, Safitri N D, Safira M, et al. Road network vulnerability and city-level characteristics: A nationwide comparative analysis of Japanese cities[J]. Environment and Planning B: Urban Analytics and City Science, 2021, 48(5): 1091-1107. [40] Valenzuela J F B, Legara E F T, Monterola C P. Typology, network features and damage response in worldwide urban road systems[J]. PLoS one, 2022, 17(3): e0264546. [41] Cheng Z, Cao J, Hayat T. Cascade of failures in interdependent networks with different average degree[J]. International Journal of Modern Physics C, 2014, 25(05): 1440006. [42] Huang Z, Wang C, Stojmenovic M, et al. Characterization of cascading failures in interdependent cyber-physical systems[J]. IEEE Transactions on Computers, 2014, 64(8): 2158-2168. [43] Yang Y, Liu Y, Zhou M, et al. Robustness assessment of urban rail transit based on complex network theory: A case study of the Beijing Subway[J]. Safety science, 2015, 79: 149-162. [44] Chattopadhyay S, Dai H, Hosseinalipour S. Designing optimal interlink patterns to maximize robustness of interdependent networks against cascading failures[J]. IEEE Transactions on Communications, 2017, 65(9): 3847-3862. [45] Li S J, Shuai B, Liu Y S. Cascading failure mechanism of urban rail transit network[J]. China Transp. Rev, 2020, 42: 69-74. [46] Lv H, Wu Z, Zhang X, et al. Cascading Failure Analysis of Hierarchical Industrial Wireless Sensor Networks under the Impact of Data Overload[J]. Machines, 2022, 10(5): 380. [47] Park B, Su X, Sun K. An Enhanced OPA Model: Incorporating Dynamically Induced Cascading Failures[J]. IEEE Transactions on Power Systems[J], 2022, 37(6): 4962-4965. [48] Turalska M, Swami A. Greedy control of cascading failures in interdependent networks[J]. Scientific reports, 2021, 11(1): 3276. [49] Umoh E A, Umar M, Umar M N. Chaos Theory Applied to Cascading Disaster Dynamics, Modelling and Control[C]//2022 IEEE Nigeria 4th International Conference on Disruptive Technologies for Sustainable Development (NIGERCON). IEEE, 2022: 1-4. [50] Wu Q, Han Z, Cui C, et al. Vulnerability Identification and Cascading Failure Spatiotemporal Patterns on Road Network under the Rainstorm Disaster[J]. ISPRS International Journal of Geo-Information[J], 2022, 11(11): 564. [51] Aparicio J T, Arsenio E, Henriques R. Assessing robustness in multimodal transportation systems: a case study in Lisbon[J]. European transport research review[J], 2022, 14(1): 28. [52] Yifan Zhang, S. Thomas Ng,Robustness of urban railway networks against the cascading failures induced by the fluctuation of passenger flow. Reliability Engineering & System Safety[J], 2022, 219: 108227. [53] Zhang, Jianhua, et al. Vulnerability assessments of urban rail transit networks based on extended coupled map lattices with evacuation capability[J]. Reliability Engineering & System Safety,2024, 243: 109826. [54] Md. Azizul Hakim, Amena Begum Farha, Fatema Jahan, Md. Safty, Sadman Al Farabe,et al. Vulnerability Detection of US Power Grid Network Based on Cascading Failure Through Underlying Principles of Complex Network Analysis[J],IEEE,2023,378:992 [55] M. Naima, Matthieu Latapy, Clémence Magnien,et al. Temporal Betweenness Centrality on Shortest Paths Variants[J], arXiv preprint arXiv,2023,67:93-96 [56] G. Ódor, I. Papp, Krist'of Benedek, B'alint Hartmann et al. Improving power-grid systems via topological changes, or how self-organized criticality can help stability[J] ,hys. Rev. Research, 2024, 6: 013194. [57] Y Wu et al.,Robust Analysis of Cascading Failures in Complex Networks[J], Physica A, 2021, 126320. [58] F Xiao et al.Cascading Failure Analysis and Critical Node Identification in Complex Networks, Engineering Failure Analysis[J], 2024, 108: 108409. [59] G Sun et al.,Study of Cascading Failure in Multisubnet Composite Complex Networks[J], Symmetry, 2021, 13(3): 523. [60] Song, J., Ding, J., Gui, X., & Zhu, Y.. Assessment and solutions for vulnerability of urban rail transit network based on complex network theory, A case study of Chongqing[J]. Heliyon,2024,10 (5): e27237. |
中图分类号: | TP3 |
开放日期: | 2024-06-19 |