中文题名: | 四种作物的土壤镉阈值及一株镉固化细菌对作物镉积累的阻控效应研究 |
姓名: | |
学号: | 2018116005 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 071001 |
学科名称: | 理学 - 生物学 - 植物学 |
学生类型: | 硕士 |
学位: | 理学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 污染土壤修复 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2021-06-15 |
答辩日期: | 2021-05-29 |
外文题名: | Soil Cadmium Thresholds for Four Crops and Effect of a Cadmium-Immobilizing Bacteria on Reduced Cadmium Accumulation in Crops |
中文关键词: | |
外文关键词: | Crops ; Soil physicochemical properties ; Correlation analysis ; Cd threshold ; Bacillus sp. ; Cd immobilization |
中文摘要: |
农田镉(Cd)污染一直是我国农业生产面临的严峻环境问题之一,我国陆续颁布了三版《环境质量标准》用以规范农田重金属的安全阈值,但由于复杂的土壤环境以及不同植物镉富集能力的差异性,现行土壤镉阈值仍存在很大的局限性。本文针对来源于我国6个地区的83份原位农田镉污染土壤,研究了四种农作物的土壤镉阈值。同时,探究了镉固化菌株QX2阻控作物镉积累的效应,以期为安全合理利用中轻度镉污染农田提供理论依据,研究结果如下: 83份原位农田镉污染土壤采集自我国江苏南京、湖南株洲、广西桂林、广东韶关、河南新乡和天津等地区。其中单一镉污染土壤占26.14%,镉、铅和锌复合污染土壤占73.86%。土壤镉、铅和锌含量分别为0.19 ~ 12.22 mg/kg、10.18 ~ 1264 mg/kg和34.87 ~ 1775 mg/kg,超标率分别为90.36%、54.22%和48.19%。有效态镉为0.12 ~ 7.61 mg/kg。土壤pH为5.19 ~ 7.72,阳离子交换量(CEC)为2.06 ~ 35.38 cmol+/kg,有机质(SOM)含量为4.58 ~ 69.73 g/kg,电导率(EC)为19.60 ~ 875.00 μs,速效磷(AP)、全氮(TN)含量丰富,速效钾(AK)含量较少,土壤质地类型多为壤土。层次聚类分析和Pearson相关性分析结果表明,土壤中镉、铅和锌污染程度具有高度相似性(p<0.01)。土壤pH值与重金属含量呈负相关。 为研究不同农作物的土壤镉阈值,本文采用盆栽实验分别种植了小麦(Triticum aestivum L.)、青菜(Brassica rapa var. chinensis L.)、杨花萝卜(Raphanus sativus L. )和胡萝卜(Daucus carota L. var. Sativa Hoffm)等四种作物。结果表明,可食部位镉含量超标率分别为小麦(72.34%)、青菜(46.81%)、杨花萝卜(55.56%)和胡萝卜(61.11%),污染土壤中种植四种作物的安全性高低为青菜>杨花萝卜>胡萝卜>小麦。四种作物不同部位的镉积累情况为小麦(籽粒<稃<秸秆)、青菜(茎叶<根)、杨花萝卜(块根木质部<块根韧皮部<须根<茎叶)和胡萝卜(块根<茎叶)。相关性分析表明,12项土壤理化指标中,与作物可食部位镉含量相关性最高的是土壤有效态镉,呈显著正相关(p<0.01),与pH呈显著负相关(p<0.01)。基于土壤有效态镉与pH构建四种作物镉含量的预测方程,R2均达到了0.84以上。推导出在不同pH条件下对应的不同土壤有效态镉阈值,镉阈值随pH升高而升高。如当土壤pH为6.5时,土壤有效态(DTPA提取态)镉阈值分别为小麦(0.44 mg/kg)、青菜(1.15 mg/kg)、杨花萝卜(0.61 mg/kg)和胡萝卜(0.55 mg/kg)。 本文从江苏南京栖霞山镉污染农田土壤中,分离纯化了一株耐镉且具有促生性质的芽孢杆菌菌株Bacillus sp.QX2。盆栽条件下施加QX2菌液可以使青菜生物量增加21.10%,镉含量降低26.60%,土壤有效态镉降低16.41%。对QX2菌株生理生化特性的测定发现,QX2菌株繁殖速度快,且能分泌碱性物质,可以耐受5 ~ 11的pH范围。镉最小抑菌浓度(MIC)为0.506 mmol/L。0.1 mmol/L氯化镉溶液培养下,QX2与3%生物炭(BC)对镉的去除率达71.74%,且使溶液pH显著升高(p<0.01)。 通过盆栽试验研究了不同处理(对照(Control)、施加QX2菌液(QX2)、施加3%稻壳生物炭(BC)、施加QX2菌液和3%生物炭(QX2+BC))对小麦、青菜、杨花萝卜和胡萝卜镉积累的阻控效果。结果表明,相比于对照,三种施加处理后四种作物生物量增加了6.27 ~ 52.89%,可食部位镉含量降低了9.87 ~ 44.29%,其中QX2+BC处理组的青菜和杨花萝卜达到食品安全标准。四种作物的光合速率、叶绿素含量、可溶性糖含量等也有不同程度地提高,同时叶片中丙二醛(MDA)含量和抗氧化酶活性降低。土壤有效态镉降低了6.70 ~ 32.16%,pH值提高了0.12 ~ 0.38,土壤脲酶活性也显著增加(p<0.05)。三种施加处理中,QX2+BC处理组的促生效果和对作物镉积累的阻控效果最好。 综上所述,在12种土壤理化指标中,有效态镉与pH是决定作物镉积累的关键土壤因素,无污染或低污染的偏碱性土壤更符合农作物安全种植的要求。降低土壤pH是修复及安全利用重金属污染土壤的有效手段。QX2菌株联合生物炭作用的镉固定化修复技术,一方面能提高土壤pH,显著降低土壤有效态镉,能有效降低作物的镉积累量,使其符合食品安全标准。另一方面能显著提高作物生物量,增加经济效益。为提高农作物安全性以及酸性轻度镉污染农田的“边修复边利用”,提供了重要的理论依据。 |
外文摘要: |
Cadmium(Cd) contamination in agricultural fields has been one of the serious environmental problems facing agricultural production in China, and China has promulgated three editions of Environmental Quality Standards to regulate the safety thresholds of heavy metals in agricultural fields, but the existing soil Cd thresholds still have great limitations due to the complex soil environment and the variability of Cd enrichment capacity of different plants. In this paper, soil Cd thresholds for four crops were investigated for 83 in situ Cd-contaminated soils from six regions in China. Meanwhile, the effect of Cd-immobilizing strain QX2 in blocking Cd accumulation in crops was investigated to provide a theoretical basis for the safe and reasonable use of medium to light Cd-contaminated farmland, and the results of the study are as follows. 83 in-situ Cd-contaminated farmland soils were collected from Nanjing, Jiangsu, Zhuzhou, Hunan, Guilin, Guangxi, Shaoguan, Guangdong, Xinxiang, Henan and Tianjin, China. The contents of Cd, Pb and Zn are 0.19 ~ 12.22 mg/kg, 10.18 ~ 1263.63 mg/kg and 34.87 ~ 1775.10 mg/kg, respectively, and the exceedance rates were 90.36%, 54.22% and 48.19%, respectively. The content of available Cd is 0.12 ~ 7.61 mg/kg. There is a serious situation of heavy metal pollution. Soil pH was 5.19 ~ 7.72, CEC was 2.06 ~ 35.38 cmol+/kg, EC was 19.60 ~ 875.00 μs, SOM content was 4.58 ~ 69.73 g/kg, AP and TN were abundant, AK content was low, and the soil texture type was mostly loamy. The results of hierarchical cluster analysis and Pearson correlation analysis showed that the degree of Cd, Pb and Zn contamination in the soil was highly similar (p<0.01), pH was negatively correlated with heavy metal content. To study the soil Cd thresholds of different crops, wheat (Triticum aestivum L.), cabbage (Brassica rapa var. chinensis L.), radish (Raphanus sativus L.) and carrot (Daucus carota L. var. Sativa Hoffm). The exceedances of Cd in edible parts of the four crops were wheat (72.34%), cabbage (46.81%), radish (55.56%) and carrot (61.11%), and the safety of growing the four crops in contaminated soil was cabbage > radish > carrot > wheat. The correlation analysis of 12 soil physicochemical indicators with Cd accumulation in crops showed that the highest correlation between Cd content in edible parts of the four crops and the available of Cd in soil was significant positive correlation (p<0.01) and a significant negative correlation with pH (p<0.01). The prediction equations of Cd content of the four crops were constructed based on the available of soil Cd and pH, and the R2 reached above 0.84 in all cases. Different soil available Cd thresholds corresponding to different pH conditions were deduced, and the Cd threshold increased with increasing pH. When the soil pH was 6.5, the soil available Cd (DTPA extracted state) thresholds were wheat (0.44 mg/kg), cabbage (1.15 mg/kg), radish (0.61 mg/kg) and carrot (0.55 mg/kg), respectively. In this paper, a Cd-tolerant and probiotic strain of Bacillus sp. QX2 was isolated and purified from Cd-contaminated farmland soil in Qixia Mountain, Nanjing, Jiangsu, China. application of QX2 bacterial solution under pot conditions increased the biomass of cabbage by 21.10%, reduced the Cd content by 26.60%, and reduced the available of soil Cd by 16.41%. Determination of physiological and biochemical characteristics of QX2 strain revealed that QX2 strain multiplied rapidly and could secrete alkaline substances and tolerate pH range of 5 ~ 11. The Cd MIC of QX2 was 0.506 mmol/L. The removal of Cd by QX2 with 3% biochar (BC) under 0.1 mmol/L Cd chloride solution incubation reached 71.74% and increased the pH of the solution significantly (p<0.01). The blocking effect of different treatments (control (Control), application of QX2 bacterial solution (QX2), application of 3% biochar (BC), application of QX2 bacterial solution and 3% biochar (QX2+BC)) on Cd accumulation in wheat, cabbage, radish and carrot was investigated by pot experiments. The results showed that compared with the control, the biomass of the four crops increased by 6.27 ~ 52.89% after the three applied treatments, and the Cd content in edible parts decreased by 9.87 ~ 44.29%, among which the cabbage and radish in the QX2+BC treatment group met the food safety standard. Photosynthetic rate, chlorophyll content, and soluble sugar content of the four crops also increased, while MDA and antioxidant enzyme activities decreased. Available Cd decreased by 6.70 ~ 32.16%, pH increased by 0.12 ~ 0.38, and soil urease activity also increased significantly (p<0.05). Among the three applied treatments, the QX2+BC treatment group showed the best growth-promoting effect and deterrent effect on crop Cd accumulation. In conclusion, among the 12 soil physicochemical indicators, available Cd and pH are the key factors determining Cd accumulation in crops, and unpolluted or low-polluted alkaline soils are more compatible with the requirements for safe crop cultivation. Reducing soil pH is an effective means to remediate and safely utilize heavy metal contaminated soil. Cd immobilization remediation technology by QX2 strain combined with biochar can, on the one hand, increase soil pH and significantly reduce soil Cd in its active state, which can effectively reduce Cd accumulation in crops and make them meet food safety standards. On the other hand, it can significantly improve crop biomass and increase economic benefits. It provides an important theoretical basis for improving the safety of crops and the "use while remediation" of acidic and lightly Cd-contaminated farmland. |
参考文献: |
1.Cheng C, Wang Q, Wang QX, et al. Wheat-associated Pseudomonas taiwanensis WRS8 reduces cadmium uptake by increasing root surface cadmium adsorption and decreasing cadmium uptake and transport related gene expression in wheat[J]. Environmental Pollution, 2020, 268. 2.Dai J, Xin LI, Wang X, et al. Pollution characteristics and ecological risk assessment of heavy metals in the surface sediments of Daming Lake[J]. Environmental Chemistry, 2020, 39(1): 249-264. 3.Dobrikova AG, Apostolova EL, Han A, et al. Cadmium toxicity in Salvia sclarea L.: An integrative response of element uptake, oxidative stress markers, leaf structure and photosynthesis[J]. Ecotoxicology and Environmental Safety, 2021, 209(41):111851. 4.Farquhar GD, Oleary MH, Berry JA. On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves[J]. Functional Plant Biology, 1982, 9(2):121-137. 5.Gaby JC, Buckley DH, Balcazar JL. A Comprehensive Evaluation of PCR Primers to Amplify the nifH Gene of Nitrogenase[J]. Plos One, 2012, 7(7):42149. 6.Gopalakrishnan S, Sathya A, Vijayabharathi R, et al. Plant growth promoting rhizobia: challenges and opportunities[J]. Biotech, 2015, 5(4):355-377. 7.Han H, Sheng X, Hu J, et al. Metal-immobilizing Serratia liquefaciens CL-1 and Bacillus thuringiensis X30 increase biomass and reduce heavy metal accumulation of radish under field conditions[J]. Ecotoxicology and Environmental Safety, 2018, 161(OCT.):526-533. 8.Han H, Wu XJ, Yao LH, et al. Heavy metal-immobilizing bacteria combined with calcium polypeptides reduced the uptake of Cd in wheat and shifted the rhizosphere bacterial communities[J]. Environmental Pollution, 2020, 267:115432. 9.Han HS, Supanjani, Lee KD. Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber[J]. Plant, Soil and Environment, 2006, 52(3):130-136. 10.He LY, Li Y, Liu T, et al. Isolation and Characterization of Cadmium-Resistant Endophytic and Rhizobacteria From Solanum nigrum in Orefield[J]. Journal of Ecology and Rural Environment, 2011, 27(6): 83-88. 11.Hu W, Huang B, Borggaard OK, et al. Soil threshold values for cadmium based on paired soil-vegetable content analyses of greenhouse vegetable production systems in China: Implications for safe food production.[J]. Environmental Pollution, 2018, 241:922-929. 12.Jia K, Yu H, Feng WQ, et al. Effect of different N, P and K fertilizers on soil pH and available Cd under waterlogged conditions[J]. Environmental Science, 2009, 30(11): 3414-3421. 13.Koga K, Tamura T, Ikemoto H. Calorimetric evaluations of Bacillus subtilis vegetative and spore cells colonial growth and suppressive effects of sucrose monopalmitate[J]. Biocontrol Science, 2008, 13(4):111-118. 14.Li H, Abbas T, Cai M, et al. Cd Bioavailability and Nitrogen Cycling Microbes Interaction Affected by Mixed Amendments Under Paddy-Pak Choi Continued planting[J]. Environmental Pollution, 2021(8):116542. 15.Li Z, Wang P, Yue X, et al. Effects of Bacillus thuringiensis HC-2 Combined with Biochar on the Growth and Cd and Pb Accumulation of Radish in a Heavy Metal-Contaminated FarmLand under Field Conditions[J]. International Journal of Environmental Research and Public Health, 2019, 16(19):3676. 16.Lindsay D, Oosthuizen MC, Brzel VS, et al. Adaptation of a neutrophilic dairy-associated Bacillus cereus isolate to alkaline pH[J]. Journal of Applied Microbiology, 2010, 92(1):81-89. 17.Liu B, Ai S, Zhang W, et al. Assessment of the bioavailability, bioaccessibility and transfer of heavy metals in the soil-grain-human systems near a mining and smelting area in NW China[J]. Science of The Total Environment, 2017, 609:822-829. 18.Lu JH, Yang XP, Meng XC, et al. Predicting Cadmium Safety Thresholds in Soils Based on Cadmium Uptake by Chinese Cabbage[J]. Pedosphere, 2017, 27(003):475-481. 19.Luo HL, Du P, Shi J, et al. DGT methodology is more sensitive than conventional extraction strategies in assessing amendment-induced soil cadmium availability to rice[J]. Science of the Total Environment, 2021, 760:143949. 20.Manzoor N, Ahmed T, Noman M, et al. Iron oxide nanoparticles ameliorated the cadmium and salinity stresses in wheat plants, facilitating photosynthetic pigments and restricting cadmium uptake[J]. Science of The Total Environment, 2021:145221. 21.Murzabaev AR, Bezrukova MV, Shakirova FM. Protective Responses of Plants to the Toxic Effect of Cadmium Ions[J]. Agrokhimiya, 2014(10):83-93. 22.Nie JX, Huang P, Zhang DC. Study on Effect of Heavy Metal and Rare Earth Metal on Soil Activities[J]. Advanced Materials Research, 2012, 356-360. 23.Nie T, Yang X, Chen H, et al. Effect of biochar aging and co-existence of diethyl phthalate on the mono-sorption of cadmium and zinc to biochar-treated soils[J]. Journal of Hazardous Materials, 2020:124850. 24.Rehman M, Waqar M, Bashir S, et al. Effect of biochar and compost on cadmium bioavailability and its uptake by wheat-rice cropping system irrigated with untreated sewage water: A field study[J]. Arabian Journal of Geosciences, 2021, 14(2). 25.Sha Z, Jing S, Hui G, et al. Improving prediction of metal uptake by Chinese cabbage (Brassica pekinensis L.) based on a soil-plant stepwise analysis[J]. Science of the Total Environment, 2016, 569-570(nov.1):1595-1605. 26.Shentu J, He Z, Yang XE, et al. Accumulation Properties of Cadmium in a Selected Vegetable-Rotation System of Southeastern China[J]. Journal of Agricultural & Food Chemistry, 2008, 56(15):6382. 27.Shi Z, Qi X, Zeng XA, et al. A newly isolated bacterium Comamonas sp. XL8 alleviates the toxicity of cadmium exposure in rice seedlings by accumulating cadmium[J]. Journal of Hazardous Materials, 2021, 403:123824. 28.Sun HY, Wei XF, Sun XM, et al. Bioaccumulation and Translocation Characteristics of Heavy Metals in a Soil-Maize System in Reclaimed Land and Surrounding Areas of Typical Vanadium-Titanium Magnetite Tailings[J]. Environmental Science, 2021,42(3):1166-1176. 29.Tang L, Ying RR, Jiang D, et al. Impaired leaf CO2 diffusion mediates Cd-induced inhibition of photosynthesis in the Zn/Cd hyperaccumulator Picris divaricata.[J]. Plant Physiology & Biochemistry, 2013, 73:70-76. 30.Wang X, Dong G, Liu X, et al. Poly-γ-glutamic acid-producing bacteria reduced Cd uptake and effected the rhizosphere microbial communities of lettuce[J]. Journal of Hazardous Materials, 2020,398:1-11. 31.Wang X, Hu K, Xu Q, et al. Immobilization of Cd Using Mixed Enterobacter and Comamonas Bacterial Reagents in Pot Experiments with Brassica rapa L[J]. Environmental Science and Technology, 2020, 54(24):15731-15741. 32.Wang X, Lu X, Yi X, et al. Changes in soil available cadmium and bacterial communities after fallowing depend on contamination levels[J]. Journal of Soils and Sediments, 2021,21(3):1408-1419. 33.Xu MM, Liu AF, Shi RG, et al. Characteristics of Heavy Metals Pollution of FarmLand and the Leaching Effect of Rainfall in Tianjin. Environmental Science, 2018, 39(3): 1095-1101. 34.Yang Y, Chen W, Wang M, et al. Regional accumulation characteristics of cadmium in vegetables: Influencing factors, transfer model and indication of soil threshold content[J]. Environmental Pollution, 2016:1036-1043. 35.Yao XZ, Chen P, Cheng T, et al. Inoculation of Bacillus megaterium strain A14 alleviates cadmium accumulation in peanut: effects and underlying mechanisms[J]. Journal of Applied Microbiology, 2021. 36.Zeng Y, Liu J, Li Y, et al. Accumulation and health implications of metals in topsoil of urban riparian zone adjacent to different functional areas in a subtropical city[J]. Journal of environmental quality, 2021. 37.Zhang J, Wang X, Zhang LX, et al. Reducing cadmium bioavailability and accumulation in vegetable by an alkalizing bacterial strain[J]. Science of the Total Environment, 2021, 758. 38.Zhang JR, Li HZ, Zhou YZ, et al. Bioavailability and soil-to-crop transfer of heavy metals in farmLand soils: A case study in the Pearl River Delta, South China[J]. Environmental Pollution, 2018, 235. 39.Zhang SN, Gu Y, Zhu ZL, et al. Stable isotope fractionation of cadmium in the soil-rice-human continuum[J]. Science of The Total Environment, 2020, 761:143262. 40.Zhao Q, Li X, Xiao S, et al. Integrated remediation of sulfate reducing bacteria and nano zero valent iron on cadmium contaminated sediments[J]. Journal of Hazardous Materials, 2021, 406(11):124680. 41.Zhao XQ, Yang HH, Chen J. Evaluation on Characteristics of Heavy Metal Spatial Pollution in FarmLand Soils along the Bijiang River[J]. Applied Mechanics and Materials, 2013, 295-298:1586-1593. 42.Zhao Y, Li H, Sun Z. Correlation analysis of Cd pollution in vegetables and soils and the soil pollution threshold[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(7):149-153. 43.Zhou T, Wang Z, Christie P, et al. Cadmium and Lead Pollution Characteristics of Soils, Vegetables and Human Hair Around an Open‐cast Lead‐zinc Mine[J]. Bulletin of Environmental Contamination and Toxicology, 2021:1-8. 44.Zubair M, Ramzani P, Rasool B, et al. Efficacy of chitosan-coated textile waste biochar applied to Cd-polluted soil for reducing Cd mobility in soil and its distribution in moringa (Moringa oleifera L.)[J]. Journal of Environmental Management, 2021, 284(1):112047. 45.Ashrafuzzaman, Hossen, FA, et al. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the enhancement of rice growth[J]. African Journal of Biotechnology, 2009, 8(7):1247-1252. 46.He B, Wang W, Geng R, et al. Exploring the fate of heavy metals from mining and smelting activities in soil-crop system in Baiyin, NW China [J].Ecotoxicology and Environmental Safety, 2021, 207. 47.Mohamed, Ibrahim, Zhang, et al. Ecological restoration of an acidic Cd contaminated soil using bamboo biochar application[J]. Ecological engineering: The Journal of Ecotechnology, 2015, 84:67-76. 48.鲍士旦. 土壤农化分析. 3版[M]. 中国农业出版社,2000. 49.常鹏云,谢英荷,程红艳,等. 镉对6种根菜类蔬菜生长状况及品质的影响研究[J]. 天津农业科学,2012,18(001):126-130. 50.陈修晓,王翠红,郭琪,等. 氮磷钾肥配施对轻镉污染红壤中小白菜生长及镉累积的影响[J]. 湖南农业科学,2012(05):46-49. 51.陈宇婷,盛光遥,谢康颖,等. 枯草芽孢杆菌耐镉能力驯化及镉吸附特性研究[J]. 工业水处理,2021,41(02):97-102. 52.陈志良,黄玲,周存宇,等. 广州市蔬菜中重金属污染特征研究与评价[J]. 环境科学,2017,38(01):389-398. 53.迟荪琳,徐卫红,熊仕娟,等. 不同镉水平下纳米沸石对土壤pH、CEC及Cd形态的影响[J]. 环境科学,2017,38(04):1654-1666. 54.丁华毅. 生物炭的环境吸附行为及在土壤重金属镉污染治理中的应用[D]. 厦门大学,2014. 55.杜应琼,疏仁宗,王富华,等. 镉污染土壤上偏施氮磷钾肥对蕹菜产量及镉积累的影响[J]. 生态环境学报,2015,000(003):511-516. 56.段海芹,秦秦,吕卫光,等. 有机肥长期施用对设施土壤全镉和有效态镉含量的影响[J]. 土壤学报,2020:1-10 57.谷雨,蒋平,李明德,等. 治理式休耕对“长株潭”镉污染稻田土壤理化特性及镉含量的影响[J]. 农业资源与环境学报,2020:1-9 58.郭军康,董明芳,丁永祯,等. 根际促生菌影响植物吸收和转运重金属的研究进展[J]. 生态环境学报,2015,000(007):1228-1234. 59.郭文娟. 生物炭对镉污染土壤的修复效应及其环境影响行为[D]. 中国农业科学院,2013. 60.韩峰,高雪,陈海燕. 不同种类蔬菜对土壤重金属的富集差异[J]. 贵州农业科学,2014(6):129-132. 61.韩辉. 重金属固定细菌阻控油菜吸收镉,铅效应与机制研究[D]. 南京农业大学,2018. 62.何普. 南方典型污染区土壤稻米镉安全性及其调控技术研究[D]. 贵州大学,2019. 63.黄连喜,魏岚,刘晓文,等. 生物炭对土壤-植物体系中铅镉迁移累积的影响[J]. 农业环境科学学报,2020,302(10):109-120. 64.贾夏,周春娟,董岁明. 镉胁迫对小麦的影响及小麦对镉毒害响应的研究进展[J]. 麦类作物学报,2011,31(4):786-792. 65.蒋欣梅,薛冬冬,于锡宏,等. 玉米秸秆生物炭对镉污染土壤中小白菜生长的影响[J]. 江苏农业学报,2020,36(04):206-212. 66.赖永翔. 生物炭对重金属镉钝化效应及其土壤环境的影响[D]. 福建农林大学,2018. 67.李海燕,熊帜,李欣亚,等. 植物-微生物联合修复重金属污染土壤研究进展[J]. 昆明理工大学学报(自然科学版),2017,042(003):81-88. 68.李婧,周艳文,陈森,等. 我国土壤镉污染现状,危害及其治理方法综述[J]. 安徽农学通报,2015,21(024):104-107. 69.李琋,王雅璇,罗廷,等. 利用生物炭负载微生物修复石油烃-镉复合污染土壤[J]. 环境工程学报,2021,15(02):677-687. 70.李韵雅. 高产铁载体根际促生菌的筛选及其在土壤修复方面的潜在应用[D]. 江南大学,2018. 71.李志涛,王夏晖,赵玉杰,等. 南方典型区域水稻镉富集系数差异影响因素探析[J]. 环境科学与技术,2017(10):1-7. 72.廖启林,刘聪,王轶,等. 水稻吸收Cd的地球化学控制因素研究-以苏锡常典型区为例[J]. 中国地质,2015,000(005):1621-1632. 73.刘爱兰、周天智、管平. 粮食重金属镉的污染及防治[J]. 粮食储藏,2020,276(04):47-49. 74.刘彩凤,史刚荣,余如刚,等. 硅缓解植物镉毒害的生理生态机制[J]. 生态学报,2017,37(023):7799-7810. 75.刘凤,魏雨蒙,刘霜平,等. 镉胁迫对油菜、白菜和萝卜生长和生理特性的影响[J]. 山东化工,2017,046(004):162-164. 76.刘卉,周清明,黎娟,等. 生物炭对植烟土壤养分的影响[J]. 中国农业科技导报,2016,18(003):150-155. 77.刘克. 我国主要小麦产地土壤镉和铅的安全阈值研究[D]. 西北农林科技大学,2016. 78.刘思妹,朱毅,郝睿,等. 镉胁迫对萝卜幼苗生长及相关生理指标的影响[J]. 北方园艺,2014,000(004):13-17. 79.刘香香. 广东省4种蔬菜中镉与土壤镉污染相关性及阈值研究[D]. 华中农业大学,2012. 80.毛懿德,铁柏清,叶长城,等. 生物炭对重污染土壤镉形态及油菜吸收镉的影响[J]. 生态与农村环境学报,2015,31(004):579-582. 81.弭宝彬,刘碧琼,周火强,等. 不同萝卜品种对5种重金属响应规律研究[J]. 核农学报,2020,v.34(05):221-229. 82.彭星辉,谢晓阳. 稻田镉(Cd)污染的土壤修复技术研究进展[J]. 湖南农业科学,2007,000(002):67-69. 83.彭云霄. 根际促生细菌提高植物抗重金属能力的研究进展[J]. 云南化工,2019,46(02):42-44. 84.齐双. 土壤重金属植物修复技术研究进展[J]. 农家参谋,2018,576(05):69-70. 85.孙庆超,王旭东,乔建晨,等. 不同质地土壤对镉的吸附特性及影响因子研究[J]. 土壤,2020,52(03):545-551. 86.孙韵雅,陈佳,王悦, 等. 根际促生菌促生机理及其增强植物抗逆性研究进展[J]. 草地学报,2020,28(05):35-47. 87.唐文忠,孙柳,单保庆. 土壤/沉积物中重金属生物有效性和生物可利用性的研究进展 [J]. 环境工程学报,2019,13(8):1775-1790. 88.田俊俊. 生物炭对镉污染土壤的钝化修复效应研究[D]. 四川农业大学,2020. 89.万家悦,彭位华,贺希格都楞,等. 镉在典型蔬菜可食部位富集特征及其健康风险评价[J]. 中国计量大学学报,2019,030(002):255-264. 90.王芳. 不同蔬菜对镉的吸收和累积特点[D]. 中国农业大学,2005. 91.王果. Cu,Cd在2种土壤上的吸附特征[J]. 福建农业大学学报,1995(4):436-441. 92.王凯荣. 我国农田镉污染现状及其治理利用对策[J]. 农业环境科学学报,1997,016(006):274-278. 93.王林. 蔬菜对镉铅的吸收累积特征与生理响应研究[D]. 山东农业大学,2005. 94.吴崇书,吴耀,季淑枫,等. 施用生物质炭对土壤肥力和作物生长的影响[J]. 中国园艺文摘,2014,000(012):207-209. 95.吴克宁,赵瑞. 土壤质地分类及其在我国应用探讨[J]. 土壤学报,2019,056(001):227-241. 96.谢宜. 不同pH稻田下土壤有效态镉与稻米镉含量的相关性研究[D]. 湖南大学,2019. 97.杨湜烟. 田间条件下小白菜对外源Cd的动态吸收特征[J]. 安徽农业科学,45(10):67-70. 98.杨晓庆,侯仔尧,常梦婷,等. 生物炭对镉污染土壤的修复研究[J]. 江苏农业科学,2015,43(006):335-337. 99.袁波,傅瓦利,蓝家程,等. 菜地土壤铅、镉有效态与生物有效性研究[J]. 水土保持学报,2011,25(005):130-134. 100.张迪,胡学玉,柯跃进,等. 生物炭对城郊农业土壤镉有效性及镉形态的影响[J]. 环境科学与技术,2016,039(004):88-94. 101.张迪,李婷,方炫,等. 钝化剂对土壤镉铅有效性和微生物群落多样性影响[J]. 农业环境科学学报,292(12):77-85. 102.张云芸. 基于海量文献的中国农田土壤重金属镉的时空分布及风险评价[D]. 山西大学,2016. 103.张枝枝,张福平,燕玉超,等. 渭河两岸缓冲带的土壤有机质含量分布特征及其影响因子[J]. 土壤,2017,49(002):393-399. 104.赵会会,方志刚,马睿,等. 耐镉根际促生菌的筛选及其对一年生黑麦草镉吸收积累的影响[J]. 草地学报,2017,25(003):554-560. 105.赵小虎,王富华,张冲,等. 南方菜地重金属污染状况及蔬菜安全生产调控措施[J]. 农业环境与发展,2007,24(003):91-94. 106.郑宏艳,刘书田,米长虹,等. 土壤-水稻籽粒系统镉富集主要影响因素统计分析[J]. 农业环境科学学报,2015,34(010):1880-1888. 107.郑丽萍,王国庆,冯艳红,等. 基于小麦大田调查数据推导土壤镉阈值的方法探讨[C]. 中国环境科学学会,2019:3. 108.钟利彬. 土壤-水稻-人体系统中的镉迁移动态模型及健康风险评估[D]. 浙江大学,2018. 109.周聪. 镉污染土壤原位修复技术的研究进展[J]. 有色冶金设计与研究,2018,39(05):24-28+32. 110.周静,杨洋,孟桂元,等. 不同镉污染土壤下水稻镉富集与转运效率[J]. 生态学杂志,2018,037(001):89-94. |
中图分类号: | Q945 |
开放日期: | 2021-06-15 |