- 无标题文档
查看论文信息

中文题名:

 蛋鸡亚健康评价指标体系构建和监测系统搭建    

姓名:

 邓为    

学号:

 2021105069    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090502    

学科名称:

 农学 - 畜牧学 - 动物营养与饲料科学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 动物科技学院    

专业:

 动物营养与饲料科学    

研究方向:

 畜禽健康表征感知与智慧养殖    

第一导师姓名:

 姚文    

第一导师单位:

 南京农业大学    

完成日期:

 2024-06-19    

答辩日期:

 2024-05-28    

外文题名:

 Construction of Evaluation Index System for Sub-healthy Egg-laying Hens and Establishment of Monitoring System    

中文关键词:

 产蛋期蛋鸡 ; 亚健康评价 ; 指标体系 ; 健康监测系统    

外文关键词:

 Egg-laying hens ; Sub-health evaluation ; indicator system ; Health monitoring system    

中文摘要:

摘要

蛋鸡的亚健康状态是指蛋鸡介于健康与疾病间的过渡状态,其监测与识别对于蛋鸡健康预警和养殖收益均具有重要意义。养殖蛋鸡群在健康状况下可获得最大生产收益,但实际生产中其疾病常发现于亚临床状态,于临床状态才开始药物治疗,既不利于疫病防控,也不利于禽肉和蛋品质的安全。而有效地在亚健康到亚临床之间介入,通过饲养管理、营养调控等方法使其恢复到健康状态,将有巨大的效益与价值。因此及时辨别蛋鸡亚健康状态对早期疾病预警意义重大。本文以产蛋期蛋鸡为研究对象,构建亚健康评价指标体系和评价标准,以形成量化蛋鸡健康状况的评价量表,并对亚健康评价量表进行试验验证;结合团队通过图片、视频和音频采集并分析动物行为、粪便和咳嗽等的智能模型与设备,构建无损、无接触的蛋鸡亚健康评估方法,并根据蛋鸡场的实际情况构建智能化监测平台,以期为蛋鸡亚健康状态的监测和评估奠定基础,为蛋鸡生产的疾病预警和精准养殖提供新思路和新工具。

试验一 产蛋期蛋鸡亚健康评价指标体系和评价标准的构建

产蛋期是蛋鸡养殖的关键时期,构建产蛋期蛋鸡亚健康评价指标体系和评价标准,不仅有利于准确评估鸡群健康状况和精准饲养与管理的调整,也可为无损、无接触监测产蛋期蛋鸡健康状况提供参考指标和科学依据。本研究基于蛋鸡场调研、文献研究和专家会议,从鸡群的健康状况、行为表现、生产性能和鸡群信息与环境4个方面初步构建了产蛋期蛋鸡亚健康评价指标集和指标评分标准,运用专家咨询法筛选指标确立评价指标体系并修改指标评分标准,通过层次分析法确定指标权重。共邀请了14位专家进行咨询,专家咨询问卷有效回收为100%,专家权威系数为0.875,肯德尔协调系数为0.386,表明专家积极性、权威程度、意见协调程度均较好,最终确立的评价指标体系和其评价标准,包括4个一级指标,27个二级指标,初步形成评价量表。健康状况、行为表现、生产性能和鸡舍环境4个一级指标的权重分别为0.254、0.245、0.253、0.248。健康状况包括死淘率、鸡冠颜色和声音异常等9个二级指标,行为表现包括采食量、饮水量和冷热扎堆等6个二级指标,生产性能包括产蛋率、畸形蛋以及破损蛋率和平均蛋重等5个二级指标,鸡舍环境包括温度、湿度和光照强度等7个二级指标。初步构建产蛋期蛋鸡亚健康评价指标体系和评价标准,专家咨询可靠性较好,评价指标覆盖较全面。

试验二 产蛋期蛋鸡亚健康评价量表的验证

本试验旨在验证初步构建的蛋鸡亚健康评价量表对蛋鸡健康状况的反映程度。基于试验一构建的评价指标体系和评价标准,形成针对本试验养殖环境和设备条件的亚健康评价量表。试验选取27周龄的白来航蛋鸡72只,对鸡群进行亚健康评分(记为初始评分),随后分为注射生理盐水组(NS,n=36)和注射脂多糖组(LPS,n=36),NS组连续7天腹腔注射生理盐水(注射量为1 mg/kg BW),LPS组连续7 d腹腔注射LPS(注射量为1 mg/kg BW)。连续注射7 d后再对NS和LPS两组分别进行亚健康评分,评分后每组取18只采样,测定蛋鸡生产性能、蛋品质、血清炎症因子、血浆和肝脏抗氧化等指标。结果如下:1) 初始评分为80.04分,NS组评分为76.97分,二者评分变化反映连续7天腹腔注射引起的鸡群应激对蛋鸡健康状况的影响。2) LPS组评分为70.38分,相较初始评分下降9.66分,二者评分变化反映连续7天腹腔注射LPS造成的免疫应激对蛋鸡健康状况的影响。3) LPS组在注射的3 d、4 d、5 d产蛋率较NS组显著降低(P<0.05),同时降低了平均蛋重(P<0.05),导致料蛋比极显著升高(P<0.001)。4) LPS组的蛋白高度、哈氏单位、蛋黄重量、蛋壳厚度均较NS组极显著下降(P<0.01)。5) LPS组的脾脏重量和脾脏指数较NS组极显著增大(P<0.001)。6) LPS组蛋鸡血浆的MDA含量较NS组显著升高(P<0.05),GSH-Px活性显著降低(P<0.05),T-SOD活性极显著降低(P<0.001);肝脏CAT活性和T-AOC活性极显著降低(P<0.01),GSH-Px活性极显著升高(P<0.01)。7) LPS组蛋鸡血清的IL-6含量较NS组显著升高(P<0.001)。综上所述,本试验通过腹腔注射LPS引起的蛋鸡免疫应激和炎症反应,改变了鸡群的健康状况,通过量表获得的评分变化、蛋鸡氧化还原状态指标和炎症因子水平变化,验证了亚健康评分量表对鸡群健康的反映力,为依据亚健康评价指标体系构建蛋鸡亚健康监测平台提供了理论参考。

试验三 蛋鸡亚健康监测系统的搭建

当前多数规模化蛋鸡场都大量使用了自动化养殖设施,包括了自动环控设备、自动料线和水线、自动集蛋系统等,部分企业也形成了基于物联网技术的数据管理平台,但平台目前仅实现了可视化功能,展示设备采集的生产和环境信息等数据,不具备综合分析数据和辅助决策功能。对蛋鸡亚健康指标及评价标准系统研究的缺乏,制约了现有大数据平台对多源数据的融合和分析。因此,针对蛋鸡群体健康的评估和疾病预警需求,试验三基于蛋鸡亚健康评价指标体系以及评价标准的构建研究,结合团队研发的基于图像和音频分析的异常粪便和声音监测系统,和规模化蛋鸡场自动化环控、水料和集蛋系统的数据采集能力,在大数据平台中构建了蛋鸡亚健康监测系统。蛋鸡亚健康监测软件平台采用IntelliJ IDEA进行编写,选用MySQL数据库进行运行数据的储存与管理,中间件的实现使用了SpringBoot和MyBatis框架,中间件与数据库之间建立连接,通过MyBatis提供的数据访问层来操作数据库,执行相应的SQL语句。系统集成了多种健康评估模型和异常特征检测模型,形成了可视化大数据平台展示界面,且具备回调历史数据、调取异常声音音频等实用功能,具有对鸡群健康状况有监测和评分功能,能协助管理者及时发现鸡群异常原因,辅助生产管理的调整。

综上,本研究通过专家咨询法和层次分析法构建了蛋鸡亚健康评价指标体系和评价方法,初步形成评价量表。并通过腹腔注射LPS的动物试验,初步验证量表评分能一定程度上反映蛋鸡群的健康状况。再基于量表,综合应用鸡舍的实际情况和当前规模化蛋鸡场的养殖模式,构建了蛋鸡亚健康监测系统,是实现了无损、无接触监测蛋鸡健康状况的积极探索。

外文摘要:

The sub-healthy state of laying hens refers to the transitional state between health and disease, and its monitoring and identification are of great significance for both the health warning and farming income of laying hens. Laying hen flocks can achieve maximum production benefits when they are in good health, but in actual production, diseases are often found in subclinical states, with drug treatment starting only when clinical symptoms appear. This is not conducive to disease prevention and control, nor to the safety of poultry meat and egg products. Effective intervention between sub-health and subclinical states, through feeding management, nutritional regulation, and other methods to restore them to a healthy state, will bring enormous benefits and value. Therefore, timely identification of the sub-healthy state of laying hens is of great significance for early disease warning. This article takes laying hens during the laying period as the research object, constructs a sub-healthy evaluation index system and evaluation criteria to form a quantitative evaluation scale of laying hen health status, and verifies the sub-healthy evaluation scale through experiments. Combined with the team's intelligent models and devices for collecting and analyzing animal behaviors, feces, coughs, etc., through pictures, videos, and audio, a non-destructive, non-contact assessment method for the sub-healthy evaluation of laying hens is constructed. Based on the actual situation of laying hen farms, an intelligent monitoring platform is built to lay the foundation for the monitoring and evaluation of laying hen sub-healthy states and provide new ideas and tools for disease warning and precision farming in laying hen production.

1. Construction of Evaluation Index System and Evaluation Standards for Sub-healthy Assessment of Laying Hens during the Egg-laying Period

The laying period is a critical stage in the breeding of laying hens. Constructing an evaluation index system and standards for the sub-healthy state of laying hens during this period is not only conducive to accurately assessing the health status of the flock and adjusting precise feeding and management but also provides reference indicators and scientific basis for non-destructive, non-contact monitoring of laying hen health during the laying period. This study, based on field surveys, literature research, and expert meetings, preliminarily constructed an evaluation index set and scoring criteria for the sub-healthy state of laying hens during the laying period from four aspects: health status of the flock, behavioral performance, production performance, and flock information and environmental factors. The expert consultation method was used to select indicators to establish the evaluation index system and modify the scoring criteria, and the weights of the indicators were determined using the analytic hierarchy process. Fourteen experts were invited for consultation, with a 100% effective response rate for the expert consultation questionnaire. The expert authority coefficient was 0.875, and the Kendall coordination coefficient was 0.386, indicating a good level of expert enthusiasm, authority, and opinion coordination. The final evaluation index system and its criteria were established, including four primary indicators, 27 secondary indicators, forming a preliminary evaluation scale. The weights of the four primary indicators, namely health status, behavioral performance, production performance, and henhouse environment, were 0.254, 0.245, 0.253, and 0.248, respectively. Health status includes nine secondary indicators such as mortality rate, comb color, and abnormal vocalization. Behavioral performance includes seven secondary indicators such as feed intake, water consumption, and clustering behavior. Production performance includes five secondary indicators such as egg production rate, abnormal eggs, egg breakage rate, and average egg weight. Henhouse environment includes seven secondary indicators such as temperature, humidity, and light intensity. The preliminary construction of the evaluation index system and standards for the sub-healthy state of laying hens during the laying period showed good reliability in expert consultation, and the evaluation indicators covered a comprehensive range.

2. Validation of the Sub-healthy Assessment Scale for Laying Hens during the Egg-laying Period.

This experiment aimed to validate the preliminary constructed sub-healthy evaluation scale for laying hens regarding the degree to which it reflects the health status of the hens. Based on the evaluation index system and criteria established in Experiment One, a sub-healthy evaluation scale tailored to the breeding environment and equipment conditions of this experiment was developed. The experiment selected 72 White Leghorn laying hens at 27 weeks of age. The flock was initially scored for sub-healthy conditions (referred to as initial scores). Subsequently, they were divided into the Normal Saline group (NS, n=36) and the Lipopolysaccharide group (LPS, n=36). The NS group received continuous intraperitoneal injections of normal saline for 7 days (at a dose of 1 mg/kg body weight), while the LPS group received continuous intraperitoneal injections of LPS for 7 days (at a dose of 1 mg/kg body weight). After 7 days of continuous injections, sub-healthy scores were reassessed for both NS and LPS groups. Subsequently, 18 samples were taken from each group for the determination of laying hen production performance, egg quality, serum inflammatory factors, plasma, and liver antioxidant indicators. The results are as follows: (1) The initial score was 80.04 points, with the NS group scoring 76.97 points, reflecting the impact of stress caused by continuous intraperitoneal injections on the health status of the flock. (2) The LPS group scored 70.38 points, showing a decrease of 9.66 points compared to the initial score, indicating the effect of immune stress caused by continuous intraperitoneal injections of LPS on the health status of the laying hens. (3) The LPS group showed a significant decrease in egg production rate on the 3rd, 4th, and 5th days of injection compared to the NS group (P<0.05), along with a decrease in average egg weight (P<0.05), resulting in a significantly increased feed-to-egg ratio (P<0.001). (4) The LPS group exhibited significant decreases in albumen height, Haugh unit, yolk weight, and eggshell thickness compared to the NS group (P<0.01). (5) The spleen weight and spleen index of the LPS group were significantly increased compared to the NS group (P<0.001). (6) The LPS group showed a significant increase in malondialdehyde (MDA) content in plasma compared to the NS group (P<0.05), significant decreases in glutathione peroxidase (GSH-Px) activity and total superoxide dismutase (T-SOD) activity (P<0.05), significant decreases in catalase (CAT) activity and total antioxidant capacity (T-AOC) activity in the liver (P<0.01), and a significant increase in GSH-Px activity in the liver (P<0.01). (7) The interleukin-6 (IL-6) content in serum was significantly increased in the LPS group compared to the NS group (P<0.001). In summary, this experiment, through intraperitoneal injection of LPS, induced immune stress and inflammatory reactions in laying hens, altering the health status of the flock. Changes in scores obtained from the evaluation scale, indicators of oxidative-reductive status in laying hens, and levels of inflammatory factors validated the effectiveness of the sub-healthy evaluation scale in reflecting the health of the flock, providing theoretical reference for constructing a sub-healthy monitoring platform for laying hens based on the sub-healthy evaluation index system.

3. Construction of a subhealth monitoring system for laying hens

Most of the current large-scale egg farms use a large number of automated breeding facilities, including automatic environmental control equipment, automatic material and water lines, automatic egg collection systems, etc. Some enterprises have also formed a data management platform based on IoT technology, but the platform currently only realises visualisation functions and displays data collected by the equipment, such as production and environmental information, and does not have the function of comprehensive analysis of the data and assisted decision-making. The lack of systematic research on subhealth indicators and evaluation standards for laying hens restricts the fusion and analysis of multi-source data by the existing big data platform. Therefore, in response to the assessment of the health of the laying hen population and the demand for disease early warning, Experiment 3 constructed a laying hen subhealth monitoring system in the big data platform based on the research on the evaluation index system of laying hen subhealth as well as the construction of the evaluation standard, combined with the abnormal faeces and sound monitoring system based on image and audio analysis developed by the team, and the data collection capability of the automated ring control, water and egg collection system of the scaled-up laying hen farms. Laying hens' subhealth monitoring software platform is written in IntelliJ IDEA, and MySQL database is selected for the storage and management of operational data, and SpringBoot and MyBatis framework are used for the implementation of the middleware, which establishes a connection between the middleware and the database, and operates the database through the data access layer provided by MyBatis, executing the corresponding SQL statements. The system integrates a variety of health assessment models and abnormal feature detection models, forming a visual big data platform display interface, and has practical functions such as calling back historical data, accessing abnormal sound and audio, etc. It has the function of monitoring and scoring the health status of chickens, which can assist managers in discovering the causes of abnormalities of chickens in time and assist in the adjustment of production management.

In summary, this study constructed the evaluation index system and evaluation method of subhealth of laying hens through expert consultation method and hierarchical analysis method, and initially formed the evaluation scale. And through the animal test of intraperitoneal injection of LPS, it was preliminarily verified that the scale score could reflect the health status of laying hens to a certain extent. Then based on the scale, comprehensively applying the actual situation of chicken houses and the current breeding mode of large-scale egg farms, a subhealth monitoring system for laying hens was constructed, which is a positive exploration to achieve non-destructive and non-contact monitoring of the health status of laying hens.

参考文献:

[1] 艾秀峰, 冷晓霞, 陈民利, 等. 束缚应激致亚健康状态大鼠的免疫功能改变与中药干预的影响[J]. 实验动物与比较医学, 2010, 30(2):117-120.

[2] 毕敏娜, 张铁民, 庄晓霖, 等. 基于鸡头特征的病鸡识别方法研究[J]. 农业机械学报, 2018, 49(1):51-57.

[3] 白士宝, 滕光辉, 杜晓冬, 等. 基于LabVIEW平台的蛋鸡舍环境舒适度实时监测系统设计与实现[J].农业工程学报, 2017, 33(15):237-244.

[4] 常剑鑫, 黄志琴. 家禽亚健康状态及其防治[J]. 中国家禽, 1999, (12):31.

[5] 陈琛. 动物营养学的发展概况及趋势[J]. 畜牧与饲料科学, 2019, 40(3):40-44.

[6] 陈佳, 丁奇安, 刘龙申, 等. 基于YOLO v5与短时跟踪的鸡只呼吸道疾病早期检测[J]. 农业机械学报, 2023, 54(1):271-279.

[7] 陈佳, 刘龙申, 沈明霞, 等. 基于实例分割的白羽肉鸡体质量估测方法[J]. 农业机械学报, 2021, 52(4):266-275.

[8] 陈青山, 王声湧, 荆春霞, 等. 应用Delphi法评价亚健康的诊断标准[J]. 中国公共卫生, 2003, (12):63-64.

[9] 陈旭波, 姜敏敏, 顾文娟, 等. 不同疾病阶段社区糖尿病管理质控评价指标体系构建[J]. 中国全科医学, 2020, 23(7):837-843.

[10] 囤秀秀. 蓝莓浓缩汁对小鼠疲劳型亚健康的改善作用[D]. 大连:大连理工大学, 2017.

[11] 范欣欣, 陈立明, 许军. 公务员亚健康状况影响因素的有序多分类logistic回归分析[J]. 中国卫生统计, 2014, 31(5):770-773.

[12] 何灿隆, 沈明霞, 刘龙申, 等. 基于加速度传感器的肉鸡步态检测方法研究与实现[J]. 南京农业大学学报, 2019, 42(2):365-372.

[13] 胡晗, 刘超, 张刚娟, 等. 无抗时代畜禽养殖新方案[J]. 中国牛业科学, 2022, 48(2):64-66.

[14] 黄莉莉, 缪华杰, 陆洋, 等. 脓毒症患者血清胱抑素C、尿液肾脏损伤分子1水平变化及其对并发急性肾损伤的诊断价值[J]. 山东医药, 2017, 57(31):70-72.

[15] 黄适, 滕飞, 杨芳, 等. 基于微生物组的口腔“亚健康状态”检测[J]. 生命科学, 2017, 29(7):660-668.

[16] 焦坤, 冯玉宝, 苏平. 血压变异性与心血管疾病的研究进展[J]. 中国循环杂志, 2016, 31(5):518-520.

[17] 林齐宁. 决策分析[M] 北京: 北京邮电大学出版社,2003.

[18] 林海, 杨军香, 童海兵. 家禽养殖福利评价技术[M]. 北京: 中国农业科学技术出版社, 2014.

[19] 李岩, 马瑞钰, 李俊营, 等. 多环境参数的蛋鸡产蛋性能和蛋品质模糊综合评价方法构建[J].中国家禽, 2023, 45(11):11-19.

[20] 李桂英, 柯福来, 朱凯, 等. 高粱品种生态适应性综合评价指标体系的构建与应用[J]. 中国农业资源与区划, 2023, 44(2):27-34.

[21] 李建雄. 市场经济条件下我国畜牧业生产组织的创新研究[D]. 北京:中国社会科学院研究生院, 2016.

[22] 李娜, 任昊宇, 任振辉. 基于深度学习的群养鸡只行为监测方法研究[J]. 河北农业大学学报, 2021, 44(2):117-121.

[23] 李帅, 花立民, 杨思维. 高寒草甸健康评价方法的研究与应用[J]. 草原与草坪, 2022, 42(2):1-10.

[24] 李香. 急性偏热环境对肉鸡行为、生理生化指标及avUCPmRNA表达影响[D]. 邯郸:河北工程大学, 2017.

[25] 李亚硕, 毛文华, 胡小安, 等. 基于机器视觉识别鸡冠颜色的病鸡检测方法[J]. 机器人技术与应用, 2014, (5):23-25.

[26] 廖瑞波. 肉仔鸡消化道应激评价及其机理研究[D]. 北京:中国农业科学院, 2016.

[27] 刘保延, 谢雁鸣, 于嘉, 等. 亚健康中医基本证候调查问卷的信度和效度分析[J]. 中国中医基础医学杂志, 2006, (2):145-149.

[28] 刘明月, 方芳, 杨富. ICU患者早期康复评估工具的临床应用进展[J]. 中国康复医学杂志, 2024, 39(2):299-303.

[29] 刘修林, 王福杰, 刘烨红, 等. 病理与健康蛋鸡体表温度的对比研究[J]. 中国家禽, 2017, 39(2):53-56.

[30] 刘莹昕, 刘飒, 王威尧. 层次分析法的权重计算及其应用[J]. 沈阳大学学报(自然科学版), 2014, 26(5):372-375.

[31] 刘羽飞, 何勇, 刘飞, 等. 农业传感器技术在我国的应用和市场:现状与未来展望[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3):293-304.

[32] 卢德勋. 健康养殖的营养技术策略的系统观[J]. 饲料工业, 2019, 40(2):1-5.

[33] 卢德勋. 动物营养学科发展在战略方向上的重大突破:构建动物健康营养理论和技术体系及其实际应用[J]. 动物营养学报, 2021, 33(1):1-12.

[34] 马志愤. 基于草地农业视角下的奶业大数据平台构建与应用研究[D]. 兰州:兰州大学, 2020.

[35] 毛智宇, 徐力刚, 赖锡军, 等. 基于综合指标法的鄱阳湖生态系统健康评价[J]. 湖泊科学, 2023, 35(3):1022-1036.

[36] 孟凯. 活禽市场PM(2.5)微生物气溶胶监测及其对小鼠肺部损伤与诱导免疫反应[D]. 泰安:山东农业大学, 2016.

[37] 秦伏亮, 沈明霞, 刘龙申, 等. 基于音频技术的白羽肉鸡咳嗽识别算法研究[J]. 南京农业大学学报, 2020, 43(2):372-378.

[38] 秦梅. 养殖环境生物应激因素对肉鸡福利状况和生产性能的影响[D]. 泰安:山东农业大学, 2010.

[39] 沈明霞, 李嘉位, 陆明洲, 等. 基于动态多特征变量的黄羽肉鸡跛行状态定量评价方法[J]. 农业机械学报, 2018, 49(9):35-44.

[40] 孙俊颖. 单宁酸对柔嫩艾美耳球虫感染雏鸡盲肠肠道屏障和微生物群落的影响[D]. 南宁:广西大学, 2020.

[41] 孙永波, 王亚, 萨仁娜, 等. 肉鸡福利评价指标研究进展[J]. 动物营养学报, 2017, 29(12):4273-4280.

[42] 孙忠超. 我国农场动物福利评价研究[D]. 呼和浩特:内蒙古农业大学, 2013.

[43] 谭建庄. 日粮精氨酸对不同疾病模型肉鸡免疫功能的调节作用与机理研究[D]. 北京:中国农业大学, 2014.

[44] 汤维娟, 宁德斌. 健康相关生命质量评价研究述评与展望[J]. 现代商贸工业, 2024, 45(6):149-151.

[45] 唐丹丹, 沈林辉, 曹向英, 等. 引起鸡冠、肉髯发绀的常见疾病的鉴别诊断和防治[J]. 畜牧兽医科技信息, 2013, (11):73-75.

[46] 汪开英, 赵晓洋, 何勇. 畜禽行为及生理信息的无损监测技术研究进展[J]. 农业工程学报, 2017, 33(20):197-209.

[47] 王珑翰, 张良, 高建波, 等. 蛋鸡健康监测和行为识别及死鸡移除系统研究进展[J]. 中国家禽, 2022, 44(10):83-88.

[48] 王琦, 祁克宗, 涂健, 等. APEC感染雏鸡小肠炎症相关基因的RNA-Seq分析[J]. 西北农林科技大学学报(自然科学版), 2017, 45(8):23-28.

[49] 王雪雯, 李顺平, 李文迪, 等. QWB多属性效用量表的应用介绍[J]. 中国卫生经济, 2019, 38(2):5-7.

[50] 温鹏, 李若兰, 李丽华, 等. 基于灰色关联分析的鸡舍综合环境评价主要影响因子及其权重研究[J]. 中国家禽, 2022, 44(1):51-59.

[51] 吴信, 印遇龙. 单胃动物营养学的动态概念及其发展[J]. 农业现代化研究, 2015, 36(3):321-326.

[52] 徐淼, 刘忠刚, 黄竹, 等. 鸡蛋品质测定指标及测定方法的研究进展[J]. 家禽科学, 2021, (9):43-49.

[53] 许志强, 沈明霞, 刘龙申, 等. 基于红外热图像的肉鸡腿部异常检测方法[J]. 南京农业大学学报, 2021, 44(2):384-393.

[54] 薛本立, 薛雅卿, 郑晓, 等. 健康促进行动领域视角下中小学近视防控示范校评价指标体系构建研究[J]. 现代预防医学, 2023, 50(1):91-96.

[55] 薛允莲. 中国城镇居民亚健康评定量表的常模制定及亚健康状态影响因素模型的构建研究[D]. 广州:南方医科大学, 2020.

[56] 闫东, 刘冠纯, 任兴宇, 等. 利用层次分析法和德尔菲法构建疾控机构鼠疫应急能力评价指标体系[J]. 中国媒介生物学及控制杂志, 2022, 33(4):568-572.

[57] 杨稷, 沈明霞, 刘龙申, 等. 基于音频技术的肉鸡采食量检测方法研究[J]. 华南农业大学学报, 2018, 39(5):118-124.

[58] 杨小军, 尹振晨, 任周正, 等. 家禽免疫营养及其系统性调控研究[J]. 动物营养学报, 2022, 34(10):6420-6428.

[59] 袁群, 毛欣, 王能, 等. 亚健康状态动物模型的构建与评价研究进展[J]. 中国比较医学杂志, 2021, 31(10):136-142.

[60] 张桂欣, 许军. 亚健康的测量[J]. 中国全科医学, 2007, (11):923-925.

[61] 张冀东, 王丹, 何清湖, 等. 中医亚健康学相关标准的研究现状与分析[J]. 中华中医药杂志, 2022, 37(9):5265-5269.

[62] 张金华. 亚健康评定量表的初步编制[D]. 广州:南方医科大学, 2011.

[63] 张庭基, 曹田梅. 中医药治疗亚健康状态的临床研究进展[C]. 中华中医药学会亚健康分会换届选举暨“‘治未病’及亚健康防治论坛”论文集, 长沙, 中国, 2008, (4):215-218.

[64] 赵冰倩, 罗畅, 刘健新, 等. 连翘水提液体外对禽流感病毒增殖及炎症因子表达的抑制效应[J]. 畜牧兽医学报, 2020, 51(6):1466-1474.

[65] 周健明, 黄洁英, 刘容珍. 雉鸡眼炎型病原菌的分离鉴定及药敏试验[J]. 广东农业科学, 2011, 38(5):145-146.

[66] Bestman M. 蛋鸡的信号:禽业养殖管理实用指南[M]. 北京:中国农业科学技术出版社, 2014.

[67] Abdoli A, Murillo A C, Yeh C-C M, et al. Time series classification to improve poultry Welfare[J]. 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), 2018:635-642.

[68] Amraei S, Mehdizadeh S A, Salari S. Broiler weight estimation based on machine vision and artificial neural network[J]. British Poultry Science, 2017, 58(2):200-205.

[69] Anil S S, Anil L, Deen J. Challenges of pain assessment in domestic animals[J]. Journal of the American Veterinary Medical Association, 2002, 220(3):313-319.

[70] Aydin A. Using 3D vision camera system to automatically assess the level of inactivity in broiler chickens[J]. Computers and Electronics in Agriculture, 2017, 135: 4-10.

[71] Aydin A, Bahr C, Berckmans D. A real-time monitoring tool to automatically measure the feed intakes of multiple broiler chickens by sound analysis[J]. Computers and Electronics in Agriculture, 2015, 114:1-6.

[72] Aydin A, Berckmans D. Using sound technology to automatically detect the short-term feeding behaviours of broiler chickens[J]. Computers and Electronics in Agriculture, 2016, 121:25-31.

[73] Aydin A, Cangar O, Ozcan S E, et al. Application of a fully automatic analysis tool to assess the activity of broiler chickens with different gait scores[J]. Computers and Electronics in Agriculture, 2010, 73(2):194-199.

[74] Aziz N A, Othman M F B. Binary classification using SVM for sick and healthy chicken based on chicken’s excrement image[J]. Pertanika Journal of Science and Technology, 2017, 25(S):315-324

[75] Barreto da Rocha P, Driessen B, McDonnell S M, et al. A critical evaluation for validation of composite and unidimensional postoperative pain scales in horses[J]. Public Library of Science ONE, 2021, 16(8):e0255618.

[76] Ben Sassi N, Averós X, Estevez I. Technology and poultry welfare[J]. Animals, 2016, 6(10): 62.

[77] Blake D P, Tomley F M. Securing poultry production from the ever-present Eimeria challenge[J]. Trends Parasitol, 2014, 30(1):12-19.

[78] Butterworth, A., Arnould, C., Fiks van Niekerk, et al. Welfare Quality®, Assessment protocol for poultry (broilers, laying hens)[M]. Lelystad:ASG Veehoudeerij BV, 2009.

[79] Buyse J, Swennen Q, Niewold T A, et al. Dietary L-carnitine supplementation enhances the lipopolysaccharide-induced acute phase protein response in broiler chickens[J]. Veterinary Immunology and Immunopathology, 2007, 118(1-2):154-159.

[80] Cao C-L, Xu J-F, Xu J, et al. Establishment and application of rapid assessment system of environment with high transmission risk of schistosomiasis in marshland and lake regions. I. Establishment of an index system with Delphi method[J]. Chinese Journal of Schistosomiasis Control, 2013, 25(3):232-236.

[81] Carpentier L, Vranken E, Berckmans D, et al. Development of sound-based poultry health monitoring tool for automated sneeze detection[J]. Computers and Electronics in Agriculture, 2019, 162:573-581.

[82] Casey-Trott T M, Widowski T M. Behavioral differences of laying hens with fractured keel bones within furnished cages[J]. Frontiers in Veterinary Science, 2016, 3:42.

[83] Chen W. Thermometry and interpretation of body temperature[J]. Biomedical Engineering Letters, 2019, 9(1):3-17.

[84] Colles F M, Cain R, Nickson T, et al. Monitoring chicken flock behaviour provides early warning of infection by human pathogen Campylobacter[J]. Proceedings of the Royal Society B: Biological Sciences, 2016, 283:1822.

[85] Cui H Z, Wang L M, Zhao X, et al. Metabonomics-based study of clinical urine samples in suboptimal health with different syndromes[J]. Evidence-Based Complementary and Alternative Medicine, 2013, 2013:509134.

[86] Dawkins M S, Roberts S, Cain R, et al. Early warning of footpad dermatitis and hockburn in broiler chicken flocks using optical flow, bodyweight and water consumption[J]. Veterinary Record, 2017, 180:499-499.

[87] de Jong I C, Hindle V A, Butterworth A, et al. Simplifying the Welfare Quality® assessment protocol for broiler chicken welfare[J]. Animal, 2016, 10(1):117-127.

[88] De Wet L, Vranken E, Chedad A, et al. Computer-assisted image analysis to quantify daily growth rates of broiler chickens[J]. British Poultry Science, 2003, 44(4):524-532.

[89] Ding H, He J, Wenwu W. The sub-health evaluation based on the modern diagnostic technique of traditional chinese medicine[J]. 2009 First International Workshop on Education Technology and Computer Science, 2009, 1:269-273.

[90] Douglas M W, Persia M, Parsons C M. Impact of galactose, lactose, and Grobiotic-B70 on growth performance and energy utilization when fed to broiler chicks[J]. Poultry Science, 2003, 82(10):1596-1601.

[91] Feng J, Li Z, Ma H, et al. Quercetin alleviates intestinal inflammation and improves intestinal functions via modulating gut microbiota composition in LPS-challenged laying hens[J]. Poultry Science, 2022, 102(3):102433.

[92] Feng S, Liu W, Zuo S, et al. Impaired function of the intestinal barrier in a novel sub-health rat model[J]. Molecular Medicine Reports, 2016, 13(4):3459-3465.

[93] Gao J, Cui J, Wang Y, et al. Identification of potential predictors for subtype IgA nephropathy through analyses of blood biochemical indicators[J]. Clinica Chimica Acta, 2011, 412(5):441-445.

[94] Gavora J S, Spencer J L. Breeding for immune responsiveness and disease resistance[J]. Animal Blood Groups and Biochemical Genetics, 1983, 14(3):159-180.

[95] Geng A L, Zhang Y, Zhang J, et al. Lighting pattern and photoperiod affect the range use and feather cover of native laying hens under free range condition[J]. Poultry Science, 2023, 102(2): 102264.

[96] Geng Y, Ma Q, Wang Z, et al. Dietary vitamin D(3) supplementation protects laying hens against lipopolysaccharide-induced immunological stress[J]. Nutrition & Metabolism, 2018, 10(15):58.

[97] Giloh M, Shinder D, Yahav S. Skin surface temperature of broiler chickens is correlated to body core temperature and is indicative of their thermoregulatory status[J]. Poultry Science, 2012, 91(1):175-188.

[98] Gregory N G, Robins J K. A body condition scoring system for layer hens[J]. New Zealand Journal of Agricultural Research, 2010, 41(4):555-559.

[99] Halliwell B. Oxidants and human disease: some new concepts1[J]. The FASEB Journal, 1987, 1(5):358-364.

[100] He P, Chen Z, Yu H, et al. Research progress in the early warning of chicken diseases by monitoring clinical symptoms[J]. Applied Sciences, 2022, 12(11):5601.

[101] Health E Panel o A, Welfare, Nielsen S S, et al. Welfare of pigs on farm[J]. EFSA Journal, 2022, 20(8):e07421.

[102] Holton L, Reid J, Scott E M, et al. Development of a behaviour-based scale to measure acute pain in dogs[J]. Veterinary Record, 2001, 148(17):525-531.

[103] Huang J, Wang W, Zhang T. Method for detecting avian influenza disease of chickens based on sound analysis[J]. Biosystems Engineering, 2019, 180(1):16-24.

[104] Iqbal Z, Drake K, Swick R A, et al. Effect of pecking stones and age on feather cover, hen mortality, and performance in free-range laying hens[J]. Poultry Science, 2020, 99:2307-2314.

[105] Kaplan R M. Quality of life assessment for cost/utility studies in cancer[J]. Cancer Treatment Reviews, 1993, 19:85-96.

[106] Kaplan R M, Bush J W, Berry C C. Health status: types of validity and the index of well-being[J]. Health Services Research, 1976, 11(4):478-507.

[107] Kaplan R M, Ganiats T G, Sieber W J, et al. The quality of well-being scale: critical similarities and differences with SF-36[J]. International Journal for Quality in Health Care : Journal of the International Society for Quality in Health Care, 1998, 10(6):509-520.

[108] Keeling L J, Estevez I, Newberry R C, et al. Production-related traits of layers reared in different sized flocks: the concept of problematic intermediate group sizes[J]. Poultry Science, 2003, 82(9):1393-1396.

[109] Keestra A M, van Putten J P. Unique properties of the chicken TLR4/MD-2 complex: selective lipopolysaccharide activation of the MyD88-dependent pathway[J]. Journal of Immunology, 2008, 181(6):4354-4362.

[110] Kittelsen K E, Vasdal G, Thofner I, et al. A walk through the broiler breeder life: how do footpad dermatitis and gait scores develop from rearing to slaughter?[J]. Avian Pathology, 2024, 53(3):164-173.

[111] Knap P W, Doeschl-Wilson A. Why breed disease-resilient livestock, and how?[J]. Genetics Selection Evolution, 2020, 52(1):60.

[112] Kristensen H H, Cornou C. Automatic detection of deviations in activity levels in groups of broiler chickens – A pilot study[J]. Biosystems Engineering, 2011, 109(4):369-376.

[113] Lee J, Kim S-H, Lee Y, et al. The concept of Mibyeong (sub-health) in Korea: A Delphi study[J]. European Journal of Integrative Medicine, 2013, 5(6):514-518.

[114] Li G, Hui X, Chen Z, et al. Development and evaluation of a method to detect broilers continuously walking around feeder as an indication of restricted feeding behaviors[J]. Computers and Electronics in Agriculture, 2021, 181:105982.

[115] Li G, Xie F, Yan S, et al. Sub-health: definition, criteria for diagnosis and potential prevalence in the central region of China[J]. BMC Public Health, 2013, 13:446-446.

[116] Li G, Zhao Y, Purswell J L, et al. Analysis of feeding and drinking behaviors of group-reared broilers via image processing[J]. Computers and Electronics in Agriculture, 2020, 175:105596.

[117] Li N, Ren Z, Li D, et al. Review: Automated techniques for monitoring the behaviour and welfare of broilers and laying hens: towards the goal of precision livestock farming[J]. Animal, 2019, 14(3):617-625.

[118] Liu L, Li B, Zhao R, et al. A novel method for broiler abnormal sound detection using WMFCC and HMM[J]. Journal of Sensors,2020, 2020:2985478.

[119] Minka N S, Ayo J O. Assessment of the stresses imposed on adult ostriches (Struthio camelus) during handling, loading, transportation and unloading[J]. Veterinary Record, 2008, 162(26):846-851.

[120] Mollah M B R, Hasan M A, Salam M A, et al. Digital image analysis to estimate the live weight of broiler[J]. Computers and Electronics in Agriculture, 2010, 72(1):48-52.

[121] Mottet A, Tempio G. Global poultry production: current state and future outlook and challenges[J]. World's Poultry Science Journal, 2017, 73:245-256.

[122] Nasiri A, Yoder J, Zhao Y, et al. Pose estimation-based lameness recognition in broiler using CNN-LSTM network[J]. Computers and Electronics in Agriculture, 2022, 197:106931.

[123] Nie W, Wang B, Gao J, et al. Effects of dietary phosphorous supplementation on laying performance, egg quality, bone health and immune responses of laying hens challenged with Escherichia coli lipopolysaccharide[J]. Journal of Animal Science and Biotechnology, 2018, 9(1):53.

[124] Obernikhin S S, Yaglova N V. Morphological and functional changes in the thymus and spleen of mouse offspring in the development of systemic inflammatory response after a single immunity stimulation in early pregnancy[J]. Bulletin of Experimental Biology and Medicine Med, 2014, 157(6):812-815.

[125] Ogunji P A, Brewer R N, Roland D A, et al. Effect of dietary sodium chloride, protein, and strain difference upon water consumption and fecal moisture content of broiler breeder males[J]. Poultry Science, 1983, 62(12):2497-2500.

[126] Paul-Murphy J, Ludders J W, Robertson S A, et al. The need for a cross-species approach to the study of pain in animals[J]. Journal of the American Veterinary Medical Association, 2004, 224(5):692-697.

[127] Peng Y, Zeng Z, Lv E, et al. A real-time automated system for monitoring individual feed intake and body weight of group-housed young chickens[J]. Applied Sciences, 2022, 12(23):12339.

[128] Petrik M T, Guerin M T, Widowski T M. On-farm comparison of keel fracture prevalence and other welfare indicators in conventional cage and floor-housed laying hens in Ontario, Canada[J]. Poultry Science, 2015, 94(4):579-585.

[129] Puma M C, Xin H, Gates R S, et al. An instrumentation system for studying feeding and drinking behavior of individual poultry[J]. Applied Engineering in Agriculture, 2001, 17:365-374.

[130] Redweik G A J, Stromberg Z R, Van Goor A, et al. Protection against avian pathogenic Escherichia coli and Salmonella Kentucky exhibited in chickens given both probiotics and live Salmonella vaccine[J]. Poultry Science, 2020, 99(2):752-762.

[131] Rozenboim I, Tako E, Gal-Garber O, et al. The effect of heat stress on ovarian function of laying hens[J]. Poultry Science, 2007, 86(8):1760-1765.

[132] Simon F, Fernández R. Early lipopolysaccharide-induced reactive oxygen species production evokes necrotic cell death in human umbilical vein endothelial cells[J]. Journal of Hypertension, 2009, 27(6):1202-1216.

[133] Sossidou E N, Dal Bosco A, Castellini C, et al. Effects of pasture management on poultry welfare and meat quality in organic poultry production systems[J]. World's Poultry Science Journal, 2015, 71(2):375-384.

[134] Sugiharto S. Dietary strategies to alleviate high-stocking-density-induced stress in broiler chickens - a comprehensive review[J]. Archives Animal Breeding, 2022, 65(1):21-36.

[135] Valko M, Leibfritz D, Moncol J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal of Biochemistry & Cell Biology, 2007, 39(1):44-84.

[136] Vidic J, Manzano M, Chang C M, et al. Advanced biosensors for detection of pathogens related to livestock and poultry[J]. Veterinary Research, 2017, 48(1):11.

[137] Wang J, Ding X, Zeng Q, et al. Dietary 25-hydroxyvitamin D improves productive performance and intestinal health of laying hens under Escherichia coli lipopolysaccharide challenge[J]. Poultry Science, 2023, 102(3):102371.

[138] Wang J, Qiu L, Gong H, et al. Effect of dietary 25-hydroxycholecalciferol supplementation and high stocking density on performance, egg quality, and tibia quality in laying hens[J]. Poultry Science, 2020, 99(5):2608-2615.

[139] Wang J, Shen M, Liu L, et al. Recognition and classification of broiler droppings based on deep convolutional neural network[J]. Journal of Sensors, 2019, 2019(5): 1-10.

[140] Wang W, Yan Y. Suboptimal health: a new health dimension for translational medicine[J]. Clinical and Translational Medicine, 2012, 1(1):28.

[141] Wasti S, Sah N, Mishra B. Impact of heat stress on poultry health and performances, and potential mitigation strategies[J]. Animals, 2020, 10(8):1266.

[142] Weihong M, Qifeng L, Li J, et al. A method for weighing broiler chickens using improved amplitude-limiting filtering algorithm and BP neural networks[J]. Information Processing in Agriculture, 2020, 8(2):299-309.

[143] Wells J R, Young A L, Crane A, et al. Linguistic Validation of the Canine Brief Pain Inventory (CBPI) for Global Use[J]. Frontiers in Veterinary Science, 2021, 8:769112.

[144] Wen P, Li L, Xue H, et al. Comprehensive evaluation method of the poultry house indoor environment based on gray relation analysis and analytic hierarchy process[J]. Poultry Science, 2022, 101(2):101587.

[145] Wilhelmsson S, Yngvesson J, Jönsson L, et al. Welfare Quality® assessment of a fast-growing and a slower-growing broiler hybrid, reared until 10 weeks and fed a low-protein, high-protein or mussel-meal diet[J]. Livestock Science, 2019, 219:71-79.

[146] Wu D, Cui D, Zhou M, et al. Information perception in modern poultry farming: A review[J]. Computers and Electronics in Agriculture, 2022, 199:107131.

[147] Xiao L, Ding K, Gao Y, et al. Behavior-induced health condition monitoring of caged chickens using binocular vision[J]. Computers And Electronics In Agriculture, 2019, 156:254-262.

[148] Yanqiang G, Ma Q, Wang Z, et al. Dietary vitamin D3 supplementation protects laying hens against lipopolysaccharide-induced immunological stress[J]. Nutrition & Metabolism, 2018, 15:58.

[149] Youn H J, Noh J W. Screening of the anticoccidial effects of herb extracts against Eimeria tenella[J]. Veterinary Parasitology, 2001, 96(4):257-263.

[150] Zhuang X, Bi M, Guo J, et al. Development of an early warning algorithm to detect sick broilers[J]. Computers and Electronics in Agriculture, 2018, 144:102-113.

[151] Zhuang X, Zhang T. Detection of sick broilers by digital image processing and deep learning[J]. Biosystems Engineering, 2019, 179:106-116.

中图分类号:

 S83    

开放日期:

 2024-06-19    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式