中文题名: | 多尺度作物叶绿素与氮含量高光谱监测研究 |
姓名: | |
学号: | 2016201077 |
保密级别: | 秘密 |
论文语种: | chi |
学科代码: | 0901 |
学科名称: | 农学 - 作物学 |
学生类型: | 博士 |
学位: | 农学博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 作物生长监测 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2020-12-02 |
答辩日期: | 2020-12-02 |
外文题名: | Multi-scale hyperspectral monitoring of leaf chlorophyll and nitrogen contents in cereal crops |
中文关键词: | |
外文关键词: | Crop ; Chlorophyll ; Nitrogen ; Hyperspectral remote sensing ; Spectral feature ; Specular reflection ; Leaf area index ; Top of atmosphere reflectance ; Nitrogen distribution theory |
中文摘要: |
粮食安全是国家安全的重要基础。现代粮食作物生产正朝着精确种植、高效管理、智能决策和定量实施的方向发展。氮素、叶绿素等营养参数与作物叶片光合能力紧密相关,对作物籽粒产量和干物质生产有重要调节作用。遥感技术的快速发展为作物营养状况实时监测提供了有效的途径。虽然基于作物反射光谱的叶绿素和氮素监测已取得了一系列研究成果,但在实际应用中仍然有一些问题有待解决。 (4)厘清了基于可见近红外光谱区间的叶片氮含量估算机理,提出了基于氮分配理论的叶片氮含量间接估算模型。 |
外文摘要: |
Food security is an important guarantee for promoting harmonious social and economic development and building a well-off society in an all-round way. Modern food crop production is developing in the direction of precise planting, efficient management, intelligent decision-making and quantitative implementation, forming an integrated precision crop cultivation technology with the features of real-time monitoring, intelligent diagnosis, and quantitative regulation. Nutrient parameters such as nitrogen and chlorophyll are closely related to the photosynthetic capacity of crop leaves, and have an important regulating effect on crop grain yield and dry matter production. The rapid development of modern remote sensing technology provides an effective way for real-time monitoring of crop nutritional status. Although chlorophyll and nitrogen monitoring based on crop reflectance spectra have made a series of research results, there are still some problems to be solved in practical applications, such as the effects of specular reflection at the leaf scale, leaf area index (LAI) and soil background at the canopy scale, and the atmospheric correction uncertainty at the satellite scale on leaf chlorophyll content (LCC) estimation as well as the unclear mechanism of mass-based leaf nitrogen concentration (LNCM) estimation in the visible and near infrared spectral region. In view of this, this thesis first conducts research on hyperspectral estimation of LCC at three scales (leaf scale, canopy scale and regional scale), and finally transitions to LNCM estimation. The main research contents and results of this thesis are as follows:
|
参考文献: |
Alexander, B., Patrick, C., Fred, H. (2015). An accelerated line-by-line option for MODTRAN combining on-the-fly generation of line center absorption within 0.1 cm-1 bins and pre-computed line tails. Proc.SPIE. http://doi.org/10.1117/12.2177444 Alexander, B., Patrick, C., Rosemary, K., Timothy, P., Frederick, H., Jeannette van den, B. (2014). MODTRAN6: a major upgrade of the MODTRAN radiative transfer code. Proc.SPIE. http://doi.org/10.1117 /12.2050433 Ali, A.M., Darvishzadeh, R., Skidmore, A.K., Duren, I.v., Heiden, U., Heurich, M. (2016). Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest. International Journal of Applied Earth Observation and Geoinformation, 45: 66-76. http://doi.org/10.1016/j.jag.2015.11.004 Anderson, J.M. (1986). Photoregulation of the composition, function, and structure of thylakoid membranes. Annual Review of Plant Biology, 37: 93-136. http://doi.org/10.1146/annurev.pp.37.060186.000521 Andrieu, B., Baret, F., Jacquemoud, S., Malthus, T., Steven, M. (1997). Evaluation of an improved version of SAIL model for simulating bidirectional reflectance of sugar beet canopies. Remote Sensing of Environment, 60: 247-257. http://doi.org/10.1016/s0034-4257(96)00126-5 Asrar, G., Kanemasu, E.T., Yoshida, M. (1985). Estimates of leaf area index from spectral reflectance of wheat under different cultural practices and solar angle. Remote Sensing of Environment, 17: 1-11. http://doi.org/10.1016/0034-4257(85)90108-7 Baret, F., Fourty, T. (1997). Estimation of leaf water content and specific leaf weight from reflectance and transmittance measurements. Agronomie, 17: 455-464. Baret, F., Weiss, M., Lacaze, R., Camacho, F., Makhmara, H., Pacholcyzk, P., Smets, B. (2013). GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part1: Principles of development and production. Remote Sensing of Environment, 137: 299-309. http://doi.org/10.1016/j.rse.2012.12.027 Barry, K.M., Newnham, G.J., Stone, C. (2009). Estimation of chlorophyll content in Eucalyptus globulus foliage with the leaf reflectance model PROSPECT. Agricultural and Forest Meteorology, 149: 1209-1213. http://doi.org/10.1016/j.agrformet.2009.01.005 Bayat, B., van der Tol, C., Verhoef, W. (2020). Retrieval of land surface properties from an annual time series of Landsat TOA radiances during a drought episode using coupled radiative transfer models. Remote Sensing of Environment, 238: 110917. http://doi.org/10.1016/j.rse.2018.09.030 Berger, K., Verrelst, J., Féret, J.-B., Hank, T., Wocher, M., Mauser, W., Camps-Valls, G. (2020a). Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. International Journal of Applied Earth Observation and Geoinformation, 92: 102174. http://doi.org/10.1016/j.jag.2020.102174 Berger, K., Verrelst, J., Féret, J.-B., Wang, Z., Wocher, M., Strathmann, M., et al. (2020b). Crop nitrogen monitoring: Recent progress and principal developments in the context of imaging spectroscopy missions. Remote Sensing of Environment, 242: 111758. http://doi.org/10.1016/j.rse.2020.111758 Blackburn, G.A., Ferwerda, J.G. (2008). Retrieval of chlorophyll concentration from leaf reflectance spectra using wavelet analysis. Remote Sensing of Environment, 112: 1614-1632. http://doi.org/10.1016 /j.rse.2007.08.005 Bousquet, L., Lachérade, S., Jacquemoud, S., Moya, I. (2005). Leaf BRDF measurements and model for specular and diffuse components differentiation. Remote Sensing of Environment, 98: 201-211. http://doi.org/10.1016/j.rse.2005.07.005 Brede, B., Suomalainen, J., Bartholomeus, H., Herold, M. (2015). Influence of solar zenith angle on the enhanced vegetation index of a Guyanese rainforest. Remote Sensing Letters, 6: 972-981. http://doi.org/10.1080/2150704X.2015.1089362 Bullock, D., Anderson, D. (1998). Evaluation of the Minolta SPAD‐502 chlorophyll meter for nitrogen management in corn. Journal of Plant Nutrition, 21: 741-755. Butz, A., Galli, A., Hasekamp, O., Landgraf, J., Tol, P., Aben, I. (2012). TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres. Remote Sensing of Environment, 120: 267-276. http://doi.org/10.1016/j.rse.2011.05.030 Camacho, F., Cernicharo, J., Lacaze, R., Baret, F., Weiss, M. (2013). GEOV1: LAI, FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 2: Validation and intercomparison with reference products. Remote Sensing of Environment, 137: 310-329. http://doi.org/10.1016/j.rse.2013.02.030 Cersosimo, A., Serio, C., Masiello, G. (2020). TROPOMI NO2 tropospheric column data: regridding to 1 km grid-resolution and assessment of their consistency with in situ surface observations. Remote Sensing, 12: 2212. http://doi.org/10.3390/rs12142212 Chen, H., Huang, W., Li, W., Niu, Z., Zhang, L., Xing, S. (2018). Estimation of LAI in winter wheat from multi-angular hyperspectral VNIR data: Effects of view angles and plant architecture. Remote Sensing, 10: 1630. http://doi.org/10.3390/rs10101630 Cheng, T., Li, D., Zheng, H., Yao, X., Tian, Y., Zhu, Y., Cao, W. (Year). Towards decomposing the effects of foliar nitrogen content and canopy structure on rice canopy spectral variability through multi-scale spectral analysis. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS). http://doi.org/10.1109/IGARSS.2016.7729907 Cheng, T., Ria?o, D., Ustin, S.L. (2014a). Detecting diurnal and seasonal variation in canopy water content of nut tree orchards from airborne imaging spectroscopy data using continuous wavelet analysis. Remote Sensing of Environment, 143: 39-53. http://doi.org/10.1016/j.rse.2013.11.018 Cheng, T., Rivard, B., Sánchez-Azofeifa, A. (2011). Spectroscopic determination of leaf water content using continuous wavelet analysis. Remote Sensing of Environment, 115: 659-670. http://doi.org/10.1016/j.rse.2010.11.001 Cheng, T., Rivard, B., Sanchez-Azofeifa, A.G., Féret, J.-B., Jacquemoud, S., Ustin, S.L. (2012). Predicting leaf gravimetric water content from foliar reflectance across a range of plant species using continuous wavelet analysis. Journal of Plant Physiology, 169: 1134-1142. http://doi.org/10.1016 /j.jplph.2012.04.006 Cheng, T., Rivard, B., Sánchez-Azofeifa, A.G., Féret, J.-B., Jacquemoud, S., Ustin, S.L. (2014b). Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS Journal of Photogrammetry and Remote Sensing, 87: 28-38. http://doi.org/10.1016/ j.isprsjprs.2013.10.009 Cheng, T., Rivard, B., Sanchez-Azofeifa, G.A., Feng, J., Calvo-Polanco, M. (2010). Continuous wavelet analysis for the detection of green attack damage due to mountain pine beetle infestation. Remote Sensing of Environment, 114: 899-910. http://doi.org/10.1016/j.rse.2009.12.005 Cheng, T., Zhu, Y., Li, D., Yao, X., Zhou, K. (2018). Hyperspectral remote sensing of leaf nitrogen concentration in cereal crops. In P.S. Thenkabail,J.G. Lyon,A. Huete (Eds.), Hyperspectral Indices and Image Classifications for Agriculture and Vegetation. Boca Raton: CRC Press. http://doi.org/10.1201/ 9781315159331-6 Cho, M.A., Skidmore, A.K. (2006). A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sensing of Environment, 101: 181-193. http://doi.org/10.1016/ j.rse.2005.12.011 Croft, H., Arabian, J., Chen, J.M., Shang, J., Liu, J. (2019). Mapping within-field leaf chlorophyll content in agricultural crops for nitrogen management using Landsat-8 imagery. Precision Agriculture: . http://doi.org/10.1007/s11119-019-09698-y Croft, H., Chen, J.M. (2018). Leaf Pigment Content. In S. Liang (Ed.), Comprehensive Remote Sensing (pp. 117-142). Oxford: Elsevier. http://doi.org/10.1016/B978-0-12-409548-9.10547-0 Croft, H., Chen, J.M., Luo, X., Bartlett, P., Chen, B., Staebler, R.M. (2017). Leaf chlorophyll content as a proxy for leaf photosynthetic capacity. Global Change Biology, 23: 3513-3524. http://doi.org/10.1111/ gcb.13599 Croft, H., Chen, J.M., Wang, R., Mo, G., Luo, S., Luo, X., et al. (2020). The global distribution of leaf chlorophyll content. Remote Sensing of Environment, 236: 111479. http://doi.org/10.1016/ j.rse.2019.111479 Croft, H., Chen, J.M., Zhang, Y. (2014). The applicability of empirical vegetation indices for determining leaf chlorophyll content over different leaf and canopy structures. Ecological Complexity, 17: 119-130. http://doi.org/10.1016/j.ecocom.2013.11.005 Curran, P.J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30: 271-278. http://doi.org/10.1016/0034-4257(89)90069-2 Curran, P.J., Dungan, J.L., Peterson, D.L. (2001). Estimating the foliar biochemical concentration of leaves with reflectance spectrometry: Testing the Kokaly and Clark methodologies. Remote Sensing of Environment, 76: 349-359. http://doi.org/10.1016/S0034-4257(01)00182-1 Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C. (2008). Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sensing of Environment, 112: 2592-2604. http://doi.org/10.1016/j.rse.2007.12.003 Dash, J., Curran, P.J. (2004). The MERIS terrestrial chlorophyll index. International Journal of Remote Sensing, 25: 5403-5413. http://doi.org/10.1080/0143116042000274015 Datt, B. (1999a). A new reflectance index for remote sensing of chlorophyll content in higher plants: tests using Eucalyptus leaves. Journal of Plant Physiology, 154: 30-36. http://doi.org/10.1016/ S0176-1617(99)80314-9 Datt, B. (1999b). Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20: 2741-2759. http://doi.org/10.1080/014311699211778 Daughtry, C.S.T., Walthall, C.L., Kim, M.S., de Colstoun, E.B., McMurtrey, J.E. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74: 229-239. http://doi.org/10.1016/s0034-4257(00)00113-9 de Souza, E.G., Scharf, P.C., Sudduth, K.A. (2010). Sun position and cloud effects on reflectance and vegetation indices of corn. Agronomy Journal, 102: 734-744. http://doi.org/10.2134/agronj2009.0206 Demotes-Mainard, S., Jeuffroy, M.-H. (2004). Effects of nitrogen and radiation on dry matter and nitrogen accumulation in the spike of winter wheat. Field Crops Research, 87: 221-233. http://doi.org/10.1016/j.fcr.2003.11.014 Dreccer, M., Van Oijen, M., Schapendonk, A., Pot, C., Rabbinge, R. (2000). Dynamics of vertical leaf nitrogen distribution in a vegetative wheat canopy. Impact on canopy photosynthesis. Annals of Botany, 86: 821-831. Duffie, J.A., Beckman, W.A. (2013). Solar Engineering of Thermal Processes. John Wiley & Sons. http://doi.org/10.1002/9781118671603 Estévez, J., Vicent, J., Rivera-Caicedo, J.P., Morcillo-Pallarés, P., Vuolo, F., Sabater, N., et al. (2020). Gaussian processes retrieval of LAI from Sentinel-2 top-of-atmosphere radiance data. ISPRS Journal of Photogrammetry and Remote Sensing, 167: 289-304. http://doi.org/10.1016/j.isprsjprs.2020.07.004 Evans, J.R. (1989). Photosynthesis and nitrogen relationships in leaves of C? plants. Oecologia, 78: 9-19. http://doi.org/10.1007/BF00377192 Fang, H., Liang, S. (2003). Retrieving leaf area index with a neural network method: simulation and validation. IEEE Transactions on Geoscience and Remote Sensing, 41: 2052-2062. http://doi.org/10.1109/TGRS.2003.813493 Farquhar, G.D., Caemmerer, S.V., Berry, J.A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149: 78-90. http://doi.org/10.1007/BF00386231 Faurtyot, T., Baret, F. (1997). Vegetation water and dry matter contents estimated from top-of-the-atmosphere reflectance data: A simulation study. Remote Sensing of Environment, 61: 34-45. http://doi.org/10.1016/S0034-4257(96)00238-6 Feng, W., Zhang, H.-Y., Zhang, Y.-S., Qi, S.-L., Heng, Y.-R., Guo, B.-B., et al. (2016). Remote detection of canopy leaf nitrogen concentration in winter wheat by using water resistance vegetation indices from in-situ hyperspectral data. Field Crops Research, 198: 238-246. http://doi.org/10.1016/j.fcr.2016.08.023 Fensholt, R., Sandholt, I., Stisen, S. (2006). Evaluating MODIS, MERIS, and VEGETATION vegetation indices using in situ measurements in a semiarid environment. IEEE Transactions on Geoscience and Remote Sensing, 44: 1774-1786. http://doi.org/10.1109/TGRS.2006.875940 Féret, J.-B., Asner, G.P. (2011). Spectroscopic classification of tropical forest species using radiative transfer modeling. Remote Sensing of Environment, 115: 2415-2422. http://doi.org/10.1016/j.rse.2011.05.004 Féret, J.-B., Fran?ois, C., Asner, G.P., Gitelson, A.A., Martin, R.E., Bidel, L.P., et al. (2008). PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments. Remote Sensing of Environment, 112: 3030-3043. http://doi.org/10.1016/j.rse.2008.02.012 Féret, J.-B., Fran?ois, C., Gitelson, A., Asner, G.P., Barry, K.M., Panigada, C., et al. (2011). Optimizing spectral indices and chemometric analysis of leaf chemical properties using radiative transfer modeling. Remote Sensing of Environment, 115: 2742-2750. http://doi.org/10.1016/j.rse.2011.06.016 Féret, J.-B., Gitelson, A.A., Noble, S.D., Jacquemoud, S. (2017). PROSPECT-D: Towards modeling leaf optical properties through a complete lifecycle. Remote Sensing of Environment, 193: 204-215. http://doi.org/10.1016/j.rse.2017.03.004 Féret, J.B., le Maire, G., Jay, S., Berveiller, D., Bendoula, R., Hmimina, G., et al. (2019). Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sensing of Environment: 110959. http://doi.org/10.1016/j.rse.2018.11.002 Friedl, M., Sulla-Menashe, D. (2015). MCD12C1 MODIS/Terra+Aqua land cover type yearly L3 global 0.05deg CMG V006. In: Distributed by NASA EOSDIS Land Processes DAAC Galv?o, L.S., Ponzoni, F.J., Epiphanio, J.C.N., Rudorff, B.F.T., Formaggio, A.R. (2004). Sun and view angle effects on NDVI determination of land cover types in the Brazilian Amazon region with hyperspectral data. International Journal of Remote Sensing, 25: 1861-1879. http://doi.org/10.1080/ 01431160310001598908 Gao, B.C., Goetz, A.F.H. (1994). Extraction of dry leaf spectral features from reflectance spectra of green vegetation. Remote Sensing of Environment, 47: 369-374. http://doi.org/10.1016/ 0034- 4257 (94) 90104-X Gitelson, A., Solovchenko, A. (2017a). Generic algorithms for estimating foliar pigment content. Geophysical Research Letters, 44: 9293-9298. http://doi.org/10.1002/2017GL074799 Gitelson, A., Solovchenko, A. (2017b). Non-invasive quantification of foliar pigments: Possibilities and limitations of reflectance- and absorbance-based approaches. Journal of Photochemistry and Photobiology B: Biology. http://doi.org/10.1016/j.jphotobiol.2017.11.023 Gitelson, A., Vi?a, A., Solovchenko, A., Arkebauer, T., Inoue, Y. (2019). Derivation of canopy light absorption coefficient from reflectance spectra. Remote Sensing of Environment, 231: 111276. http://doi.org/10.1016/j.rse.2019.111276 Gitelson, A.A., Chivkunova, O.B., Merzlyak, M.N. (2009). Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. American Journal of Botany, 96: 1861-1868. http://doi.org/10.3732/ajb.0800395 Gitelson, A.A., Gritz, Y., Merzlyak, M.N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160: 271-282. http://doi.org/10.1078/0176-1617-00887 Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58: 289-298. http://doi.org/10.1016/s0034-4257(96)00072-7 Gitelson, A.A., Keydan, G.P., Merzlyak, M.N. (2006). Three-band model for noninvasive estimation of chlorophyll, carotenoids, and anthocyanin contents in higher plant leaves. Geophysical Research Letters, 33. http://doi.org/10.1029/2006gl026457 Gitelson, A.A., Merzlyak, M.N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18: 2691-2697. http://doi.org/10.1080/014311697217558 Gitelson, A.A., Merzlyak, M.N., Chivkunova, O.B. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology, 74: 38-45. http://doi.org/10.1562/0031-8655(2001)074<0038:opaneo>2.0.co;2 Gitelson, A.A., Vi?a, A., Ciganda, V., Rundquist, D.C., Arkebauer, T.J. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters, 32: L08403. http://doi.org/ 10.1029/2005gl022688 Gitelson, A.A., Zur, Y., Chivkunova, O.B., Merzlyak, M.N. (2002). Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75: 272-281. http://doi.org/10.1562/0031-8655(2002)075<0272:accipl>2.0.co;2 Gnyp, M.L., Panitzki, M., Reusch, S. (2015). Proximal nitrogen sensing by off-nadir and nadir measurements in winter wheat canopy. Precision agriculture'15 (pp. 43 - 50): Wageningen Academic Publishers. http://doi.org/10.3920/978-90-8686-814-8_4 Griffin, D., Zhao, X., McLinden, C.A., Boersma, F., Bourassa, A., Dammers, E., et al. (2019). High-resolution mapping of nitrogen dioxide with TROPOMI: First results and validation over the canadian oil sands. Geophysical Research Letters, 46: 1049-1060. http://doi.org/10.1029/2018GL081095 Gross, M.F., Hardisky, M.A., Klemas, V. (1988). Effects of solar angle on reflectance from wetland vegetation. Remote Sensing of Environment, 26: 195-212. http://doi.org/10.1016/0034-4257(88)90077-6 Guanter, L., Aben, I., Tol, P., Krijger, J.M., Hollstein, A., K?hler, P., et al. (2015a). Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence. Atmospheric Measurement Techniques, 8: 1337-1352. http://doi.org/10.5194/amt-8-1337-2015 Guanter, L., Kaufmann, H., Segl, K., Foerster, S., Rogass, C., Chabrillat, S., et al. (2015b). The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sensing, 7: 8830-8857. Guo, B.B., Zhu, Y.J., Feng, W., He, L., Wu, Y.P., Zhou, Y., et al. (2018). Remotely estimating aerial N uptake in winter wheat using red-ddge area index from multi-angular hyperspectral data. Frontiers in Plant Science, 9: 675. http://doi.org/10.3389/fpls.2018.00675 Guyot, G., Baret, F., Jacquemoud, S. (1992). Imaging spectroscopy for vegetation studies. Imaging Spectroscopy : Fundamentals and Prospective Applications, 2: 145-165. Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81: 416-426. http://doi.org/10.1016/s0034-4257(02)00018-4 Haboudane, D., Tremblay, N., Miller, J.R., Vigneault, P. (2008). Remote estimation of crop chlorophyll content using spectral indices derived from hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 46: 423-437. http://doi.org/10.1109/tgrs.2007.904836 He, J., Zhang, X., Guo, W., Pan, Y., Yao, X., Cheng, T., et al. (2020). Estimation of Vertical Leaf Nitrogen Distribution Within a Rice Canopy Based on Hyperspectral Data. Frontiers in Plant Science, 10. http://doi.org/10.3389/fpls.2019.01802 He, L., Song, X., Feng, W., Guo, B.-B., Zhang, Y.-S., Wang, Y.-H., et al. (2016). Improved remote sensing of leaf nitrogen concentration in winter wheat using multi-angular hyperspectral data. Remote Sensing of Environment, 174: 122-133. http://doi.org/10.1016/j.rse.2015.12.007 Hirose, T., Werger, M. (1987). Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia, 72: 520-526. http://doi.org/10.1007/BF00378977 Houborg, R., McCabe, M., Cescatti, A., Gao, F., Schull, M., Gitelson, A. (2015). Joint leaf chlorophyll content and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC). Remote Sensing of Environment, 159: 203-221. http://doi.org/10.1016/j.rse.2014.12.008 Hsia, J.J., Richmond, J.C. (1976). Bidirectional reflectometry part I. A high resolution laser bi-directional reflectometer with results on several optical coatings. Journal of Reseach of the National Bureau of Standards-A. Physics and Chemistry A, 80: 189-205. http://doi.org/10.6028/jres.080A.021 Hu, H., Landgraf, J., Detmers, R., Borsdorff, T., Aan de Brugh, J., Aben, I., et al. (2018). Toward global mapping of methane with TROPOMI: First results and intersatellite comparison to GOSAT. Geophysical Research Letters, 45: 3682-3689. http://doi.org/10.1002/2018GL077259 Huang, W., Wang, Z., Huang, L., Lamb, D.W., Ma, Z., Zhang, J., et al. (2011). Estimation of vertical distribution of chlorophyll concentration by bi-directional canopy reflectance spectra in winter wheat. Precision Agriculture, 12: 165-178. Huete, A.R. (1987). Soil and Sun angle interactions on partial canopy spectra. International Journal of Remote Sensing, 8: 1307-1317. http://doi.org/10.1080/01431168708954776 Huete, A.R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25: 295-309. http://doi.org/10.1016/0034-4257(88)90106-X Hunt, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S.T., Perry, E.M., Akhmedov, B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. International Journal of Applied Earth Observation and Geoinformation, 21: 103-112. http://doi.org/10.1016/j.jag.2012.07.020 Inoue, Y., Guerif, M., Baret, F., Skidmore, A., Gitelson, A., Schlerf, M., et al. (2016). Simple and robust methods for remote sensing of canopy chlorophyll content: a comparative analysis of hyperspectral data for different types of vegetation. Plant, Cell and Environment, 39: 2609-2623. http://doi.org/10.1111/pce.12815 Ishihara, M., Inoue, Y., Ono, K., Shimizu, M., Matsuura, S. (2015). The impact of sunlight conditions on the consistency of vegetation indices in croplands-effective usage of vegetation indices from continuous ground-based spectral measurements. Remote Sensing, 7: 14079-14098. http://doi.org/10.3390/ rs71014079 Jackson, R.D., Pinter, P.J., Idso, S.B., Reginato, R.J. (1979). Wheat spectral reflectance: interactions between crop configuration, sun elevation, and azimuth angle. Applied Optics, 18: 3730-3732. http://doi.org/10.1364/AO.18.003730 Jacquemoud, S. (1993). Inversion of the PROSPECT + SAIL canopy reflectance model from AVIRIS equivalent spectra: theoretical study. Remote Sensing of Environment, 44: 281-292. http://doi.org/10.1016/ 0034-4257(93)90022-p Jacquemoud, S., Baret, F. (1990). PROSPECT: A model of leaf optical properties spectra. Remote Sensing of Environment, 34: 75-91. http://doi.org/10.1016/0034-4257(90)90100-z Jacquemoud, S., Ustin, S.L., Verdebout, J., Schmuck, G., Andreoli, G., Hosgood, B. (1996). Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sensing of Environment, 56: 194-202. http://doi.org/10.1016/0034-4257(95)00238-3 Jay, S., Bendoula, R., Hadoux, X., Féret, J.-B., Gorretta, N. (2016). A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sensing of Environment, 177: 220-236. http://doi.org/10.1016/j.rse.2016.02.029 Jay, S., Maupas, F., Bendoula, R., Gorretta, N. (2017). Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: Comparison of vegetation indices and PROSAIL inversion for field phenotyping. Field Crops Research, 210: 33-46. http://doi.org/10.1016/j.fcr.2017.05.005 Jia, M., Zhu, J., Ma, C., Alonso, L., Li, D., Cheng, T., et al. (2018). Difference and potential of the upward and downward sun-induced chlorophyll fluorescence on detecting leaf nitrogen concentration in wheat. Remote Sensing, 10: 1315. http://doi.org/10.3390/rs10081315 Jiao, Q., Zhang, B., Liu, J., Liu, L. (2014). A novel two-step method for winter wheat-leaf chlorophyll content estimation using a hyperspectral vegetation index. International Journal of Remote Sensing, 35: 7363-7375. http://doi.org/10.1080/2150704X.2014.968681 Ju, C.-H., Tian, Y.-C., Yao, X., Cao, W.-X., Zhu, Y., Hannaway, D. (2010). Estimating leaf chlorophyll content using red edge parameters. Pedosphere, 20: 633-644. http://doi.org/10.1016/S1002-0160(10)60053-7 Kattenborn, T., Schiefer, F., Zarco-Tejada, P., Schmidtlein, S. (2019). Advantages of retrieving pigment content [μg/cm2] versus concentration [%] from canopy reflectance. Remote Sensing of Environment, 230: 111195. http://doi.org/10.1016/j.rse.2019.05.014 Kimes, D.S., Smith, J.A., Ranson, K.J. (1979). Interpreting vegetation reflectance measurements as a function of solar zenith angle. Knyazikhin, Y., Schull, M.A., Stenberg, P., Mottus, M., Rautiainen, M., Yang, Y., et al. (2013). Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the National Academy of Sciences of the United States of America, 110: E185-E192. http://doi.org/10.1073/pnas.1210196109 K?hler, P., Frankenberg, C., Magney, T.S., Guanter, L., Joiner, J., Landgraf, J. (2018). Global retrievals of Solar‐Induced Chlorophyll Fluorescence with TROPOMI: First results and intersensor comparison to OCO‐2. Geophysical Research Letters, 45: 10456-10463. http://doi.org/10.5194/bg-12-4067-2015 Kokaly, R.F. (2001). Investigating a physical basis for spectroscopic estimates of leaf nitrogen concentration. Remote Sensing of Environment, 75: 153-161. http://doi.org/10.1016/s0034-4257(00)00163-2 Kokaly, R.F., Clark, R.N. (1999). Spectroscopic determination of leaf biochemistry using band-depth analysis of absorption features and stepwise multiple linear regression. Remote Sensing of Environment, 67: 267-287. http://doi.org/10.1016/s0034-4257(98)00084-4 Kollenkark, J., Vanderbilt, V., Daughtry, C., Bauer, M. (1982). Influence of solar illumination angle on soybean canopy reflectance. Applied Optics, 21: 1179-1184. http://doi.org/10.1364/AO.21.001179 Kong, W., Huang, W., Casa, R., Zhou, X., Ye, H., Dong, Y. (2017). Off-nadir hyperspectral sensing for estimation of vertical profile of leaf chlorophyll content within wheat canopies. Sensors (Basel), 17: 2711. http://doi.org/10.3390/s17122711 Laurent, V.C.E., Schaepman, M.E., Verhoef, W., Weyermann, J., Chávez, R.O. (2014). Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image. Remote Sensing of Environment, 140: 318-329. http://doi.org/10.1016/j.rse.2013.09.005 Laurent, V.C.E., Verhoef, W., Clevers, J.G.P.W., Schaepman, M.E. (2011a). Estimating forest variables from top-of-atmosphere radiance satellite measurements using coupled radiative transfer models. Remote Sensing of Environment, 115: 1043-1052. http://doi.org/10.1016/j.rse.2010.12.009 Laurent, V.C.E., Verhoef, W., Clevers, J.G.P.W., Schaepman, M.E. (2011b). Inversion of a coupled canopy–atmosphere model using multi-angular top-of-atmosphere radiance data: A forest case study. Remote Sensing of Environment, 115: 2603-2612. http://doi.org/10.1016/j.rse.2011.05.016 Laurent, V.C.E., Verhoef, W., Damm, A., Schaepman, M.E., Clevers, J.G.P.W. (2013). A Bayesian object-based approach for estimating vegetation biophysical and biochemical variables from APEX at-sensor radiance data. Remote Sensing of Environment, 139: 6-17. http://doi.org/10.1016/j.rse.2013.07.032 Lauvernet, C., Baret, F., Hasco?t, L., Buis, S., Le Dimet, F.-X. (2008). Multitemporal-patch ensemble inversion of coupled surface–atmosphere radiative transfer models for land surface characterization. Remote Sensing of Environment, 112: 851-861. http://doi.org/10.1016/j.rse.2007.06.027 le Maire, G., Fran?ois, C., Dufrêne, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89: 1-28. http://doi.org/10.1016/j.rse.2003.09.004 Li, D., Chen, J.M., Zhang, X., Yan, Y., Zhu, J., Zheng, H., et al. (2020). Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time. Remote Sensing of Environment, 248: 111985. http://doi.org/10.1016/j.rse.2020.111985 Li, D., Cheng, T., Jia, M., Zhou, K., Lu, N., Yao, X., et al. (2018a). PROCWT: Coupling PROSPECT with continuous wavelet transform to improve the retrieval of foliar chemistry from leaf bidirectional reflectance spectra. Remote Sensing of Environment, 206: 1-14. http://doi.org/10.1016/j.rse.2017.12.013 Li, D., Cheng, T., Zhou, K., Zheng, H., Yao, X., Tian, Y., et al. (2017a). WREP: A wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS Journal of Photogrammetry and Remote Sensing, 129: 103-117. http://doi.org/10.1016/j.isprsjprs.2017.04.024 Li, D., Tian, L., Wan, Z., Jia, M., Yao, X., Tian, Y., et al. (2019). Assessment of unified models for estimating leaf chlorophyll content across directional-hemispherical reflectance and bidirectional reflectance spectra. Remote Sensing of Environment, 231: 111240. http://doi.org/10.1016/j.rse.2019.111240 Li, D., Wang, X., Zheng, H., Zhou, K., Yao, X., Tian, Y., et al. (2018b). Estimation of area- and mass-based leaf nitrogen contents of wheat and rice crops from water-removed spectra using continuous wavelet analysis. Plant Methods, 14: 76. http://doi.org/10.1186/s13007-018-0344-1 Li, F., Miao, Y., Hennig, S.D., Gnyp, M.L., Chen, X., Jia, L., Bareth, G. (2010). Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precision Agriculture, 11: 335-357. http://doi.org/10.1007/s11119-010-9165-6 Li, F., Mistele, B., Hu, Y., Chen, X., Schmidhalter, U. (2014). Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. European Journal of Agronomy, 52: 198-209. http://doi.org/10.1016/j.eja.2013.09.006 Li, H., Zhao, C., Yang, G., Feng, H. (2015). Variations in crop variables within wheat canopies and responses of canopy spectral characteristics and derived vegetation indices to different vertical leaf layers and spikes. Remote Sensing of Environment, 169: 358-374. http://doi.org/https://doi.org/10.1016/j.rse.2015.08.021 Li, P., Wang, Q. (2011). Retrieval of leaf biochemical parameters using PROSPECT inversion: A new approach for alleviating ill-posed problems. IEEE Transactions on Geoscience and Remote Sensing, 49: 2499-2506. http://doi.org/10.1109/tgrs.2011.2109390 Li, P.H., Wang, Q. (2013). Retrieval of chlorophyll for assimilating branches of a typical desert plant through inversed radiative transfer models. International Journal of Remote Sensing, 34: 2402-2416. http://doi.org/10.1080/01431161.2012.744859 Li, Y., Huang, J. (2019). Remote Sensing of Pigment Content at a Leaf Scale: Comparison among Some Specular Removal and Specular Resistance Methods. Remote Sensing, 11: 983. http://doi.org/10.3390/rs11080983 Li, Y., Liu, Y., Wu, S., Wang, C., Xu, A., Pan, X. (2017b). Hyper-spectral estimation of wheat biomass after alleviating of soil effects on spectra by non-negative matrix factorization. European Journal of Agronomy, 84: 58-66. http://doi.org/10.1016/j.eja.2016.12.003 Liu, S., Yang, B., Zhang, Z., Xiang, Y., Wu, T., Zhao, Y., Zhang, F. (2020). Influence of polarized reflection on airborne remote sensing of canopy foliar nitrogen content. International Journal of Remote Sensing, 41: 4879-4900. http://doi.org/10.1080/01431161.2020.1718242 Lord, D., Desjardins, R.L., Dubé, P.A. (1988). Sun-angle effects on the red and near infrared reflectances of five different crop canopies. Canadian Journal of Remote Sensing, 14: 46-55. http://doi.org/10.1080/07038992.1988.10855118 Lu, J., Li, W., Yu, M., Zhang, X., Ma, Y., Su, X., et al. Estimation of rice plant potassium accumulation based on non?negative matrix factorization using hyperspectral reflectance. Lu, N., Wang, W., Zhang, Q., Li, D., Yao, X., Tian, Y., et al. (2019). Estimation of nitrogen nutrition status in winter wheat from unmanned aerial vehicle based multi-angular multispectral imagery. Frontiers in Plant Science, 10: 1601. http://doi.org/10.3389/fpls.2019.01601 Lu, S., Lu, F., You, W., Wang, Z., Liu, Y., Omasa, K. (2018). A robust vegetation index for remotely assessing chlorophyll content of dorsiventral leaves across several species in different seasons. Plant Methods, 14: 15. http://doi.org/10.1186/s13007-018-0281-z Luo, X., Croft, H., Chen, J.M., He, L., Keenan, T.F. (2019). Improved estimates of global terrestrial photosynthesis using information on leaf chlorophyll content. Global Change Biology, 25: 2499-2514. http://doi.org/10.1111/gcb.14624 Ma, Z., Chen, X., Wang, Q., Li, P., Jiapaerl, G. (2012). Retrieval of leaf biochemical properties by inversed PROSPECT model and hyperspectral indices: an application to Populus euphratica polymorphic leaves. Journal of Arid Land, 4: 52-62. http://doi.org/10.3724/sp.j.1227.2012.00052 Maccioni, A., Agati, G., Mazzinghi, P. (2001). New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. Journal of Photochemistry and Photobiology B: Biology, 61: 52-61. http://doi.org/10.1016/S1011-1344(01)00145-2 Main, R., Cho, M.A., Mathieu, R., O'Kennedy, M.M., Ramoelo, A., Koch, S. (2011). An investigation into robust spectral indices for leaf chlorophyll estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 66: 751-761. http://doi.org/10.1016/j.isprsjprs.2011.08.001 Malenovsky, Z., Albrechtova, J., Lhotakova, Z., Zurita-Milla, R., Clevers, J., Schaepman, M.E., Cudlin, P. (2006). Applicability of the PROSPECT model for Norway spruce needles. International Journal of Remote Sensing, 27: 5315-5340. http://doi.org/10.1080/01431160600762990 Markwell, J., Osterman, J.C., Mitchell, J.L. (1995). Calibration of the Minolta SPAD-502 leaf chlorophyll meter. Photosynthesis Research, 46: 467-472. http://doi.org/10.1007/BF00032301 Meggio, F., Zarco-Tejada, P.J., Miller, J.R., Martín, P., González, M.R., Berjón, A. (2008). Row orientation and viewing geometry effects on row-structured vine crops for chlorophyll content estimation. Canadian Journal of Remote Sensing, 34: 220-234. http://doi.org/10.5589/m08-023 Middleton, E.M. (1991). Solar zenith angle effects on vegetation indices in tallgrass prairie. Remote Sensing of Environment, 38: 45-62. http://doi.org/10.1016/0034-4257(91)90071-D Moharana, S., Dutta, S. (2016). Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 122: 17-29. http://doi.org/10.1016/j.isprsjprs.2016.09.002 Mohd Asaari, M.S., Mishra, P., Mertens, S., Dhondt, S., Inzé, D., Wuyts, N., Scheunders, P. (2018). Close-range hyperspectral image analysis for the early detection of stress responses in individual plants in a high-throughput phenotyping platform. ISPRS Journal of Photogrammetry and Remote Sensing, 138: 121-138. http://doi.org/10.1016/j.isprsjprs.2018.02.003 Mousivand, A., Menenti, M., Gorte, B., Verhoef, W. (2015). Multi-temporal, multi-sensor retrieval of terrestrial vegetation properties from spectral–directional radiometric data. Remote Sensing of Environment, 158: 311-330. http://doi.org/10.1016/j.rse.2014.10.030 Munoz-Huerta, R.F., Guevara-Gonzalez, R.G., Contreras-Medina, L.M., Torres-Pacheco, I., Prado-Olivarez, J., Ocampo-Velazquez, R.V. (2013). A review of methods for sensing the nitrogen status in plants: advantages, disadvantages and recent advances. Sensors, 13: 10823-10843. http://doi.org/10.3390/s130810823 Mutanga, O., Skidmore, A.K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25: 3999-4014. http://doi.org/10.1080/01431160310001654923 Myneni, R.B., Hoffman, S., Knyazikhin, Y., Privette, J.L., Glassy, J., Tian, Y., et al. (2002). Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sensing of Environment, 83: 214-231. http://doi.org/10.1016/S0034-4257(02)00074-3 Pacheco-Labrador, J., Gonzalez-Cascon, R., Pilar Martin, M., Riano, D. (2014). Understanding the optical responses of leaf nitrogen in Mediterranean Holm oak (Quercus ilex) using field spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 26: 105-118. http://doi.org/10.1016/j.jag.2013.05.013 Pinter, P.J. (1993). Solar angle independence in the relationship between absorbed PAR and remotely sensed data for alfalfa. Remote Sensing of Environment, 46: 19-25. http://doi.org/10.1016/0034-4257(93)90029-W Pinter, P.J., Jackson, R.D., Elaine Ezra, C., Gausman, H.W. (1985). Sun-angle and canopy-architecture effects on the spectral reflectance of six wheat cultivars. International Journal of Remote Sensing, 6: 1813-1825. http://doi.org/10.1080/01431168508948330 Pu, R.L., Gong, P., Biging, G.S., Larrieu, M.R. (2003). Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Transactions on Geoscience and Remote Sensing, 41: 916-921. http://doi.org/10.1109/tgrs.2003.813555 Qin, Z., Chang, Q., Xie, B., Shen, J. (2016). Rice leaf nitrogen content estimation based on hysperspectral imagery of UAV in Yellow River diversion irrigation district. Transactions of the Chinese Society of Agricultural Engineering, 32: 77-85. http://doi.org/10.11975/j.issn.1002-6819.2016.23.011 Rahman, M., Lamb, D., Stanley, J. (2015). The impact of solar illumination angle when using active optical sensing of NDVI to infer fAPAR in a pasture canopy. Agricultural and Forest Meteorology, 202: 39-43. http://doi.org/10.1016/j.agrformet.2014.12.001 Ramoelo, A., Skidmore, A.K., Schlerf, M., Heitkonig, I.M.A., Mathieu, R., Cho, M.A. (2013). Savanna grass nitrogen to phosphorous ratio estimation using field spectroscopy and the potential for estimation with imaging spectroscopy. International Journal of Applied Earth Observation and Geoinformation, 23: 334-343. http://doi.org/10.1016/j.jag.2012.10.009 Ramoelo, A., Skidmore, A.K., Schlerf, M., Mathieu, R., Heitkonig, I.M.A. (2011). Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations. ISPRS Journal of Photogrammetry and Remote Sensing, 66: 408-417. http://doi.org/10.1016/j.isprsjprs.2011.01.008 Ranson, K.J., Daughtry, C.S.T., Biehl, L.L., Bauer, M.E. (1985). Sun-view angle effects on reflectance factors of corn canopies. Remote Sensing of Environment, 18: 147-161. http://doi.org/10.1016/ 0034-4257(85)90045-8 Robinson, B.F., Biehl, L.L. (1979). Calibration procedures for measurement of reflectance factor in remote sensing field research. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 196: 16–26. http://doi.org/10.1117/12.957952 Rondeaux, G., Steven, M., Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55: 95-107. http://doi.org/10.1016/0034-4257(95)00186-7 Saberioon, M.M., Amin, M.S.M., Anuar, A.R., Gholizadeh, A., Wayayok, A., Khairunniza-Bejo, S. (2014). Assessment of rice leaf chlorophyll content using visible bands at different growth stages at both the leaf and canopy scale. International Journal of Applied Earth Observation and Geoinformation, 32: 35-45. http://doi.org/10.1016/j.jag.2014.03.018 Schaepman-Strub, G., Schaepman, M.E., Painter, T.H., Dangel, S., Martonchik, J.V. (2006). Reflectance quantities in optical remote sensing—definitions and case studies. Remote Sensing of Environment, 103: 27-42. http://doi.org/10.1016/j.rse.2006.03.002 Schlemmer, M., Gitelson, A., Schepers, J., Ferguson, R., Peng, Y., Shanahan, J., Rundquist, D. (2013). Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. International Journal of Applied Earth Observation and Geoinformation, 25: 47-54. http://doi.org/10.1016/ j.jag.2013.04.003 Schlerf, M., Atzberger, C., Hill, J., Buddenbaum, H., Werner, W., Schüler, G. (2010). Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. International Journal of Applied Earth Observation & Geoinformation, 12: 17-26. http://doi.org/10.1016/ j.jag.2009.08.006 Shi, H., Xiao, Z., Liang, S., Ma, H. (2017). A method for consistent estimation of multiple land surface parameters from MODIS top-of-atmosphere time series data. IEEE Transactions on Geoscience and Remote Sensing, 55: 5158-5173. http://doi.org/10.1109/TGRS.2017.2702609 Shi, H., Xiao, Z., Liang, S., Zhang, X. (2016). Consistent estimation of multiple parameters from MODIS top of atmosphere reflectance data using a coupled soil-canopy-atmosphere radiative transfer model. Remote Sensing of Environment, 184: 40-57. http://doi.org/10.1016/j.rse.2016.06.008 Shibayama, M., Wiegand, C.L. (1985). View azimuth and zenith, and solar angle effects on wheat canopy reflectance. Remote Sensing of Environment, 18: 91-103. http://doi.org/10.1016/0034-4257(85)90040-9 Si, Y., Schlerf, M., Zurita-Milla, R., Skidmore, A., Wang, T. (2012). Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model. Remote Sensing of Environment, 121: 415-425. http://doi.org/10.1016/j.rse.2012.02.011 Simic, A., Chen, J.M., Leblanc, S.G., Dyk, A., Croft, H., Han, T. (2014). Testing the top-down model inversion method of estimating leaf reflectance used to retrieve vegetation biochemical content within empirical approaches. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7: 92-104. http://doi.org/10.1109/jstars.2013.2271583 Sims, D.A., Gamon, J.A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81: 337-354. http://doi.org/10.1016/s0034-4257(02)00010-x Spafford, L., le Maire, G., MacDougall, A., de Boissieu, F., Féret, J.-B. (2021). Spectral subdomains and prior estimation of leaf structure improves PROSPECT inversion on reflectance or transmittance alone. Remote Sensing of Environment, 252: 112176. http://doi.org/10.1016/j.rse.2020.112176 Sun, J., Shi, S., Yang, J., Du, L., Gong, W., Chen, B., Song, S. (2018). Analyzing the performance of PROSPECT model inversion based on different spectral information for leaf biochemical properties retrieval. ISPRS Journal of Photogrammetry and Remote Sensing, 135: 74-83. http://doi.org/10.1016/j.isprsjprs.2017.11.010 Tian, Y.-C., Gu, K.-J., Chu, X., Yao, X., Cao, W.-X., Zhu, Y. (2014). Comparison of different hyperspectral vegetation indices for canopy leaf nitrogen concentration estimation in rice. Plant and soil, 376: 193-209. http://doi.org/10.1007/s11104-013-1937-0 Vandaele, A.C., Willame, Y., Depiesse, C., Thomas, I.R., Robert, S., Bolsée, D., et al. (2015). Optical and radiometric models of the NOMAD instrument part I: the UVIS channel. Optics Express, 23: 30028-30042. http://doi.org/10.1364/OE.23.030028 Vanderbilt, V., Grant, L., Biehl, L., Robinson, B. (1985). Specular, diffuse, and polarized light scattered by two wheat canopies. Applied Optics, 24: 2408-2418. http://doi.org/10.1364/AO.24.002408 Veefkind, J.P., Aben, I., McMullan, K., F?rster, H., de Vries, J., Otter, G., et al. (2012). TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sensing of Environment, 120: 70-83. http://doi.org/10.1016/j.rse.2011.09.027 Verbrugghe, M., Cierniewski, J. (1996). Effects of sun and view geometrics on cotton bidirectional reflectance. Test of a geometrical model. Remote Sensing of Environment, 54: 189-197. http://doi.org/10.1016/ 0034-4257(95)00174-3 Verhoef, W. (1984). Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model. Remote Sensing of Environment, 16: 125-141. http://doi.org/10.1016/0034-4257(84)90057-9 Verhoef, W. (1985). Earth observation modeling based on layer scattering matrices. Remote Sensing of Environment, 17: 165-178. http://doi.org/10.1016/0034-4257(85)90072-0 Verhoef, W., Jia, L., Xiao, Q., Su, Z. (2007). Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies. IEEE Transactions on Geoscience and Remote Sensing, 45: 1808-1822. http://doi.org/10.1109/TGRS.2007.895844 Verrelst, J., Vicent, J., Rivera-Caicedo, J.P., Lumbierres, M., Morcillo-Pallarés, P., Moreno, J. (2019). Global sensitivity analysis of leaf-canopy-atmosphere RTMs: Implications for biophysical variables retrieval from top-of-atmosphere radiance data. Remote Sensing, 11: 1923. http://doi.org/10.3390/rs11161923 Vogelmann, J.E., Rock, B.N., Moss, D.M. (1993). Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14: 1563-1575. http://doi.org/10.1080/01431169308953986 Walter-Shea, E.A., Norman, J.M., Blad, B.L. (1989). Leaf bidirectional reflectance and transmittance in corn and soybean. Remote Sensing of Environment, 29: 161-174. http://doi.org/10.1016/0034-4257(89)90024-2 Wang, J.F., He, D.X., Song, J.X., Dou, H.J., Du, W.F. (2015a). Non-destructive measurement of chlorophyll in tomato leaves using spectral transmittance. International Journal of Agricultural & Biological Engineering, 8: 73-78. http://doi.org/10.3965/j.ijabe.20150805.1931 Wang, S., Gao, W., Ming, J., Li, L., Xu, D., Liu, S., Lu, J. (2018). A TPE based inversion of PROSAIL for estimating canopy biophysical and biochemical variables of oilseed rape. Computers and Electronics in Agriculture, 152: 350-362. http://doi.org/10.1016/j.compag.2018.07.023 Wang, W., Yao, X., Yao, X., Tian, Y., Liu, X., Ni, J., et al. (2012). Estimating leaf nitrogen concentration with three-band vegetation indices in rice and wheat. Field Crops Research, 129: 90-98. http://doi.org/10.1016/j.fcr.2012.01.014 Wang, Z., Skidmore, A.K., Darvishzadeh, R., Heiden, U., Heurich, M., Wang, T. (2015b). Leaf nitrogen content indirectly estimated by leaf traits derived from the PROSPECT model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8: 3172-3182. http://doi.org/10.1109/ jstars.2015.2422734 Wang, Z., Skidmore, A.K., Wang, T., Darvishzadeh, R., Hearne, J. (2015c). Applicability of the PROSPECT model for estimating protein and cellulose plus lignin in fresh leaves. Remote Sensing of Environment, 168: 205-218. http://doi.org/10.1016/j.rse.2015.07.007 Wang, Z., Skidmore, A.K., Wang, T., Darvishzadeh, R., Heiden, U., Heurich, M., et al. (2017). Canopy foliar nitrogen retrieved from airborne hyperspectral imagery by correcting for canopy structure effects. International Journal of Applied Earth Observation and Geoinformation: 84–94. Wen, P.-F., He, J., Ning, F., Wang, R., Zhang, Y.-H., Li, J. (2019). Estimating leaf nitrogen concentration considering unsynchronized maize growth stages with canopy hyperspectral technique. Ecological Indicators, 107: 105590. http://doi.org/10.1016/j.ecolind.2019.105590 Wu, C., Niu, Z., Tang, Q., Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology, 148: 1230-1241. http://doi.org/10.1016/j.agrformet.2008.03.005 Xiao, Y., Zhao, W., Zhou, D., Gong, H. (2014). Sensitivity analysis of vegetation reflectance to biochemical and biophysical variables at leaf, canopy, and regional scales. IEEE Transactions on Geoscience and Remote Sensing, 52: 4014-4024. http://doi.org/10.1109/tgrs.2013.2278838 Xiong, H., Shi, H., Xiao, Z. (2020). Consistent retrieval of multiple parameters from GOES-R top of atmosphere reflectance data. International Journal of Remote Sensing, 41: 7931-7957. http://doi.org/10.1080/ 01431161.2020.1766151 Xu, C., Fisher, R., Wullschleger, S.D., Wilson, C.J., Cai, M., McDowell, N.G. (2012). Toward a mechanistic modeling of nitrogen limitation on vegetation dynamics. PloS one, 7: e37914. Xu, M., Liu, R., Chen, J.M., Liu, Y., Shang, R., Ju, W., et al. (2019). Retrieving leaf chlorophyll content using a matrix-based vegetation index combination approach. Remote Sensing of Environment, 224: 60-73. http://doi.org/10.1016/j.rse.2019.01.039 Xue, L.H., Cao, W.X., Luo, W.H., Dai, T.B., Zhu, Y. (2004). Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 96: 135-142. http://doi.org/10.2134/agronj2004.1350 Yang, B., Knyazikhin, Y., Xie, D., Zhao, H., Zhang, J., Wu, Y. (2018a). Influence of leaf specular reflection on canopy radiative regime using an improved version of the stochastic radiative transfer model. Remote Sensing, 10: 1632. http://doi.org/10.3390/rs10101632 Yang, B., Knyazikhin, Y., Zhao, H., Ma, Y. (2018b). Contribution of leaf specular reflection to canopy reflectance under black soil case using stochastic radiative transfer model. Agricultural and Forest Meteorology, 263: 477-482. http://doi.org/10.1016/j.agrformet.2018.08.024 Yang, P., van der Tol, C., Yin, T., Verhoef, W. (2020). The SPART model: A soil-plant-atmosphere radiative transfer model for satellite measurements in the solar spectrum. Remote Sensing of Environment, 247: 111870. http://doi.org/10.1016/j.rse.2020.111870 Yao, X., Huang, Y., Shang, G., Zhou, C., Cheng, T., Tian, Y., et al. (2015). Evaluation of six algorithms to monitor wheat leaf nitrogen concentration. Remote Sensing, 7: 14939-14966. http://doi.org/10.3390/rs71114939 Yao, X., Ren, H., Cao, Z., Tian, Y., Cao, W., Zhu, Y., Cheng, T. (2014). Detecting leaf nitrogen content in wheat with canopy hyperspectrum under different soil backgrounds. International Journal of Applied Earth Observation and Geoinformation, 32: 114-124. http://doi.org/10.1016/j.jag.2014.03.014 Yoder, B.J., Pettigrew-Crosby, R.E. (1995). Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53: 199-211. http://doi.org/10.1016/0034-4257(95)00135-n Yu, K., Lenz-Wiedemann, V., Chen, X., Bareth, G. (2014). Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects. ISPRS Journal of Photogrammetry and Remote Sensing, 97: 58-77. http://doi.org/10.1016/ j.isprsjprs.2014.08.005 Zarco-Tejada, P., Camino, C., Beck, P., Calderon, R., Hornero, A., Hernández-Clemente, R., et al. (2018). Previsual symptoms of Xylella fastidiosa infection revealed in spectral plant-trait alterations. Nature Plants, 4: 432. http://doi.org/10.1038/s41477-018-0189-7 Zarco-Tejada, P.J., Berjón, A., López-Lozano, R., Miller, J.R., Martín, P., Cachorro, V., et al. (2005). Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sensing of Environment, 99: 271-287. http://doi.org/10.1016/j.rse.2005.09.002 Zarco-Tejada, P.J., Miller, J.R., Noland, T.L., Mohammed, G.H., Sampson, P.H. (2001). Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Transactions on Geoscience and Remote Sensing, 39: 1491-1507. http://doi.org/10.1109/36.934080 Zhang, S., Wang, Q. (2015). Inverse retrieval of chlorophyll from reflected spectra for assimilating branches of drought-tolerant tamarix ramosissima. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 8: 1498-1505. http://doi.org/10.1109/JSTARS.2015.2419225 Zhang, Y., Chen, J.M., Miller, J.R., Noland, T.L. (2008). Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sensing of Environment, 112: 3234-3247. http://doi.org/10.1016/j.rse.2008.04.005 Zhao, F., Gu, X., Verhoef, W., Wang, Q., Yu, T., Liu, Q., et al. (2010). A spectral directional reflectance model of row crops. Remote Sensing of Environment, 114: 265-285. http://doi.org/10.1016/j.rse.2009.09.018 Zheng, H., Cheng, T., Li, D., Yao, X., Tian, Y., Cao, W., Zhu, Y. (2018). Combining Unmanned Aerial Vehicle (UAV)-based multispectral imagery and ground-based hyperspectral data for plant nitrogen concentration estimation in rice. Frontiers in Plant Science, 9: 1-13. http://doi.org/ 10.3389/fpls.2018.00936 Zheng, H., Ma, J., Zhou, M., Li, D., Yao, X., Cao, W., et al. (2020). Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from Unmanned Aerial Vehicle (UAV) multispectral imagery. Remote Sensing, 12: 957. http://doi.org/10.3390/rs12060957 Zhou, K., Cheng, T., Zhu, Y., Cao, W., Ustin, S.L., Zheng, H., et al. (2018). Assessing the impact of spatial resolution on the estimation of leaf nitrogen concentration over the full season of paddy rice using near-surface imaging spectroscopy data. Frontiers in Plant Science, 9. http://doi.org/10.3389/fpls.2018.00964 Zhou, K., Guo, Y., Geng, Y., Zhu, Y., Cao, W., Tian, Y. (2014). Development of a novel bidirectional canopy reflectance model for row-planted rice and wheat. Remote Sensing, 6: 7632-7659. http://doi.org/10.3390/rs6087632 Zhu, Y., Tian, Y., Yao, X., Liu, X., Cao, W. (2007a). Analysis of common canopy reflectance spectra for indicating leaf nitrogen concentrations in wheat and rice. Plant Production Science, 10: 400-411. http://doi.org/10.1626/pps.10.400 Zhu, Y., Zhou, D., Yao, X., Tian, Y., Cao, W. (2007b). Quantitative relationships of leaf nitrogen status to canopy spectral reflectance in rice. Crop and Pasture Science, 58: 1077-1085. http://doi.org/10.1071/AR06413 曹卫星, 朱艳, 田永超, 姚霞, 汤亮, 刘小军, 倪军 (2011). 作物精确栽培技术的构建与实现. 中国农业科学, 44: 3955-3969. 方圣辉,乐源,梁琦. 基于连续小波分析的混合植被叶绿素反演[J].武汉大学学报(信息科学版),2015:296-302. 冯伟, 姚霞, 朱艳, 田永超, 曹卫星 (2008). 基于高光谱遥感的小麦叶片含氮量监测模型研究. 麦类作物学报: 851-860. 宫兆宁,赵雅莉,赵文吉, 等. 基于光谱指数的植物叶片叶绿素含量的估算模型[J].生态学报,2014(20). 梁亮, 杨敏华, 邓凯东, 张连蓬, 林卉, 刘志霄 (2011). 一种估测小麦冠层氮含量的新高光谱指数. 生态学报, 31: 6594-6605. 田永超, 杨杰, 姚霞, 朱艳, 曹卫星 (2010). 估测水稻叶层氮浓度的新型蓝光氮指数. 应用生态学报, 21: 966-972. 田永超,朱艳,曹卫星. 水稻不同叶位层物理结构与冠层反射光谱的定量研究[J].中国水稻科学,2005(19). 薛利红, 曹卫星, 罗卫红, 张宪 (2004). 小麦叶片氮素状况与光谱特性的相关性研究. 植物生态学报: 172-177. 薛忠财,高辉远,彭涛, 等. 光谱分析在植物生理生态研究中的应用[J].植物生理学报,2011(47):313-320. 姚霞, 朱艳, 田永超, 冯伟, 曹卫星 (2009). 小麦叶层氮含量估测的最佳高光谱参数研究. 中国农业科学, 42: 2716-2725. 张潇元, 张立福, 张霞, 王树东, 田静国, 翟涌光 (2017). 不同光谱植被指数反演冬小麦叶氮含量的敏感性研究. 中国农业科学, 50: 474-485. 赵春江,黄文江,王纪华, 等. 用多角度光谱信息反演冬小麦叶绿素含量垂直分布[J].农业工程学报,2006(22):104-109. 朱艳, 李映雪, 周冬琴, 田永超, 姚霞, 曹卫星 (2006). 稻麦叶片氮含量与冠层反射光谱的定量关系. 作物学报, 26: 3463-3469. |
中图分类号: | S51 |
开放日期: | 2023-01-19 |