- 无标题文档
查看论文信息

中文题名:

 磁场辅助腌制和预热工艺对调理肉饼品质的影响    

姓名:

 王静文    

学号:

 2021808105    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 086003    

学科名称:

 工学 - 生物与医药 - 食品工程    

学生类型:

 硕士    

学位:

 工学硕士    

学校:

 南京农业大学    

院系:

 食品科技学院    

专业:

 生物与医药(专业学位)    

研究方向:

 肉品加工与质量安全控制    

第一导师姓名:

 王虎虎    

第一导师单位:

 南京农业大学    

完成日期:

 2023-06-12    

答辩日期:

 2023-05-16    

外文题名:

 Effect Of Magnetic Field Assisted Marinating And Preheating Process On The Quality Of Prepared Patties    

中文关键词:

 调理肉制品 ; 磁场 ; 腌制 ; 预加热 ; 肌原纤维蛋白 ; 保水性    

外文关键词:

 Prepared meat products ; Magnetic field ; Marinating ; Preheating ; Myofibrillar protein ; Water holding capaci    

中文摘要:

调理肉制品因营养价值丰富,方便快捷等优势深受消费者的青睐;在调理肉制 品的加工中,腌制和预热是两个关键工艺,決定着最终产品的口感、色泽和风味。 目前传统的腌制和预热工艺会导致产品保水性低、质构不佳等问题,严重降低了调 理肉制品的食用品质,因此科学选用腌制和预热工艺对于提升调理肉制品的品质至 关重要。目前,研究学者常通过添加辅料、优化传统工艺、引入新工艺等方式试图 解决上述问题。近年来,一些物理加工方式因其独特的优势得到了广泛关注,磁场作为一种新型的物理加工技术,在提升肉品品质和改善蛋白功能特性方面具有较大 发展潜力,但目前关于磁场辅助腌制和预热的关联研究报道较为有限,极大限制了 该技术的产业化应用与推广。 基于此,本课题以调理肉饼作为研究对象,针对传统的腌制和预热工艺中产品 保水性差的产业问题,创新性地研发出磁场辅助腌制和预热的技术参数并探究了磁 场对肌原纤维蛋白(Myofibrillar protein,MP)结构和凝胶特性的影响作用,以期为 规模化应用磁场提升调理肉制品品质提供技术支撑。具体研究内容如下: 1.磁场辅助腌制对调理肉饼食用品质与凝胶特性的影响

  以未施加磁场腌制为对照,以腌制时间和磁场强度为主要因素探究磁场辅助腌 制对调理肉饼食用品质(pH 值、色泽、质地、保水性)与凝胶特性的影响。结果表 明,与对照组相比,磁场腌制提高了肉饼的 pH 值和 a*值;选用不同磁场参数腌制 对肉饼的保水性有不同程度地提升,其中当腌制时间为3 h 时,3.0 mT组的蒸煮损失 最低,仅为5.12%。此外,磁场辅助腌制可增加调理肉饼的硬度,弹性。流变结果进 一步表明,磁场辅助腌制的肉糜凝胶 G′值高于对照组,当腌制时间为 3 h,磁场强度 为 3.0 mT 时观察到最大的 G′值,表现出更好的凝胶特性。在此基础上,磁场辅助腌制对肉糜的乳化稳定性也起到了一定的改善作用。感官评价的结果证实了磁场腌制 后的肉饼具有较好的整体接受性和质地特性。综上,以肉饼的保水性和质地特性作 为主要评定指标,得到磁场辅助腌制的最佳参数为:磁场强度 3.0 mT,腌制时间 3 h。

2.磁场辅助预热对调理肉饼品质的影响

  以上一章得到的磁场辅助腌制参数为基础,以未施加磁场腌制和预热为对照, 在肉饼的预热工艺中继续引入磁场,探究了不同磁场强度和预热时间对调理肉饼品 质的影响。结果表明,与对照组相比,采用磁场对肉饼进行预热可提高肉饼的 L*值并改善其光泽度;当预热时间为 45 min,磁场强度为 4.5 mT 时,蒸煮损失与对照组 相比降低了 29.8%。同时,磁场辅助预热可以显著增加调理肉饼的硬度,咀嚼性。水 分分布的结果进一步表明,磁场辅助预热将肉饼的弛豫时间从 36.79 ms 缩短至 33.44 ms,不易流动水的峰面积比例从 93.19%提升至 94.36%,进一步证实了保水性的结果。 在此基础上,利用电子鼻和 GC-IMS 对三组具有代表性的调理肉饼(A 组:腌制及 预热过程皆不施加磁场;B 组:腌制过程施加 3.0 mT 磁场,预热过程不施加磁场; C 组:腌制过程施加 3.0 mT 磁场,预热过程施加 4.5 mT 磁场)进行风味评估。电子 鼻的结果表明三组调理肉饼的香味轮廓类似,C 组硫化物含量略有增加,进一步利 用 GC-IMS 分析出,C 组中的挥发性风味物质含量增加,醛酮类化合物给肉饼带来了 愉悦的肉香味。综上,以调理肉饼的保水性和风味特性作为主要评定指标,得到磁 场辅助预热的最佳参数为:磁场强度 4.5 mT,预热时间 45 min。

3.磁场偶联工艺对肌原纤维蛋白结构及凝胶特性的影响

  在前两章研究的基础上,优选磁场辅助腌制和预热的技术参数,通过模拟调理 肉制品腌制和预热工艺,综合研究了磁场偶联工艺对 MP 结构和凝胶性能的影响; 对 MP 进行不同的磁场辅助处理(A 组:腌制及预热过程皆不施加磁场;B 组:腌制 过程不施加磁场,预热过程施加 4.5 mT 磁场;C 组:腌制过程施加 3.0 mT 磁场,预 热过程不施加磁场;D 组:腌制过程施加 3.0 mT 磁场,预热过程施加 4.5 mT 磁场)。 结果表明,与 A 组(46.9%)相比,磁场偶联工艺显著提高了 MP 凝胶的保水性,其 中 D 组达到最大,为 52.1%。B、C、D 三组的凝胶强度均高于 A 组,其中 D 组凝胶 强度由 56.21 g(A 组)增大至 68.45 g。水分分布的结果进一步发现,D 组不易流动 水的峰面积比例从 88%(A 组)显著升高至 93%,表明水分子之间的结合更加紧密, 从而改善了 MP 凝胶结构。对 MP 的结构研究发现,磁场偶联工艺显著改变了 MP 的 二级结构,将α-螺旋转化为β-折叠,促进疏水性基团和活性巯基的暴露,有利于形成 致密的凝胶网络。微观结构的结果证实了这一现象,即 A 组凝胶网络结构粗糙不均 匀,D 组展现出了最致密的凝胶网络结构。本章将为磁场偶联工艺提升肉制品品质 提供新思路,同时也为前两章中磁场辅助腌制和预热工艺改善调理肉饼的品质提供 有力依据。

外文摘要:

With high nutritional value and convenience, prepared meat products have been received interest by health-conscious consumers. Marinating and preheating are two crucial processes in producing prepared meat products that significantly affect the final product's taste, color, and flavor. However, traditional marinating and preheating methods often lead to low water holding capacity and poor texture, negatively affecting the overall quality of the final product. Therefore, scientific selection of marinating and preheating processes is essential to improve the quality of prepared meat products. To date, researchers have attempted to solve the above problems by adding accessories, optimizing traditional processes, and developing new techniques. Recently, some physical processing methods have attracted wide attention due to their unique advantages. Magnetic field (MF), as a new physical processing technology, has enormous potential to improve meat quality and the functional characteristics of proteins. Yet, there were limited reports on the relationship between MF-assisted marinating and preheating, which greatly limited the industrial application and promotion of this technology. In response to this, prepared patties were selected as the research object in this study. The aim was to address the industrial problem of poor water holding capacity in traditional marinating and preheating processes by optimizing MF-assisted marinating and preheating parameters. Additionally, this study explored the effects of the MF on the structures and gel characteristics of myofibrillar proteins (MPs). The specific research contents were as follows:

1. Effects of magnetic field-assisted marinating on the edible quality and gel properties of prepared patties

  To investigate the effects of marinating time and MF intensities on the edible quality (the value of pH, color, texture, water holding capacity) and gel characteristics of prepared patties, with a control marinating without MF. Results demonstrated that MF-assisted marinating increased the value of pH and a* compared to the control group. Marinating with various MF parameters enhanced water holding capacity to varying degrees, with the 3.0 mT group having the lowest cooking loss of only 5.12% at a marinating time of 3 hours. In addition, MF-assisted marinating can increase the hardness and elasticity of the prepared patties. Rheological analysis indicated that minced meat gels treated with MF had a higher G' value than the control group, and the maximum G' value was observed at a marinating time of 3 hours and an MF intensity of 3.0 mT, indicating better gel properties. MF-assisted marinating also played a role in improving the emulsion stability of minced meat. Sensory evaluations showed good overall acceptability and texture characteristics of the patties under MF-assisted marinating. In conclusion, taking the water holding capacity and texture properties as the main evaluation indexes, the optimal MF-assisted marinating parameters were as follows: MF intensity 3.0 mT, marinating time 3 hours.

2. Effects of magnetic field-assisted preheating on the quality of prepared patties.

Based on the optimized parameters obtained from the above chapter, this chapter studied the effects of introducing MF into preheating processes for prepared patties by exploring different MF intensities and preheating time. Results showed that MF-assisted preheating improved the value of L* and the gloss of the patties when compared with control group. Additionally, using an MF intensity of 4.5 mT and preheating time of 45 minutes resulted in a reduction of 29.8% in cooking loss when compared with the control group without MF. Furthermore, results demonstrated that MF assisted-preheating could significantly increase the patties’ hardness and chewiness. The water distribution results further showed that MF-assisted preheating shortened the relaxation time from 36.79 ms to 33.44 ms while increasing the proportions of immobilized water from 93.19% to 94.36%. These findings confirmed the positive effects of MF-assisted preheating on the water holding capacity of the final product. To further evaluate the flavor characteristics of prepared patties, electronic nose and GC-IMS were used to test three representative groups (Group A: both processes without MF; Group B: marinating with 3.0 mT MF combining with preheating without MF; Group C: marinating with 3.0 mT MF combining with preheating with 4.5 mT MF). The results of the electronic nose indicated that all three groups had similar aroma profiles, although Group C had a slight increase in sulfide content. GC-IMS analysis further showed that the contents of volatile flavor substances increased in Group C, particularly aldehyde-ketone compounds, imparing a pleasant meat flavor. In conclusion, taking the water holding capacity and flavor characteristics of patties as the primary evaluation indexes, the optimal parameters of MF-assisted preheating were obtained as follows: MF intensity 4.5 mT, preheating time 45 minutes.

3. Effects of magnetic field-assisted cascade treatments on the structures and gel properties of myofibrillar proteins.

Based on the research in the previous two chapters, the technical parameters of MF-assisted marinating and preheating were optimized. By modeling two essential procedures (marinating and preheating), this work investigated the cascade effects of MF on the conformational structures and gel properties of MPs. Samples were subjected to four MF- assisted treatments (group A, both processes without MF; group B, marinating without MF combining with preheating with 4.5 mT MF; group C, marinating with 3.0 mT MF combining with preheating without MF; group D, marinating with 3.0 mT MF combining with preheating with 4.5 mT MF). Results showed that MF-assisted treatments significantly improved the water holding capacity of MP gels compared with group A (46.9%), reaching the maximum value of 52.1% in group D. Group D's gel strength increased from 56.21 g (group A) to 68.45 g. The gel strength of groups B, C, and D were all higher than those of group A. The water distribution results further showed that the P21 in group D significantly increased from 88% (group A) to 93%, which showed that water molecules were more tightly bound to each other. After exploring the structures of MPs, it was appeared that the MF-assisted cascade treatments could significantly change the secondary structures of MPs, convert α-helix to β-sheet, promote the exposure of hydrophobic groups and increase reactive sulfhydryl groups, which was conducive to forming a dense gel network. This phenomenon was confirmed by the microstructure results, which showed that the gel network structure of group A was rough and uneven, while group D demonstrated the densest network structure. This chapter will provide new ideas for improving the quality of meat products by MF-assisted cascade treatments, and provide a strong basis for improving the quality of prepared patties by MF in the previous two chapters.

参考文献:

[1] 蔡雨静,张振宇,王彩玲,等.电子鼻、电子舌结合 SPME-GC-MS 对青海玉树牦牛肉挥发性化合物分析[J].食品工业科技,2023,29(11):1-14.

[2] 陈德琴,王伦兴,张洪礼,等.响应面优化淘汰蛋鸡鸡腿肉真空滚揉腌制工艺[J].农产品加工,2022,21(53):34-39.

[3] 陈林.鸡血浆蛋白与肌原纤维蛋白乳化及加工特性的研究[D].南京:南京农业大学,2015:55-56.

[4] 陈梦飞.低温真空烹调对鸭肉风味特性及品质的影响研究[D].扬州:扬州大学,2022:30-31.

[5] 成永帅.斩拌、搅拌和腌制对鸡胸肉糜及烤肠品质影响的研究[D].南京:南京农业大学,2019:1-3.

[6] 董小丽,肖孟超,杨静,等.宰前倒挂应激对鸭血凝胶特性的影响[J].食品科学,2021,42(17):69-75.

[7] 方心如,肖乃勇,郭全友,等.基于顶空-气相色谱-离子迁移谱分析蒸制过程中草鱼肉挥发性成分的变化[J].食品与发酵工业,2023,42(10):1-15.

[8] 郭美.调理牛肉饼贮藏品质变化规律研究[D].宁夏:宁夏大学,2021:30-35.

[9] 侯芹,李书文,王艳,等.花椒提取物对调理猪肉饼冷藏期间品质的影响研究[J].食品工业科技,2018,39(10):285-291.

[10] 黄瀚.不同腌制方式对兔肉及其产品加工过程品质的影响[D].重庆:西南大学,2016:66-70.

[11] 霍景庭.乳化型肉产品的理论和实际应用[J].中外食品,2006,16(5):64-66.

[12] 霍俊辉,郭雨晨,韩敏义,等.不同脉冲电场处理对牛肉腌制效果及食用品质的影响[J].食品与发酵工业.2022,19(21):1-9.

[13] 焦道龙.鲢鱼鱼糜的加工工艺以及相关特性的研究[D].合肥:合肥工业大学,2010:34 -36.

[14] 靳国锋.干腌培根加工过程中脂质氧化调控机制研究[D].南京:南京农业大学,2011:16-17.

[15] 鞠健,乔宇,汪超,等.不同温度对白鲢鱼肉在蒸煮过程中品质的影响[J].食品工业科技,2016,37(24):121-127.

[16] 康壮丽.斩拌和打浆工艺对猪肉肉糜凝胶特性影响及作用机理[D].南京:南京农业大学,2014:49-51.

[17] 冷雪娇,章林,黄明,等.高压腌制对鸡胸肉食用品质的影响[J].食品科学,2013,34(17):53-56.

[18] 李慧,张崟,郭添荣,等.滚揉技术在肉制品加工中的应用研究进展[J].肉类研究,2020,34(2):99-104.

[19] 李心悦,曹涓泉,徐静,等.超声波辅助腌制对猪肉糜食用品质及凝胶性能的影响[J].肉类研究,2022,36(8):21-28.

[20] 李子涵,苏伟,母应春,等.电磁场保鲜对贵州黑山羊品质的影响[J].食品工业科技,2022,11(20):1-14.

[21] 刘兴艳,陈安均,蒲彪.国内外冷冻冷藏预制食品产业现状及发展前景[J].食品科学,2011,32(15):323-328.

[22] 吕威,冯媛媛,管雯,等.不同腌制方式对腊番鸭品质的影响[J].美食研究,2022,39(3):51-59.

[23] 马国骄.磁场对冷冻猪肉和牛肉品质的影响研究[D].无锡:江南大学,2021:13-39.

[24] 牛增.乳酸菌协同发酵冷鲜调理牛排的货架期及加工品质研究[D].镇江:江苏大学,2022:29-31.

[25] 潘泳江.交变磁场对冷藏草鱼片和牛肉的品质影响研究[D].无锡:江南大学,2022:16 -31.

[26] 苏娅宁,杨慧娟,陈韬.甲基纤维素添加量对低盐肉糜凝胶特性的影响[J].食品科学,2022,43(4):25-31.

[27] 孙红霞,黄峰,丁振江,等.不同加热条件下牛肉嫩度和保水性的变化及机理.食品科学,2018,39(1):84-90.

[28] 谭银莹.三维磁场辅助冷冻对牛油果泥贮藏品质的影响[D].无锡:江南大学,2020:6.

[29] 陶硕,马仁超,郭秀霞,等.氯化钠和三聚磷酸钠添加量对蒸煮火腿品质的影响[J].肉类研究,2019,33(12):18-24.

[30] 王芳芳,张一敏,罗欣,等.冷冻解冻对生鲜肉品质的影响及其新技术研究进展[J].食品科学,2020,41(11):295-302.

[31] 王家琛.氯化钙协同脉冲电场对鸡胸肉保水性的影响[D].广州:华南理工大学,2021:15-17.

[32] 王金飞.生鲜调理肉制品高氧气调包装及抑菌保鲜效能特性研究[D].南京:南京农业大学,2014:1-5.

[33] 王静帆.不同加热方式下猪肉保水性变化研究[D].南京:中国农业科学院,2021:31-36.

[34] 王磊.基于计算流体动力学的肉制品热处理工艺优化[D].贵阳:贵州大学,2018:1-10.

[35] 王琳,冉佩灵,熊双丽,等.超高压腌制对烤制猪肉品质的影响[J].食品工业科技,2022,43(15):9-26.

[36] 王綪,李璐,王佳奕,等.电子鼻结合气相色谱-质谱法对宁夏小尾寒羊肉中鸭肉掺假的快速检测[J].食品科学,2017,38(20):222-228.

[37] 王锐,王卫,黄本婷,等.我国预调理肉制品加工技术研究进展[J].农产品加工,2018,12(5):85-88.

[38] 王引兰,王恒鹏,饶胜其.不同腌制时间对调理猪肉干品质特性的影响[J].食品与发酵工业,2021,47(16):219-225.

[39] 王昱,李新燕,白艳红,等.鸡肉肌原纤维蛋白热诱导凝胶特性改善技术研究进展[J].食品安全质量检测学报,2022,13(08):2527-2534.

[40] 吴永强,王少甲,李苗苗,等.果胶改善玉米淀粉影响辣椒红在调理肉制品中呈色效果的研

究[J].食品工业科技,2022,43(18):233-240.

[41] 肖永霞,张建华,邵秀芝,等.抗性淀粉对香肠品质的影响[J].粮油加工,2009,368

(2):128-130.

[42] 谢杉玉,梁懿,邬应龙,等.热溶胶结合高温干燥降低琼脂溶胶温度的研究[J].食品科

技,2021,46(1):245-250.

[43] 熊雅雯,黄卉,李来好,等.不同煮制条件对罗非鱼片品质的影响[J].食品科学,2022,43(11):39-48.

[44] 严红兵,盛佳露,林杨.酱鸭不同部位肉的风味特征分析[J].发酵科技通讯,2021,50(4):192-197.

[45] 杨依然,祝莹.玉米淀粉添加对低脂乳化香肠持水力的影响[J].粮食与食品工业, 2021,28(1):33-36.

[46] 姚志琴.鱼滑类预凝胶鱼糜制品的制备研究[D].杭州:浙江工业大学,2015:13-19.

[47] 殷燕.迷迭香和八角茴香提取物对调理猪肉饼品质的影响[D].南京:南京农业大学,2015:32.

[48] 张豪.调理猪排的蛋白酶嫩化工艺及其效果研究[D].南京:南京农业大学,2018:3.

[49] 张欢,王稳航.纤维素及其衍生物在肉制品中的应用[J].肉类研究,2020,34(4):88 -93.

[50] 张立彦,熊玲.真空腌制条件对猪肉食盐渗透规律及品质变化的影响[J].现代食品科技,2013,29(11):2595-2600.

[51] 张应杰,李慧,母运龙,等.调理肉制品品质影响因素分析[J].中国调味品,2022,47(9):202-208.

[52] 张玉梅.菊粉对低脂乳化肠食用品质影响及机制研究[D].南京:南京农业大学,2020:16-19.

[53] 赵雪.酸碱处理改善类 PSE 鸡肉蛋白加工特性研究[D].南京:南京农业大学,2020:88 -90.

[54] 周伟伟,刘毅,陈霞,等.斩拌条件对乳化型香肠品质和微结构的影响[J].肉类研究,2007,97(3):38-40.

[55] 周轶亭.蒸制时间、贮藏时间及原料品种对梅菜扣肉品质影响研究[D].南京:南京农业大学,2018:45-52.

[56] Akhtar J, Abrha M. Pressurization technique: principles and impact on quality of meat and meat products[J]. Food and Agricultural Immunology, 2022, 33(1):264-285.

[57] Angor M, Al A. Attributes of low-fat beef burgers made from formulations aimed at enhancing

product quality[J]. Journal of Muscle Foods, 2010, 21(2):317-326.

[58] Aprilia G, Kim H. Development of strategies to manufacture low-salt meat products-a review[J]. Journal of Animal Science and Technology, 2022, 64(2):218-234.

[59] Bao G, Niu J, Li S, et al. Effects of ultrasound pretreatment on the quality, nutrients and volatile compounds of dry-cured yak meat[J]. Ultrasonics Sonochemistry, 2022, 82:105864.

[60] Bian G, Xue S, Xu Y, et al. Improved gelation functionalities of myofibrillar protein from pale, soft and exudative chicken breast meat by nonenzymatic glycation with glucosamine[J]. International Journal of Food Science and Technology, 2018, 53(8):2006-2014.

[61] Bertram H, Purslow P, Andersen H. Relationship between meat structure, water mobility, and distribution: A low-field nuclear magnetic resonance study[J]. Journal of Agricultural and Food Chemistry, 2002, 50(4):824-9. [62] Bruckner S, Albrecht A, Petersen B, et al. A predictive shelf life model as a tool for the improvement of quality management in pork and poultry chains[J]. Food Control, 2013, 29(2):451- 460.

[63] Calabro E, Curro M, Caccamo M, et al. Competition between N-H bending vibration and alpha- helix polarization under 50 Hz magnetic field in SH-SY5Y neuronal-like cells[J]. Spectroscopy Letters, 2020, 53(6):458-465.

[64] Carson J. Review of effective thermal conductivity models for foods[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2006, 29(6):958-967.

[65] Chen B, Zhou K, Wang Y, et al. Insight into the mechanism of textural deterioration of myofibrillar protein gels at high temperature conditions[J]. Food Chemistry, 2020, 330:127186.

[66] Chen, X, Xu X, Han M, et al. Conformational changes induced by high-pressure homogenization inhibit myosin filament formation in low ionic strength solutions[J]. Food Research International, 2016, 85:1-9.

[67] Contreras L, Carnero H, Huerta J, et al. High-intensity ultrasound applied on cured pork: sensory and physicochemical characteristics[J]. Food Science & Nutrition, 2020, 8(2):786-795.

[68] Cui Z, Yan H, Manoli T, et al. Changes in the volatile components of squid (illex argentinus) for different cooking methods via headspace-gas chromatography-ion mobility spectrometry[J]. Food Science & Nutrition, 2020, 8(10):5748-5762.

[69] Davila E, Pares D, Howell N. Studies on plasma protein interactions in heat-induced gels by differential scanning calorimetry and FT-Raman spectroscopy[J]. Food Hydrocolloids, 2007, 21(7):1144-1152.

[70] Dong M, Xu Y, Zhang Y, et al. Physicochemical and structural properties of myofibrillar proteins isolated from pale, soft, exudative (PSE)-like chicken breast meat: effects of pulsed electric field(PEF) [J]. Innovative Food Science & Emerging Technologies, 2020, 59:102277.

[71] Dong S, Wang J, Cheng, L, et al. Behavior of zein in aqueous ethanol under atmospheric pressure cold plasma treatment[J]. Journal of Agricultural and Food Chemistry, 2017, 65(34):7352-7360.

[72] Doyle M, Glass K. Sodium reduction and its effect on food safety, Food Quality, and Human Health[J]. Conprehensive Reviews in Food Science and Food Safety, 2010, 9(1):44-56.

[73] Feng J, Bai X, Li Y, et al. Improvement on gel properties of myofibrillar protein from chicken patty with potato dietary fiber: based on the change in myofibrillar protein structure and water state[J]. International Journal of Biological Macromolecules, 2023, 230:123228.

[74] Gong H, Liu J, Wang L, et al. Strategies to optimize the structural and functional properties of myofibrillar proteins: physical and biochemical perspectives[J]. Critical Reviews in Food Science and Nutrition, 2022:1-17. [75] Grossi A, Olsen K, Bolumar T, et al. The effect of high pressure on the functional properties of pork myofibrillar proteins[J]. Food Chemistry, 2016, 196:1005-1015.

[76] Grossi A, Soltoft J, Knudsen J, et al. Reduction of salt in pork sausages by the addition of carrotfibre or potato starch and high pressure treatment[J]. Meat Science, 2012, 92(4):481-489.

[77] Guo J, Zhou Y, Yang, K, et al. Effect of low-frequency magnetic field on the gel properties of pork myofibrillar proteins [J]. Food Chemistry, 2019, 274:775-781.

[78] Han M, Wang P, Xu X, et al. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics[J]. Food Research International, 2014, 62:1175-1182.

[79] Han Z, Cai M, Cheng J, et al. Effects of constant power microwave on the adsorption behaviour of myofibril protein to aldehyde flavour compounds[J]. Food Chemistry, 2021, 336:127728.

[80] Hong Q, Wang H, Qi J, et al. Chicken breast quality–normal, pale, soft and exudative (PSE) and

woody-influences the functional properties of meat batters[J]. International Journal of Food Science & Technology, 2017, 53(3):654-664.

[81] Inguglia E, Zhang Z, Tiwari B, et al. Salt reduction strategies in processed meat products-areview[J]. Trends in Food Science & Technology, 2017, 59:70-78.

[82] James S, James C, Purnell G. Microwave-assisted thawing and tempering[J]. In Regier, Knoerzer & Schubert (Eds.), Microwave Processing of Foods, 2017, 2:252-272.

[83] Jia B, Chen J, Yang G, et al. Improvement of solubility, gelation and emulsifying properties of myofibrillar protein from mantis shrimp (oratosquilla oratoria) by phosphorylation modification under low ionic strength of KCl[J]. Food Chemistry, 2023, 403:134497.

[84] Jia G, Nirasawa S, Ji X, et al. Physicochemical changes in myofibrillar proteins extracted from pork tenderloin thawed by a high-voltage electrostatic field[J]. Food Chemistry, 2018, 240:910-916.

[85] Jiang J, Zhang L, Yao J, et al. Effect of static magnetic field assisted thawing on physicochemical quality and microstructure of frozen beef tenderloin[J]. Frontiers in Nutrition, 2022, 9:914373.

[86] Jiang Q, Li S, Xu Y, et al. Nutrient compositions and properties of antarctic krill (Euphausia superba) muscle and processing by-products[J]. Journal of Aquatic Food Product Technology, 2016, 25(3):434-443.

[87] Jin J, Ma H, Wang K, et al. Effects of multi-frequency power ultrasound on the enzymolysis and structural characteristics of corn gluten meal[J]. Ultrasonics Sonochemistry, 2015, 24:55-64.

[88] Jin Y, Yang N, Wu F, et al. Effect of magnetic field and flowing saline solution on salt content in garlic during brining[J]. Food and Bioprocess Technology, 2015, 8(12):2495-2499.

[89] Kang T, Lee D, Ko Y, et al. Effects of pulsed electric field (PEF) and oscillating magnetic field (OMF) on supercooling preservation of beef at different fat levels[J]. International Journal of Refrigeration. 2022, 136:36-45.

[90] Kang Z, Shang X, Li Y, et al. Effect of ultrasound-assisted sodium bicarbonate treatment on aggregation and conformation of reduced-salt pork myofibrillar protein[J]. Molecules, 2022, 27(21):7493.

[91] Kang Z, Xie J, Li Y, et al. Effects of pre-emulsified safflower oil with magnetic field modified soy11s globulin on the gel, rheological, and sensory properties of reduced-animal fat pork batter[J]. Meat Science, 2023, 198:109087.

[92] Kaur M, Kumar M. An innovation in magnetic field assisted freezing of perishable fruits and vegetables: a review[J]. Food Reviews International, 2020, 36(8):761-780.

[93] Ko W, Yu C, Hsu K. Changes in conformation and sulfhydryl groups of tilapia actomyosin by thermal treatment[J]. LWT-Food Science and Technology, 2007, 40(8):1316-1320.

[94] Li J, Dai Z, Chen Z, et al. Improved geling and emulsifying properties of myofibrillar protein from frozen shrimp (Litopenaeus vannamei) by high-intensity ultrasound[J]. Food Hydrocolloids, 2023, 135:108188.

[95] Li K, Fu L, Zhao Y, et al. Use of high-intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion[J]. Food Hydrocolloids, 2020, 98:105275.

[96] Li K, Liu J, Fu L, et al. Comparative study of thermal gelation properties and molecular forces of actomyosin extracted from normal and pale, soft and exudative-like chicken breast meat[J]. Asian- Australasian Journal of Animal Sciences, 2019, 32(5):721-733.

[97] Li P, Sun L, Wang J, et al. Effects of combined ultrasound and low-temperature short-time heating pretreatment on proteases inactivation and textural quality of meat of yellow-feathered chickens[J]. Food Chemistry, 2021, 355:129645.

[98] Li R, Zhu H, Chen Y, et al. Cold plasmas combined with ar-based map for meatball products:

influence on microbiological shelflife and quality attributes[J]. LWT-Food Science and Technology, 2022, 159:113137.

[99] Li R, Lund P, Nielsen S, et al. Formation of whey protein aggregates by partial hydrolysis and reduced thermal treatment[J]. Food Hydrocolloids, 2022, 124:9.

[100] Li S, Tang S, Yan L, et al. Effects of microwave heating on physicochemical properties, microstructure and volatile profiles of yak meat[J]. Journal of Applied Animal Research, 2019, 47(1):262-272.

[101] Li Y, Xu Y, Xu X. Continuous cyclic wet heating glycation to prepare myofibrillar protein-glucose conjugates: a study on the structures, solubility and emulsifying properties[J]. Food Chemistry, 2022, 388:133035. [102] Liu H, Wang Z, Zhang D, et al. Characterization of key aroma compounds in beijing roasted duck by gas chromatography-olfactometry-mass spectrometry, odor-activity values, and aromarecombination experiments[J]. Journal of Agricultural and Food Chemistry, 2019, 67(20):5847- 5856.

[103] Liu R, Zhao S, Xiong S, et al. Role of secondary structures in the gelation of porcine myosin at different pH values[J]. Meat Science, 2008, 80(3):632-639.

[104] Liu R, Zhao S, Yang H, et al. Comparative study on the stability of fish actomyosin and pork actomyosin[J]. Meat Science, 2011, 88(2):234-240.[105] Liu S, Wang Z, Zheng J, et al. Effects of direct current magnetic field co-treated with stirring on gel properties of chicken batter: hydration and textural properties[J]. Journal of Food Engineering, 2023, 339:111279.

[106] Luo N, Yang Z, Zhao S, et al. Effect of combined alternating magnetic field and hot water shock treatment on the preservation of cucumbers[C]. 5th IIR International Conference on Sustainability and the Cold Chain, 2018:111-117.

[107] Mohsenpour M, Nourani M, Enteshary R. Effect of thawing under an alternating magnetic field on rainbow trout (Oncorhynchus mykiss) fillet characteristics[J]. Food Chemistry, 2023, 402:134255.

[108] Munoz I, Serra X, Dolors G, et al. Radio frequency cooking of pork hams followed with conventional steam cooking[J]. LWT-Food Science and Technology, 2020, 12(3):109104.

[109] Neill C, Cruz R, Duffy G, et al. Improving marinade absorption and shelf life of vacum packed marinated pork chops through the application of high-pressure processing as a hurdle[J]. Food Packaging and Shelf Life, 2019, 21:100350.

[110] Ojha K, Kerry J, Tiwari B. Investigating the influence of ultrasound pre-treatment on drying kinetics and moisture migration measurement in Lactobacillus sakei cultured and uncultured beef jerky[J]. LWT-Food Science and Technology, 2017, 81:42-49.

[111] Okuda K, Kawauchi A, Yomogida K. Quality improvements to mackerel (scomber japonicus)muscle tissue frozen using a rapid freezer with the weak oscillating magnetic fields[J]. Cryobiology, 2020, 95:130-137.

[112] Pang X, Deng B. The changes of macroscopic features and microscopic structures of water under influence of magnetic field[J]. Physica B-Condensed Matter, 2008,403(19-20):3571-3577.

[113] Park C, Lee B, Oh E, et al. Combined effects of sous-vide cooking conditions on meat and sensory quality characteristics of chicken breast meat[J]. Poultry Science, 2020, 99(6):3286-3291.

[114] Peyrano F, Speroni F, Avanza M. Physicochemical and functional properties of cowpea protein isolates treated with temperature or high hydrostatic pressure[J]. Innovative Food Science k&Emerging Technologies, 2016, 33:38-46.

[115] Piatti E, Albertini M, Baffone W, et al. Antibacterial effect of a magnetic field on serratia marcescens and related virulence to hordeum vulgare and rubus fruticosus callus cells[J]. CompBiochem Physiol B Biochemistry & Molecular Biology, 2002, 132(2):359-65.

[116] Qian M, Zheng M, Zhao W, et al. Effect of marinating and frying on the flavor of braised pigeon[J]. Journal of Food Processing and Preservation, 2021, 45(3):15219.

[117] Qin H, Xu P, Zhou C, et al. Effects of l-arginine on water holding capacity and texture of heatinduced gel of salt-soluble proteins from breast muscle[J]. LWT-Food Science and Technology,2015, 63(2):912-918.

[118] Roldan M, Ruiz J, Pulgar J, et al. Volatile compound profile of sous-vide cooked lamb loins atdifferent temperature-time combinations[J]. Meat Science, 2015, 100:52-57.

[119] Ruusunen M, Vainionpaa J, Lyly M, et al. Reducing the sodium content in meat products: the effect of the formulation in low-sodium ground meat patties[J]. Meat Science, 2005, 69(1):53-60.

[120] Sanchez D, Gazquez A, Ruiz C. Physico-chemical, textural and structural characteristics of sous- vide cooked pork cheeks as affected by vacuum, cooking temperature, and cooking time[J]. Meat Science, 2012, 90(3):828-835.

[121] Sharedeh D, Mirade P, Venien A, et al. Analysis of salt penetration enhancement in meat tissue by mechanical treatment using a tumbling simulator[J]. Journal of Food Engineering, 2015, 166:377- 383.

[122] Shen H, Elmore J, Zhao M, et al. Effect of oxidation on the gel properties of porcine myofibrillar proteins and their binding abilities with selected flavour compounds[J]. Food Chemistry, 2020, 329:127032.

[123] Shen H, Zhao M, Sun W. Effect of pH on the interaction of porcine myofibrillar proteins with pyrazine compounds[J]. Food Chemistry, 2019, 287:93-99.

[124] Shin D, Yune J, Kim Y, et al. Effects of duck fat and carrageenan as replacements for beef fat and pork backfat in frankfurters[J]. Animal Bioscience, 2022, 35(6):927-937.

[125] Silva F, Zin G, Rezzadori K, et al. Changes in the physico-chemical characteristics of a protein solution in the presence of magnetic field and the consequences on the ultrafiltration performance[J]. Journal of Food Engineering, 2019, 242:84-93.

[126] Siro I, Ven C, Balla C, et al. Application of an ultrasonic assisted curing technique for improving the diffusion of sodium chloride in porcine meat[J]. Journal of Food Engineering, 2009, 91(2):353- 362.

[127] Sun P, Lin J, Ren X, et al. Effect of heating on protein denaturation, water state, microstructure, and textural properties of antarctic krill (Euphausia superba) meat[J]. Food and Bioprocess Technology, 2022, 15(10):2313-2326.

[128] Tang J, Shao S, Tian C. Effects of the magnetic field on the freezing parameters of the pork[J]. International Journal of Refrigeration-Revue Internationale Du Froid, 2019, 107:31-38.

[129] Tkachenko A, Lu J. Directed self-assembly of mesoscopic electronic components into sparse arrays with controlled orientation using diamagnetic levitation[J]. Journal of Magnetism and Magnetic Materials, 2015, 385:286-291.

[130] Verbeken D, Neirinck N, Van D, et al. Influence of kappa-carrageenan on the thermal gelation of salt-soluble meat proteins[J]. Meat Science, 2005, 70(1):161-166.

[131] Villamonte G, Simonin H, Duranton F, et al. Functionality of pork meat proteins: impact of

sodium chloride and phosphates under high-pressure processing[J]. Innovative Food Science & Emerging Technologies, 2013, 18:15-23.

[132] Wang K, Li Y, Zhang Y, et al. Preheating and high-intensity ultrasound synergistically affect the physicochemical, structural, and gelling properties of chicken wooden breast myofibrillar protein[J]. Food Research International, 2022, 162:111975.

[133] Wang L, Xia M, Zhou Y, et al. Gel properties of grass carp myofibrillar protein modified by lowfrequency magnetic field during two-stage water bath heating[J]. Food Hydrocolloids, 2022, 107:105920.

[134] Wang L, Yang K, Wang X, et al. Gel properties and thermal gelling mechanism in myofibrillar protein of grass carp (ctenopharyngodon idellus) under the synergistic effects of radio frequency combined with magnetic field[J]. Journal of Food Science, 2022, 87(4):1662-1671.

[135] Wang Q, Wei R, Hu J, et al. Moderate pulsed electric field-induced structural unfolding ameliorated the gelling properties of porcine muscle myofibrillar protein[J]. Innovative Food Science & Emerging Technologies, 2022, 81:103145.

[136] Wang X, Wang X, Feng T, et al. Saltiness perception enhancement of fish meat treated by microwave: The significance of conformational characteristics, water and sodium mobility[J]. Food Chemistry, 2021, 347:129033.

[137] Wang X, Xia M, Zhou Y, et al. Gel properties of myofibrillar proteins heated at different heating rates under a low-frequency magnetic field[J]. Food Chemistry, 2020, 321:126728.

[138] Wang Y, Wei H, Li Z, et al. Effect of magnetic field on the physical properties of water[J]. Results in Physics, 2018, 8:262-267.

[139] Wang Z, Xu W, Kang N, et al. Microstructural, protein denaturation and water holding properties of lamb under pulse vacuum brining[J]. Meat Science, 2016, 113:132-138.

[140] Wei H, Fu R, Lin X, et al. Effect of magnetic field-assisted freezing on water migration, fractal dimension, texture, and other quality changes in tilapia[J]. Journal of Food Processing and Preservation, 2021, 45(11):15940.

[141] Wijesekara I, Karunarathna W. Usage of seaweed polysaccharides as nutraceuticals[M]. 2017:341- 348.

[142] Woo M, Mujumdar A. Effects of electric and magnetic field on freezing and possible relevance in freeze drying[J]. Drying Technology, 2010, 28(4):433-443.

[143] Wu D, Guo J, Wang X, et al. The direct current magnetic field improved the water retention of low-salt myofibrillar protein gel under low temperature condition[J]. LWT-Food Science and

Technology, 2021, 151:112034.

[144] Wu P, Qu W, Abdualrahman M, et al. Study on inactivation mechanisms of Listeria grayi affected by pulse magnetic field via morphological structure, Ca2+ transmembrane transport and proteomic analysis[J]. International Journal of Food Science and Technology, 2017, 52(9):2049-2057.

[145] Xia M, Chen Y, Ma J, et al. Effects of low frequency magnetic field on myoglobin oxidation stability[J]. Food Chemistry, 2020, 309:125651.

[146] Xing T, Xu Y, Qi J, et al. Effect of high intensity ultrasound on the gelation properties of wooden breast meat with different NaCl contents[J]. Food Chemistry, 2021, 347:129031.

[147] Xiong Z, Shi T, Jin W, et al. Gel performance of surimi induced by various thermal technologies: a review[J]. Critical Reviews in Food Science and Nutrition, 2022, 21:1-16.

[148] Xu X, Han M, Fei Y, et al. Raman spectroscopic study of heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristic[J]. Meat Science, 2011, 87(3):159-164.

[149] Xu Y, Dong M, Tang C, et al. Glycation-induced structural modification of myofibrillar protein and its relation to emulsifying properties[J]. LWT-Food Science and Technology, 2020, 117:108664.

[150] Xu Y, Xu X. Modification of myofibrillar protein functional properties prepared by various strategies: a comprehensive review[J]. Comprehensive Reviews in Food Science and Food Safety, 2021, 20(1):458-500.

[151] Yamamoto S, Otsuka Y, Borjigin G, et al. Effects of a high-pressure treatment on the activity and structure of rabbit muscle proteasome[J]. Bioscience Biotechnology and Biochemistry, 2005, 69(7):1239-1247.

[152] Yang H, Khan M, Yu X, et al. Changes in protein structures to improve the rheology and texture of reduced-fat sausages using high pressure processing[J]. Meat Science, 2016, 121:79-87.

[153] Yang K, Wang H, Huang J, et al. Effects of direct current magnetic field treatment time on the properties of pork myofibrillar protein[J]. International Journal of Food Science and Technology, 2021, 56(2):733-741. [154] Yang K, Wang L, Guo J, et al. Structural changes induced by direct current magnetic field improve water holding capacity of pork myofibrillar protein gels[J]. Food Chemistry, 2021, 345:128849.

[155] Yang K, Wu D, Wang L, et al. Direct current magnetic field: an optional strategy for reducing pyrophosphate in gelatinous meat products[J]. LWT-Food Science and Technology, 2022, 169:114018.

[156] Yang K, Zhou Y, Guo J, et al. Low frequency magnetic field plus high pH promote the quality of pork myofibrillar protein gel: a novel study combined with low field NMR and ramanspectroscopy[J]. Food Chemistry, 2020, 326:126896.

[157] Yildiz T, Sengun I, Kendirci P, et al. Effect of ohmic treatment on quality characteristic of meat: a review[J]. Meat Science, 2013, 93(3):441-448.

[158] Yu Z, Su Y, Zhang Y, et al. Potential use of ultrasound to promote fermentation, maturation, and properties of fermented foods: a review[J]. Food Chemistry, 2021, 357:129805.

[159] Zeng X, Liu J, Dong H, et al. Variations of volatile flavour compounds in cordyceps militaris chicken soup after enzymolysis pretreatment by SPME combined with GC-MS, GCxGC-TOF MS and GC-IMS[J]. International Journal of Food Science and Technology, 2020,55(2):509-516.

[160] Zenk S, Powell L, Isgor Z, et al. Prepared food availability in US food stores a national study[J]. American Journal of Preventive Medicine, 2015, 49(4):553-562.

[161] Zhang L, Hu Y, Wang Y, et al. Evaluation of the flavour properties of cooked chicken drumsticks as affected by sugar smoking times using an electronic nose, electronic tongue, and HS-SPME/GC- MS[J]. LWT-Food Science and Technology, 2021, 140:110764.

[162] Zhang L, Wang L, Jiang W, et al. Effect of pulsed electric field on functional and structural properties of canola protein by pretreating seeds to elevate oil yield[J]. LWT, 2017, 84:73-81.

[163] Zhang W, Wang Y, Zhu X, et al. Influence of alternating magnetic field on the quality of beef and its protein during cold storage[J]. International Journal of Food Science and Technology, 2023, 58(4):1741-1753.

[164] Zhang W, Xu X, Zhao X, et al. Insight into the oil polarity impact on interfacial properties of myofibrillar protein[J]. Food Hydrocolloids, 2022, 128:107563.

[165] Zhao X, Wang M, Chen X, et al. Conformational and rheological changes of high-pressure processing treated rabbit myosin subfragments during heating[J]. LWT-Food Science and Technology, 2020, 122:108994.

[166] Zheng H, Xiong G, Han M, et al. High pressure/thermal combinations on texture and water holding capacity of chicken batters[J]. Innovative Food Science & Emerging Technologies, 2015, 30:8-14.

[167] Zhu Y, Li C, Cui H, et al. Plasma enhanced-nutmeg essential oil solid liposome treatment on the gelling and storage properties of pork meat batters[J]. Journal of Food Engineering, 2020, 266:109696.

[168] Zhu Y, Yan Y, Yu Z, et al. Effects of high pressure processing on microbial, textural and sensory properties of low-salt emulsified beef sausage[J]. Food Control, 2022, 133:108596.

[169] Zhuang X, Jiang X, Zhou H, et al. The effect of insoluble dietary fiber on myofibrillar protein emulsion gels: oil particle size and protein network microstructure[J]. LWT-Food Science and Technology, 2019, 101:534-542.

中图分类号:

 TS2    

开放日期:

 2023-06-12    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式