中文题名: | 全量秸秆还田免耕播种机壅堵机理与防堵技术研究 |
姓名: | |
学号: | 2020812125 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085500 |
学科名称: | 工学 - 机械 |
学生类型: | 硕士 |
学位: | 机械硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 秸秆还田技术 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2022-04-12 |
答辩日期: | 2022-05-30 |
外文题名: | Research on Blocking Mechanism and Blocking Prevention Technology of No-tillage Planter with Full Straw Returning to Field |
中文关键词: | |
外文关键词: | Straw returning to fields ; Discrete element method ; Blocking technology ; Experimental design ; The simulation analysis |
中文摘要: |
我国各地的地理条件和天气环境都有着很大的差异,政府鼓励发展适合当地情况的农业机具。长江中下游地区的土壤特性使得传统农业机具在耕作时土壤粘连严重,加上水稻在收获后秸秆残留量较大、韧性较强,导致秸秆全量还田施肥播种作业时容易发生机具堵塞、下茬农作物架种晾种等问题。近些年,为减少机具重复下田、提高机具作业质量以及更加适应长江中下游地区的田间特点,免耕播种机逐渐开始被应用。针对上述问题,本文结合理论分析、试验研究和数值模拟,以免耕播种机为研究目标,分析秸秆和土壤在机具作业中的运动规律,对免耕播种机具关键部件进行优化设计,最终通过田间试验验证免耕播种机有效性。本文主要研究内容及结论点如下: (1)运用试验法对全量硬茬水稻秸秆的物理特征以及力学特性进行测试,根据秸秆形状特征和粘结性颗粒提出一种改进刚柔耦合秸秆模型,运用响应面技术得到最佳粘结模型参数,基于改进秸秆模型进行拉伸、压缩、弯曲、剪切过程模拟。对比仿真与试验结果表明,改进刚柔耦合秸秆模型的极限抗拉强度、极限抗压强度、极限弹性模量和极限抗剪强度与试验结果基本一致,验证了改进刚柔耦合秸秆模型的准确性。 (2)考虑稻麦轮作区稻茬地秸秆残留量大、韧性高等特点,基于EDEM软件建立了免耕播种机粉碎室-秸秆耦合系统的离散元模型,运用EDEM2021研究水稻秸秆在免耕播种机粉碎室内部工作机理,分析了碎秸在粉碎室内的运动规律,研究了刀具形状和刀轴转速对抛撒装置出口处秸秆分布的影响规律。仿真结果表明,组合甩刀具有最佳碎茬效果,刀轴最佳转速为1700rad/min。 (3)对长江中下游稻麦轮作区的土壤进行质地分层,运用试验确定耕土层、犁底层及硬土层的土壤物理参数。建立非均质土壤-秸秆-旋耕刀耦合系统的离散元模型,分析了土壤和秸秆的运动规律,并且对旋耕刀重要参数进行优化分析。在此基础上,构建土壤-秸秆-旋耕装置耦合系统的离散元模型,分析了前进速度、刀轴转速和耕深对土壤破碎率、秸秆掩埋率及旋耕刀扭矩的影响规律,通过响应面技术获得了优化的旋耕装置工作参数:前进速度为1.16m/s、旋耕转速为224.74r/min、旋耕深度为131.19mm。 (4)为提高稻麦轮作区稻茬地免耕播种装备的通过性和作业质量,基于离散元模拟和理论分析确定了秸秆粉碎装置和土壤旋耕装置的优化结构尺寸和工作参数,通过田间试验验证了优化设计的有效性。试验结果表明,机具优化后土壤破碎率为89.24%、秸秆掩埋率为88.73%、耕深为9.35cm、耕深稳定性系数为90.77%、耕后地表平整度为3.01cm,机具优化后的作业性能指标显著高于优化前的情况。 |
外文摘要: |
China's geographical conditions and weather conditions vary greatly from place to place, and the government encourages the development of agricultural machinery and tools suited to local conditions. The characteristics of soil in the middle and lower reaches of the Yangtze River make the soil adhesion of traditional agricultural machinery and tools serious during tillage. In addition, the residual amount of rice straw after harvest is large and the toughness is strong, which leads to the problems of machine and tools blocking and planting of the next crop during the fertilization and sowing operation of the full amount of straw returning to the field. In recent years, no-tillage planters have been gradually applied in order to reduce the repetition of machine and tools, improve the operation quality of machine and tools, and better adapt to the characteristics of fields in the middle and lower reaches of the Yangtze River. In view of the above problems, this paper combined theoretical analysis, experimental research and numerical simulation, so as to avoid the tillage planter as the research target, analyzed the movement law of straw and soil in the operation of the machine and tools, optimized the design of the key components of the no-tillage planter and tools, and finally verified the effectiveness of the no-tillage planter through field experiments. The main research contents and conclusions of this paper are as follows: (1) Using the test method to the physical characteristics of the quantity hard crop of rice straw, as well as mechanical properties test, according to the characteristics and the shape of straw particles bonding an improved the coupled model of straw, bonded using response surface technology to get optimal model parameters, based on the improved model of straw for tensile, compression, bending, shear process simulation. The results of simulation and test show that the ultimate tensile strength, ultimate compressive strength, ultimate elastic modulus and ultimate shear strength of the improved rigid-flexible coupling straw model are basically consistent with the experimental results, which verifies the accuracy of the improved rigid-flexible coupling straw model. (2) Combined with the working conditions of straw returning to the field in the rice-wheat rotation area, EDEM2021 was used to study the internal mechanism of rice straw in the pulverizing chamber for the no-tillage seeder model. The distribution of straw at the outlet of the throwing device under the rotating speed and different crushing knives. The simulation results show that most of the straw in the crushing chamber flows out from the straw diversion device after colliding with the machine wall. When the crushing knife roller is installed with a combined throwing knife, the straw flowability is improved, and when the grinding knife roller rotates at about 1700rad/min, the straw exits the crushing chamber. outflow to the greatest extent possible. (3) Soil texture stratification was carried out in rice-wheat rotation area in the middle and lower reaches of the Yangtze River, and soil physical parameters of tillage layer, plough bottom layer and hard soil layer were determined by experiments. The discrete element model of the heterogeneous soil-straw-rotary tiller coupling system was established to analyze the movement law of soil and straw, and the important parameters of rotary tiller were optimized. On this basis, a discrete element model of the coupling system of soil-straw-rotary tillage unit was established to analyze the effects of advancing speed, cutter shaft speed and tillage depth on soil fragmentation rate, straw burial rate and rotary tillage knife torque. The optimized operating parameters of rotary tillage unit were obtained by response surface technology: The forward speed was 1.16m/s, rotation speed was 224.74r/min, and rotation depth was 131.19mm. (4) In order to improve the operability and operation quality of no-tillage seeding equipment in rice-wheat rotation area, the optimized structure size and operating parameters of straw crushing device and soil rotary tillage device were determined based on discrete element simulation and theoretical analysis, and the effectiveness of the optimized design was verified by field experiments. The results showed that the soil fragmentation rate was 89.24%, the straw burial rate was 88.73%, the tillage depth was 9.35cm, the tillage depth stability coefficient was 90.77%, and the surface flatness was 3.01cm. The operating performance indexes after the optimization were significantly higher than those before the optimization. |
参考文献: |
[2] 曹卫华, 杨敏丽. 江苏稻麦两熟区机械化生产模式的效率分析[J]. 农业工程学报, 2015, 31(S1): 89-101. [3] 郑智旗. 玉米秸秆捡拾粉碎沟埋还田机研究[D]. 中国农业大学, 2017. [4] 白晓虎. 免耕播种机关键部件及其参数化设计方法研究[D]. 沈阳农业大学, 2012. [5] 王奇. 行间清秸耕整关键技术及条带耕整机研究[D]. 吉林大学, 2019. [6] 王文君. 玉米优质种床构建关键技术及行间耕播机研究[D]. 吉林大学, 2019. [7] 张卓. 基于玉米大豆轮作模式的大豆精密播种技术研究及配套耕播机设计[D]. 吉林大学, 2019. [8] 何进, 李洪文, 陈海涛. 保护性耕作技术与机具研究进展[J]. 农业机械学报, 2018, 49(4): 1-19. [9] 刘艳芬, 林静, 郝宝玉. 免耕播种机土壤工作部件测试装置设计与试验[J]. 农业工程学报, 2016, 32(17): 24-31. [10] 罗伟文. 全秸硬茬地机播碎秸行间集覆去秸障技术试验研究[D]. 中国农业科学院, 2020. [11] 高鹏洋. 免耕播种机切茬导草组合式草土分离装置设计与试验[D]. 西北农林科技大学, 2020. [12] 罗伟文, 顾峰玮, 吴峰, 徐弘博, 陈有庆, 胡志超. 全秸硬茬地碎秸行间集覆小麦播种机设计与试验[J]. 农业机械学报, 2019, 50(12): 42-52. [19] 朱瑞祥, 李成鑫, 程阳, 闫小丽, 李江, 史岩鹏, 葛世强. 被动式圆盘刀作业性能优化试验[J]. 农业工程学报, 2014, 30(18): 47-54. [20] 贾洪雷, 赵佳乐, 姜鑫铭, 姜铁军, 王玉, 郭慧. 行间免耕播种机防堵装置设计与试验[J]. 农业工程学报, 2013, 29(18): 16-25. [21] 赵宏波, 何进, 李洪文. 条带式旋切后抛防堵装置设计与试验[J]. 农业机械学报. 2018, 49(5): 65-75. [25] 胡红, 李洪文, 李传友, 王庆杰, 何进, 李问盈, 张祥彩. 稻茬田小麦宽幅精量少耕播种机的设计与试验[J]. 农业工程学报, 2016, 32(04): 24-32. [26] 陈海涛, 侯磊, 侯守印, 李煜, 闵诗尧, 柴誉铎. 大垄玉米原茬地免耕播种机防堵装置设计与优化试验[J]. 农业机械学报, 2018, 49(08): 59-67. [27] 徐弘博, 胡志超, 吴峰, 顾峰玮, 陈有庆. 全量稻秸还田小麦播种机秸秆分流还田装置设计[J]. 农业工程学报, 2019, 35(09): 19-28. [28] 顾峰玮, 胡志超, 陈有庆, 吴峰. “洁区播种”思路下麦茬全秸秆覆盖地花生免耕播种机研制[J]. 农业工程学报, 2016, 32(20): 15-23. [29] 郭茜. 藤茎类秸秆切割机理与性能试验研究[D]. 江苏大学, 2016. [30] 施印炎, 罗伟文, 胡志超, 吴峰, 顾峰玮, 陈有庆. 全量秸秆粉碎条铺与种带分型清秸装置设计与试验[J]. 农业机械学报, 2019, 50(04): 58-67. [37] 熊平原, 杨洲, 孙志全, 张倩倩, 黄杨清, 张卓伟. 基于离散元法的旋耕刀三向工作阻力仿真分析与试验[J]. 农业工程学报, 2018, 34(18): 113-121. [40] 丁启朔, 任骏, BELAL Eisa Adam, 赵吉坤, 葛双洋, 李杨. 湿粘水稻土深松过程离散元分析[J]. 农业机械学报, 2017, 48(3): 38-48. [47] 郭俊, 姬长英, Chaudhry Arslan, 方会敏, 张庆怡. 稻麦秸秆旋耕作业中受力与位移分析[J]. 农业机械学报, 2016, 47: 11-18. [48] 郭俊, 姬长英, 方会敏, 张庆怡, 华风玲, 张纯. 正反转旋耕后土壤和秸秆位移试验分析[J]. 农业机械学报, 2016, 47: 21-26. [49] 方会敏, 姬长英, 张庆怡, 郭俊. 基于离散元法的旋耕刀受力分析[J]. 农业工程学报, 2016, 32(21): 54-59. [50] 方会敏, 姬长英, Ahmed Ali Tagar, 张庆怡, 郭俊. 秸秆-土壤-旋耕刀系统中秸秆位移仿真分析[J]. 农业机械学报, 2016, 47(1): 60-67. [52] 刘凡一. 清选装置中小麦颗粒和短茎秆离散元建模研究[D]. 西北农林科技大学, 2018. [53] 秦宽, 曹成茂, 廖移山, 王超群, 方梁菲, 葛俊. 秸秆还田施肥点播机粉碎抛撒装置结构设计与优化[J]. 农业工程学报, 2020, 36(3): 1-10. [54] 王金龙. 基于离散元法的稻秆深埋还田刀辊总成优化设计与试验[D]. 东北农业大学, 2019. [56] 王奇瑞, 毛罕平, 李青林. 基于离散元的柔性作物茎秆振动响应仿真[J]. 农业机械学报, 2020, 51(11): 131-137. [59] 方会敏. 基于离散元法的秸秆—土壤—旋耕刀相互作用机理研究[D]. 南京农业大学, 2016. [64] 黄汉东, 王玉兴, 唐艳芹, 赵锋, 孔祥发. 甘蔗切割过程的有限元仿真[J]. 农业工程学报, 2011, 27(02): 161-166. [65] 陈争光, 王德福, 李利桥, 单瑞霞. 玉米秸秆皮拉伸和剪切特性试验[J]. 农业工程学报, 2012, 28(21): 59-65. [69] 张涛, 刘飞, 赵满全, 麻乾, 王伟, 樊琦, 闫鹏. 玉米秸秆接触物理参数测定与离散元仿真标定[J]. 中国农业大学学报, 2018, 23(04): 120-127. [74] 王奇瑞, 毛罕平, 李青林. 基于离散元的柔性作物茎秆振动响应仿真[J]. 农业机械学报, 2020, 51(11): 131-137. [76] 郭茜. 藤茎类秸秆切割机理与性能试验研究[D]. 江苏大学, 2016. [77] 张李娴. 玉米秸秆力学特性的离散元建模方法研究[D]. 西北农林科技大学, 2017. [78] 廖宜涛, 廖庆喜, 周宇, 王在腾, 蒋亚军, 梁方. 饲料油菜薹期收获茎秆破碎离散元仿真参数标定[J]. 农业机械学报, 2020, 51(06): 73-82. [79] 廖宜涛, 王在腾, 廖庆喜, 万星宇, 周宇, 梁方. 果荚初期饲料油菜茎秆离散元接触模型参数标定[J]. 农业机械学报, 2020, 51(S1): 236-243. [80] 张锋伟, 宋学锋, 张雪坤, 张方圆, 魏万成, 戴飞. 玉米秸秆揉丝破碎过程力学特性仿真与试验[J]. 农业工程学报, 2019, 35(09): 58-65. |
中图分类号: | S22 |