中文题名: | 专用叶面肥对花生生长及生理特性的影响研究 |
姓名: | |
学号: | 2021803215 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095132 |
学科名称: | 农学 - 农业 - 资源利用与植物保护 |
学生类型: | 硕士 |
学位: | 农业硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 植物营养与肥料 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2023-05-20 |
答辩日期: | 2023-05-29 |
外文题名: | Effects Of Special Leaf Fertilizer On Growth And Physiological Characteristics Of Peanut |
中文关键词: | |
外文关键词: | Peanut ; Foliar fertilizer ; Physiological characteristics ; Yield ; Quality |
中文摘要: |
花生不仅是我国重要的油料及经济作物,也是我国主要的出口创汇农作物,近些年我国国民的生活质量不断提高,消费者对食用花生的品质需求及安全性也有了更高标准。叶面施肥较传统施肥手段相比,具备用量少、针对性高、养分利用率高以及对环境污染小等诸多优势,在现代农业的高速发展中占据重要地位。 本试验从盆栽实验、大田试验两个方面展开,以南京农业大学自制的营养液做叶面试剂喷施,参考前人研究确定喷施浓度,通过试验分析各不同叶面肥对花生的产量及品质的影响,以实现花生提质增效、节本增收的目的,并为花生的优质高产提供技术规程及物化产品。主要研究结果如下: 1.通过盆栽实验可知,与喷施清水相比,喷施自制叶面肥增加了花生开花下针期的分枝数与茎部生物量。提升了结荚期的茎粗与全生育期的株高、侧枝长与叶部生物量,同时提升了花生结荚期、饱果成熟期的果针数,提高了结实率。该处理下花生植株中后期氮磷钾累积量也较高,促进了花生全生育期中钙的吸收利用的同时也提高了苗期与开花下针期镁的吸收利用。结合各项指标,喷施自制叶面肥对花生生长与养分利用效率较好。 2.相比喷施清水处理,自制肥处理下花生光合效率及各项品质均有较优表现,喷施自制叶面试剂可促使花生功能叶增大变绿,提高SPAD值,扩大了光合面积,同时提高光合效率,利于植株中糖的累积,显著促进了整株包括荚果的淀粉含量。较喷施清水处理相比,自制肥喷施处理籽仁的淀粉与粗脂肪含量较高,在营养品质上表现优秀,且喷施自制肥处理下亩产及各项产量构成因素均高于市面商品肥处理。综合考量,自制肥的施用可促进花生光合效率及同化物合成。并且在保障花生产量条件下,使籽仁品质拥有较优表现。 3.通过大田试验可得:相比喷清水处理,喷施叶面肥C处理对花生的株高、茎粗及分枝数起到正向作用,增加了叶面积指数与SPAD值,提升了各生育时期的茎、叶生物量。叶面肥C显著促进了籽仁中氮、磷、钾累积量,同时显著促进了茎、叶中Mg浓度与叶、荚果中Ca浓度。叶面肥C与喷施清水处理比较,显著提升了籽仁含油率、蛋白质及油酸含量,且单位面积产量最高,经济效益大幅提升。综合各项指标,花生种植中于关键时期喷施叶面肥C可改善花生籽粒品质,增强营养价值,提升贮藏时间及经济价值。 综上所述,本研究结果发现,盆栽试验中所使用的自制花生专用套餐肥和大田栽培试验所应用的自制专用花生套餐叶面肥C与喷施清水CK相比,既保证了花生品质与产量,又提升了经济效益,利于从叶面输送养分调控植株养分平衡,为科学精准施肥提供依据。 |
外文摘要: |
Peanut is not only an important oil and economic crop in China, but also a major export crop in China. With the continuous improvement of national quality of life, consumers have higher standards for the quality and safety of peanuts. Comparedwith traditional fertilization methods, foliar fertilization has many advantages such as less dosage, high pertinence, high nutrient utilization rate and less environmental pollution. It is an important fertilization method in the rapid development of modern agriculture. This experiment was carried out from two aspects of pot experiment and field experiment. The self-made nutrient solution of Nanjing Agricultural University was used as foliar reagent spraying. The spraying concentration was determined based on previous studies. The effects of different foliar fertilizers on the yield and quality of peanuts were analyzed through experiments. In order to achieve the purpose of improving peanut quality and efficiency, saving cost and increasing income, and provide technical regulations and physicochemical products for high quality and high yield of peanuts. The main results are as follows : 1.Pot experiments showed that compared with spraying water, spraying self-made foliar fertilizer increased the number of branches and stem biomass of peanut at flowering and pegging stage. It increased the stem diameter at the podding stage and the plant height, lateral branch length and leaf biomass during the whole growth period. At the same time, it increased the number of fruit needles at the podding stage and the full fruit maturity stage, and increased the seed setting rate. Under this treatment, the accumulation of nitrogen, phosphorus and potassium in the middle and late stages of peanut plants was also high, which promoted the absorption and utilization of calcium in the whole growth period of peanut, and also improved the absorption and utilization of magnesium in the seedling stage and flowering stage. Combined with various indicators, spraying self-made foliar fertilizer on peanut growth and nutrient utilization efficiency was better. 2.Compared with spraying water treatment, the photosynthetic efficiency and various qualities of peanut under the treatment of self-made fertilizer have better performance. Spraying self-made fertilizer can make peanut leaves larger and greener, increase chlorophyll content, expand its photosynthetic area, improve photosynthetic efficiency, facilitate the accumulation of sugar in plants, and significantly promote the starch content of the whole plant including pods. Compared with spraying water treatment, the starch and crude fat content of self-made fertilizer spraying treatment was higher, and the nutritional quality was excellent. The yield and yield components under spraying self-made fertilizer treatment were higher than those under market fertilizer treatment. Comprehensive consideration, the application of self-made fertilizer can promote the photosynthetic efficiency and assimilate synthesis of peanut. And under the condition of ensuring peanut yield, the quality of seed kernel has better performance. 3.Through field experiments, it can be concluded that compared with spraying water treatment, spraying foliar fertilizer C treatment has a positive effect on plant height, stem diameter and branch number of peanuts, increases leaf area index and SPAD value, and improves stem and leaf biomass in each growth period. Foliar fertilizer C significantly promoted the accumulation of nitrogen, phosphorus and potassium in kernels, and significantly promoted the concentration of Mg in stems and leaves and the concentration of Ca in leaves and pods. Compared with spraying water treatment, foliar fertilizer C significantly increased the oil content, protein and oleic acid content of kernel, and the yield per unit area was the highest, and the economic benefit was greatly improved. Comprehensive indicators, peanut planting in the critical period of spraying foliar fertilizer C can improve the quality of peanut seeds, enhance nutritional value, improve storage time and economic value. In summary, the results of this study found that the self-made peanut special package fertilizer used in the pot experiment and the self-made peanut special package foliar fertilizer C applied in the field cultivation experiment were compared with the spraying water CK, which not only ensured the quality and yield of peanuts, but also improved the economic benefits. It is beneficial to transport nutrients from the leaves to regulate the nutrient balance of plants and provide a basis for scientific and accurate fertilization. |
参考文献: |
[1] Andolfo G, Jupe F, Witek K, et al. Defining the full tomato NB-LRR resistance gene repertoire using genomic and cDNA RenSeq[J]. BMC Plant Biology, 2014, 14(1):120-120. [2] Bethke G, Thao A, Xiong G, et al. Pectin biosynthesis is critical for cell wall integrity andimmunity in arabidopsis thaliana[J]. Plant Cell, 2016, 28(2):537-556. [3] Berry Z Carter,Emery Nathan C,Gotsch Sybil G, et al. Foliar water uptake: Processes, pathways, and integration into plant water budgets.[J]. Plant, cell & environment,2019,42(2). [4] Javad Tavakoli,TeymourEmadi,Seyed Mohammad Bagher Hashemi, et al. Chemical properties and oxidative stability of Arjan (Amygdalus reuteri)kernel oil [J].Food Research International,2018,107. [5] Mei Zhang,YongchaoLiang,Guixin Chu. Applying silicate fertilizer increases both yield and quality of table grape (Vitis vinifera L.) grown on calcareous grey desert soil[J]. Scientia Horticulturae,2017,225. [6] Sha Yang,LinLi,Jialei Zhang, et al. Transcriptome and Differential Expression Profiling Analysis of the Mechanism of Ca2+ Regulation in Peanut (Arachis hypogaea) Pod Development[J]. Frontiers in Plant Science,2017,8. [7] Sheikh M.Basha,聂燕.花生种子中可溶性糖的组成[J].花生科技,1993(03):34-35+29. [8] Meng Li,ShaoxiaWang,Xiaohong Tian, et al.Zn distribution and bioavailability in whole grain and grain fractions of winter wheat as affected by applications of soil N and foliar Zn combined with N or P[J].Journal of Cereal Science,2015,61. [9] Mazhar U. Haq,AntonioP.Response of Soybean Grain Oil and Protein Concentrations to Foliar and Soil Fertilization[J]. Agronomy Journal,2005,97(3). [10] Zakaria M. Sawan,Saeb A. Hafez,Ahmed E. Basyony. Effect of nitrogen and zinc fertilization and plant growth retardants oncottonseed,protein, oil yields, and oil properties[J]. Journal of the American Oil Chemists' Society,2001,78(11). [11] Meng Li,ShaoxiaWang,Xiaohong Tian, et al. Zinc and iron concentrations in grain milling fractions through combined foliar applications of Zn and macronutrients[J]. Field Crops Research,2016,187. [12] Neuhaus Christina,GeilfusChristophMartin,Zörb Christian, et al. Transcript expression of Mg-chelatase and H⁺-ATPase isogenes in Vicia faba leaves as influenced by root and foliar magnesium supply[J]. Plant and Soil,2013,368(1/2). [13] B.R. RajeswaraRao,D.K. Rajput. Response of palmarosa { Cymbopogon martinii (Roxb.) Wats. var. motia Burk.} to foliar application of magnesium and micronutrients[J]. Industrial Crops & Products,2011,33(2). [14] Siddique Sajid. Enhancement of growth and productivity of cucumber (Cucumis sativus) through foliar application of calcium and magnesium[J]. Pure and Applied Biology,2017,6(2). [15] Nader R. Abdelsalam,Essam E. et al. Effect of foliar application of NPK nanoparticle fertilization on yield and genotoxicity in wheat[J]. Science of the Total Environment,2019,653(C). [16] Xia Haiyong,XueYanfang,LiuDunyi, et al. Rational Application of Fertilizer Nitrogen to Soil in Combination With Foliar Zn Spraying Improved Zn Nutritional Quality of Wheat Grains.[J]. Frontiers in plant science,2018,9. [17] Osorio S, Ruan Y, Fernie A R. An update on source-to-sink carbon partitioning in tomato[J].Frontiers in Plant Science, 2014, 5: 516. [18] Ioannis E. Papadakis,Thomas E. Sotiropoulos,Ioannis N, et al. Mobility of Iron and Manganese within Two Citrus Genotypes after Foliar Applications of Iron Sulfate and Manganese Sulfate[J].Journal of Plant Nutrition,2007,30(9). [19] Q. O. Uthman,D. M. Kadyampakeni,P. Nkedi‐Kizza. Manganese adsorption, availability, and uptake in citrus under microsprinkler irrigation[J]. GeroScience,2020,3(1). [20] MalusàE,Tosi L. Phosphorous acid residues in apples after foliar fertilization: results of field trials.[J]. Food additives and contaminants,2005,22(6). [21] Mazhar U. Haq,Antonio P. Mallarino. Foliar Fertilization of Soybean at Early Vegetative Stages[J]. Agronomy Journal,1998,90(6). [22] MarschnerH,Kirkby E A,Cakmak I. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients.[J]. Journal of experimental botany,1996,47(6). [23] Seshadri Kannan,Andre Charnel. Foliar absorption and transport of inorganic nutrients[J]. Critical Reviews in Plant Sciences,1986,4(4). [24] A. Rossmann,P. Buchner,G.P. Savill, et al. Foliar N application at anthesis alters grain protein composition and enhances baking quality in winter wheat only under a low N fertiliser regimen[J]. European Journal of Agronomy,2019,109(C). [25] Xia Haiyong,XueYanfang,LiuDunyi, rt al. Rational Application of Fertilizer Nitrogen to Soil in Combination With Foliar Zn Spraying Improved Zn Nutritional Quality of Wheat Grains.[J]. Frontiers in plant science,2018,9. [26] G. L. Mesquita,F. A. O. Tanaka,F. C. B. Zambrosi, et al. Foliar application of manganese increases sugarcane resistance to orange rust[J]. Plant Pathology,2019,68(7). [27] Virginie N. Kapchie,LinxingYao,Catherine C. Hauck,TongWang,Patricia A. Murphy. Oxidative stability of soybean oil in oleosomes as affected by pH and iron[J]. Food Chemistry,2013,141(3). [28] Yang S ,Wang F ,Guo F , et al.Calcium contributes to photoprotection and repair of photosystem II in peanut leaves during heat and high irradiance[J].Journal of Integrative Plant Biology,2015,57(05):486-495. [29] K. A. Nelson,P. C. Scharf,L. G. Bundy, et al. Agricultural Management of Enhanced‐Efficiency Fertilizers in the North‐Central United States[J]. Crop Management,2008,7(1). [30] Song Q B, Liu Y F, Pang J Y, et al. Supplementary calcium restores peanut (Arachis hypogaea) growth and photosynthetic capacity under low nocturnal temperature[J]. Frontiers in Plant Science,2019, 10: 1637. [31] V. P. Shabayev. Mineral nutrition of plants inoculated with plant growth-promoting rhizobacteria of Pseudomonas genus[J]. Biology Bulletin Reviews,2012,2(6). [32] Meurer Richard A,KemperSteffen,Knopp Sandra, et al. Biofunctional Microgel-Based Fertilizers for Controlled Foliar Delivery of Nutrients to Plants.[J]. AngewandteChemie (International ed. in English),2017,56(26). [33] Hamze,Khoshgoftarmanesh,Shariatmadari, et al. The effects of foliar applied potassium in the mineral form and complexed with amino acids on pistachio nut yield and quality[J]. Archives of Agronomy and Soil Science,2018,64(10). [34] Victoria Fernández,Victor Del Río,Javier Abadía, et al. Foliar Iron Fertilization of Peach (Prunus persica (L.) Batsch): Effects of Iron Compounds, Surfactants and Other Adjuvants[J]. Plant and Soil,2006,289(1/2). [35] CarrascoGilSandra,Rios Juan José,ÁlvarezFernández Ana, et al. Effects of individual and combined metal foliar fertilisers on iron- and manganese-deficient Solanum lycopersicum plants[J]. Plant and Soil,2016,402(1/2). [36] Seshadri Kannan. Mechanisms of foliar uptake of plant nutrients: Accomplishments and prospects[J]. Journal of Plant Nutrition,1980,2(6). [37] V. Fernandez,T. Eichert. Uptake of Hydrophilic Solutes Through Plant Leaves: Current State of Knowledge and Perspectives of Foliar Fertilization[J]. Critical Reviews in Plant Sciences,2009,28(1-2). [38] D. Boanares,B.G. Ferreira,A.R. Kozovits, et al. Pectin and cellulose cell wall composition enables different strategies to leaf water uptake in plants from tropical fog mountain[J]. Plant Physiology and Biochemistry,2018,122. [39] FernándezVictoria,Bahamonde Hector A,JavierPeguero-Pina José, et al. Physico-chemical properties of plant cuticles and their functional and ecological significance.[J]. Journal of experimental botany,2017,68(19). [40] Buckley Thomas N,John Grace P,Scoffoni Christine, et al. How Does Leaf Anatomy Influence Water Transport outside the Xylem?[J]. Plant physiology,2015,168(4). [41] N.V. Costa,D. Martins,R.A Rodella, et al. pH foliar e deposição de gotas de pulverizaçãoemplantasdaninhasaquáticas: Brachiariamutica, Brachiariasubquadripara e Panicum repens Leaf pH and spray droplet deposition in aquatic weeds: Brachiariamutica, Brachiariasubquadripara and Panicum repens[J]. Planta Daninha,2005,23(2). [42] Moreira A.,Moraes L. A. C. Yield, nutritional status and soil fertility cultivated with common bean in response to amino-acids foliar application[J]. Journal of Plant Nutrition,2017,40(3). [43] N. K. Fageria,M.P. Barbosa Filho,A. Moreira, et al. Foliar Fertilization of Crop Plants[J]. Journal of Plant Nutrition,2009,32(6). [44] M.J. KROGMEIER,G.W. McCARTY,D.R. SHOGREN, et al. Effect of nickel deficiency in soybeans on the phytotoxicity of foliar-applied urea[J]. Plant and Soil,1991,135(2). [45] M. J. Gooding,W. P. Davies. Foliar urea fertilization of cereals: A review[J]. Fertilizer Research,1992,32(2). [46] LvGuanghui,WangHui,Xu Chao, et al. Effectiveness of simultaneous foliar application of Zn and Mn or P to reduce Cd concentration in rice grains: a field study.[J]. Environmental science and pollution research international,2019,26(9). [47] Katarzyna Mikula,GrzegorzIzydorczyk,DawidSkrzypczak, et al. Controlled release micronutrient fertilizers for precision agriculture – A review[J]. Science of the Total Environment,2020,712(C). [48] Carlos Costa,DominicFrigon,PierreDutilleul, et al. Sample Size Determination for Chlorophyll Meter Readings on Maize Hybrids with a Broad Range of Canopy Types[J]. Journal of Plant Nutrition,2003,26(5). [49] 张克朝,董奇琦,霍元元,等. 不同钙肥用量对花生养分吸收利用与生长发育的影响[J].花生学报,2020,49(03):22-31. [50] ]史桂芳,董浩,朱国梁,等. 绿肥还田条件下化肥减施对土壤性状及花生产量的影响[J].山东农业科学,2020,52(11):65-68+79. [51] 张自茹,鹿锦浩,邹晓霞,等. 膜下滴灌氮肥运筹对花生光合和抗氧化特性的影响[J].花生学报,2023,52(01):44-51+71. [52] 李玉鹏,杨光,李飞,等. 糖醇螯合钙肥对马铃薯产量、品质及养分吸收的影响[J].土壤,2020,52(04).712(C). [53] 姚瑞,赵凯能,谢畅,等. 氮肥后移对花生氮代谢相关酶活性、氮素利用效率及产量的影响[J].中国油料作物学报,2022,44(04):877-883. [54] 李银水,余常兵,谢立华,等. 氮钾肥运筹对花生——油菜轮作制作物产量及养分效率的影响[J].中国油料作物学报,2016,38(06):817-823. [55] 孙虎,李尚霞,王月福,等. 施氮量对不同花生品种积累氮素来源和产量的影响[J].植物营养与肥料学报,2010,16(01):153-157. [56] 朱忠坤,梁元振,樊志磊,等. 尿基复合肥中添加不同量的硫酸镁对上海青生长的影响[J].肥料与健康,2022,49(05):29-33. [57] 周录英,李向东,汤笑,等. 氮、磷、钾肥不同用量对花生生理特性及产量品质的影响[J].应用生态学报,2007(11):2468-2474. [58] 周录英,李向东,王丽丽,等. 钙肥不同用量对花生生理特性及产量和品质的影响[J].作物学报,2008, (05): 879-885. [59] 甄红丽,苑兆和,冯立娟,等. 矮壮素对大丽花生长发育和内源激素含量的影响及相关性分析[J]. 草业科学,2012,29(1): 76-82. [60] 赵亚飞,张彩军,孟谣,等. 施钙对花生荚果不同发育时期光合特性及叶面积指数的影响[J]. [61] 张佳蕾,郭峰,孟静静,等. 酸性土施用钙肥对花生产量和品质及相关代谢酶活性的影响[J]. 植物生态学报,2015,39(11): 1101-1109. [62] 谢畅,党现什,刘娜,等. 不同粒型花生品种品质形成规律[J].中国油料作物报,2021,43(05):795-802. [63] 万书波,李新国. 花生全程可控施肥理论与技术[J].中国油料作物学报,2022,44(01):211-214. [64] 武琳霞,都晓慧,丁小霞,等. 花生黄曲霉毒素污染预警技术研究进展[J].中国油料作物学报,2016,38(01):120-125. [65] 胡清宏. 不同化肥减施措施对连作设施小白菜生长及土壤质量的影响[D].南京农业大学,2019. [66] 张峻伟,王志文,季凌飞,等. 有机肥替代化肥对不同生产模式茶园茶叶生产的影响[J].南京农业大学学报,2021,44(01):127-135. [67] 蒋春姬,王宁,王晓光,等. 钙钼硼肥对花生生长发育及产量品质的影响[J].中国油料作物学报,2017,39(04):524-531. [68] 郑亚萍,王世福,刘佳等. 不同花生品种(系)钾素吸收及利用特性[J].花生学报,2019,48(04):14-19. [69] 陈明. 花生在中国的引进与发展研究(1631-1949)[D].南京农业大学,2019. [70] 刘宇锋,苏天明,苏利荣,等. 我国南方花生产区栽培与施肥现状及对策[J].江西农业学报,2019,31(10):1-9. [71] 李燕婷,李秀英,肖艳,等. 叶面肥的营养机理及应用研究进展[J].中国农业科学,2009,42(01):162-172. [72] 田家明,张智猛,戴良香,等.外源钙对盐碱土壤花生荚果生长及籽仁品质的影响[J].中国油料作物学报,2019,41(2):205-210. [73] 孙瑶. 铜基多功能叶面肥与控释肥配施对果蔬增产和抑菌效应研究[D].山东农业大学,2014. [74] 潘丽娟,陈娜,陈明娜,等. 花生AhPEPC1基因抑制表达的转基因后代转录组分析[J]. 作物学报,2019,45(07): 993-1001. [75] 路亚,李晓亮,于天一,等. 持绿和早衰花生品种根系形态、叶片生理及产量对叶面喷施磷肥的响应[J].植物营养与肥料学报,2020,26(03):532-540. [76] 刘燕,孔洁,黄明明,等. 不同施钙量对高油酸花生产量、品质及经济效益的影响[J].山东农业科学,2022,54(09):93-98. [77] 林松明,孟维伟,南镇武,等. 施钙对间作遮荫条件下花生生育后期光合特性、糖代谢及产量的影响[J].中国油料作物学报,2020,42(02):277-284. [78] 廖伯寿. 我国花生生产发展现状与潜力分析[J]. 中国油料作物学报,2020,42(2):161-166. [79] 李平,代洋洋,王维薇. 中国主要食用油产品贸易竞争力演进态势分析[J].粮食与油脂,2019,32(07):5-9. [80] 顾学花,孙莲强,高波,等. 施钙对干旱胁迫下花生生理特性、产量和品质的影响[J]. 应用生态学报,2015,26(05): 1433-1439. [81] 高波. 栽培方式对土壤理化性状及夏直播花生生理特性、产量品质的影响[D].山东农业大学,2015. [82] 陈四龙,李玉荣,徐桂真,等. 不同高油花生品种(系)油分积累特性的模拟研究[J]. 作物学报,2008, (01): 142-149. [83] 陈娜,许静,陈明娜,等. 耐盐碱高油酸花生品种(系)的田间筛选鉴定及产量形成相关因素分析[J].花生学报,2021,50(4):43-50. [84] 曹瑞致. 不同生长调节剂和微量元素处理对杜仲生长及次生代谢物含量的影响[D]. 西北农林科技大学, 2018. [85] 鲍广峰. 含油量不同花生品种(系)子仁营养物质积累特征的研究[D].山东农业大学,2019. [86] 刘学良,侯敏,陈尔冉,等. 不同施氮量对花生发育过程中可溶性糖含量的影响[J].吉林农业,2013,No.301(02):95-97. [87] 张炜,陆俊武,曹秀霞,等. 不同叶面肥对旱作区胡麻经济性状及种子产量的影响[J].北方农业学报,2018,46(02):56-59. [88] 常乐,王丽霞,郭二虎,等. 几种植物生长调节剂对春谷生长发育及产量的影响[J].福建农业学报,2020,35(12):1296-1303. [89] 田利. 叶面喷施尿素提高玉米抗旱性的生理机制[D].西北农林科技大学,2015. [90] 孟秋实,秦倩倩,刘艳红. 氮添加对东北红豆杉幼苗生长发育及生理特征的影响[J].生态学杂志,2022,41(12):2325-2334. [91] 罗盛,杨友才,沈浦,等. 花生氮素吸收、根系形态及叶片生长对叶面喷施尿素的响应特征[J].山东农业科学,2015,47(10):45-48+59. [92] 刘明虎,辛智鸣,徐军,等. 干旱区植物叶片大小对叶表面蒸腾及叶温的影响[J].植物生态学报,2013,37(05):436-442. [93] 李芳兰,包维楷. 植物叶片形态解剖结构对环境变化的响应与适应[J].植物学通报,2005(S1):118-127. [94] 李燕婷,李秀英,肖艳,等. 叶面肥的营养机理及应用研究进展[J].中国农业科学,2009,42(01):162-172. [95] 陆姣云,段兵红,杨梅,等. 植物叶片氮磷养分重吸收规律及其调控机制研究进展[J].草业学报,2018,27(04):178-188. [96] 刘自飞. 木质素磺酸铁肥研制及其对花生的施用效果[D].中国农业科学院,2012. [97] 龚月桦,高俊凤. 高等植物光合同化物的运输与分配[J]. 西北植物学报, 1999,19(3):7. [98] 高芳,张佳蕾,杨传婷,等. 钙对镉胁迫下花生生理特性、产量和品质的影响[J]. 应用生态学报,2011,22(11): 2907-2912. [99] 朱明玉,康玉洁,蒲海涛. 施钾量对花生脂肪形成关键酶活性的影响[J].现代农业科技,2017(20):9-10. [100] 周朋朋,陈晓明. 中国花生出口现状、问题及对策研究[J].农村经济与科技,2017,28(13):150-152. [101] 郑亚萍,信彩云,王才斌,等. 磷肥对花生根系形态、生理特性及产量的影响[J].植物生态学报,2013,37(08):777-785. [102] 郑亚萍,陈殿绪,信彩云,等. 施磷水平对花生叶源生理特性的影响[J].核农学报,2014,28(04):727-731. [103] 郑国栋,黄金堂,陈海玲等.叶面喷施硼钼肥对花生产量及品质的影响[J].福建农业科技,2013,No.279(11):52-54. [104] 赵炎. 不同花生品种磷效率及其相关性状的研究[D].山东农业大学,2019. [105] 赵朋. 氮钙互作对日光温室黄瓜氮素代谢、品质和产量的影响机理的研究[D].山东农业大学,2008. [106] 赵华建,林英杰,高芳,等. 铁、硼、钼肥不同施用方式对花生产量和品质的影响[J].山东农业科学,2011(02):53-56. [107] 张新友,韩锁义,刘华,等. 不同花生品种高产生理参数研究[J].中国油料作物学报,2011,33(01):44-47. [108] 张翔,毛家伟,司贤宗,等. 不同种类有机肥与钼肥配施对连作花生生长发育及产量、品质的影响[J].中国油料作物学报,2014,36(04):489-493. [109] 张雯丽,李想,李淞淋. 中国花生供需现状及未来10年展望[J].农业展望,2015,11(09):7-11. [110] 张程翔,刘开振,薛轲尹,等. 晚播减氮对不同氮肥基追比例下小麦产量和氮素利用效率的影响[J].西南农业学报,2022,35(07):1613-1622. [111] 于树涛,于国庆,孙泓希,等. 东北主栽花生品种农艺性状及品质性状分析[J].分子植物育种,2019,17(10):3364-3370. [112] 徐守俊. 大豆钼高效品种筛选及其高效吸收利用钼的机制研究[D].华中农业大学,2018. [113] 熊发前,钟瑞春,韩柱强,等. 南方高产广适优质花生品种桂花36及其高产机制[J].种子,2021,40(09):112-117+2. [114] 吴文强,刘瑜,李萍,等. 糖醇螯合钙对茄子生长、产量和品质的影响[J].中国蔬菜,2013(24):46-48. [115] 吴丽青,吴保东,程亮,等. 不同钙肥用量对花生农艺性状及产量品质的影响[J].农业科技通讯,2021(10):55-57. [116] 魏倩倩. 糖醇螯合钾对花生产量、养分利用及土壤基本农化性质的影响[D].青岛大学,2022. [117] 王媛媛. 钙、硫肥不同用量及配比对花生生理特性、产量和品质的影响[D].山东农业大学,2013. [118] 王艺涵,蒙美莲,贺学勤,等. 硝酸钾浓度对盆栽马铃薯生长发育、淀粉及可溶性糖含量的影响[J].中国马铃薯,2022,36(06):517-529. [119] 王晓颖,周宇浩,邹晓霞等. 膜下滴灌追肥时期对花生干物质及氮素积累和产量的影响[J].花生学报,2021,50(03):40-46. [120] 王苏影,刘宗发,马众文,等. 配施硼肥·钼肥对花生产量的影响[J].安徽农业科学,2013,41(31):12293-12294+12297. [121] 王少鹏,洪煜丞,黄福先,等. 叶面肥发展现状综述[J].安徽农业科学,2015,43(04):96-98. [122] 王飞,刘领,武岩岩,等. 玉米花生间作改善花生铁营养提高其光合特性的机理[J].植物营养与肥料学报,2020,26(05):901-913. [123] 万书波,李新国.花生全程可控施肥理论与技术[J].中国油料作物学报,2022,44(01):211-214. [124] 田晓成,祝令成,邹晖,等.果实可溶性糖的积累模式及其调控研究进展[J/OL].园艺学报:1-11. [125] 唐璐娉.花生出口竞争力的影响因素分析[J].黑龙江科技信息,2014(12):246. [126] 孙得芳,王娜,庞世花,等.叶面肥发展现状与展望[J].山东化工,2017,46(07):89-90. [127] 司贤宗,张翔,索炎炎,等.施锌和遮阴对花生叶片生理特性、光合性能及产量的影响[J].河南农业科学,2018,47(10):52-56. [128] 石太渊,于淼,韩艳秋.辽宁花生品种营养成分及特性分析[J].食品研究与开发,2017,38(22):142-147. [129] 沈浦,罗盛,吴正锋,等.花生磷吸收分配及根系形态对不同酸碱度叶面磷肥的响应特征[J].核农学报,2015,29(12):2418-2424. [130] 秦文洁,郭润泽,邹晓霞等.膜下滴灌追肥种类对花生结荚期茎叶干物重、矿质养分吸收和产量的影响[J].作物学报,2021,47(03):520-529. [131] 马文杰.中国食用油安全战略转变:国内条件与国际情景[J].中国工程科学,2016,18(01):42-47. [132] 马金昭.新型铜基叶面肥的制备及对葡萄、芹菜和茄子的生长与防病效应研究[D].山东农业大学,2018. [133] 罗盛,杨友才,沈浦,等.花生氮素吸收、根系形态及叶片生长对叶面喷施尿素的响应特征[J].山东农业科学,2015,47(10):45-48+59. [134] 娄成后,张蜀秋.高等植物生长发育中同化物的转移[J]. Chinese Science Bulletin,2011. [135] 凌启鸿.精确定量轻简栽培是作物生产现代化的发展方向[J].中国稻米,2010,16(04):1-6. [136] 刘辰.石灰氮对连作条件下花生生理特性及产量品质的影响[D].山东农业大学,2015. [137] 李小明,龙惊惊,周悦,等.叶面肥的应用及研究进展[J].安徽农业科学,2017,45(03):127-130. [138] 李腾升.喷施山梨醇螯合钙对花生促生作用机理研究[D].青岛大学,2022. [139] 李鹏珍,赵得琴,邓波,等.生物炭与干旱胁迫对接种紫花苜蓿光合效率及生长的影响[J].草地学报,2021,29(06):1257-1264. [140] 李晶,黄国发,马朝红,等.花生硼肥施用技术与应用效果研究[J].湖北农业科学,2012,51(01):24-26. [141] 李合生.现代植物生理学[M]. 高等教育出版社,2006. [142] 李冬,曹超喜,江龙堤,等.叶面肥的特点及施用[J].湖北植保,2016(05):63-64. [143] 孔洁,王维华,蔺益民,等.分层施肥对花生光合特性、产量及籽仁品质的影响[J/OL].中国油料作物学报:1-9. [144] 金欣欣,王瑾,宋亚辉,等.高油酸花生干物质积累及氮磷钾养分的吸收利用[J].华北农学报,2021,36(S1):231-239. [145] 姜骁,许静,潘丽娟,等.花生产量相关性状与气象因子多环境相关性分析[J/OL].作物学报:1-12. [146] 霍元元.钙肥不同用量对辽宁主栽花生品种生理特性及产量的影响[D].沈阳农业大学,2017. [147] 黄聪,周世益,刘逊忠.花生施用硼、锌微肥的效应研究[J].农业科技通讯,2017(08):216-218. [148] 胡梦芸,张正斌,徐萍.植物光合产物转运蛋白及其生物学功能[J]. 植物生理学通讯,2008,44(1):6. [149] 郭晶,张佰良,王嘉豪,等.广东省不同产地不同品种花生的营养成分研究[J].食品工业科技,2022,43(09):293-300. [150] 高国庆,李杨瑞,韩柱强,等.不同产量水平花生品种光合作用特性研究(英文)[J].西南农业学技,2022,43(09):293-300. [151] 傅惠林,董露琳,唐康,等.施钙和起垄对低钙耐性差异花生品种光合性能与产量的影响[J/OL].中国油料作物学报:1-10. [152] 杜红,张亚菲.氮肥施用深度对夏玉米氮素利用、产量及根系生理的影响[J].江苏农业科学,2022,50(13):112-119. [153] 丁双双,李燕婷,袁亮,等.小分子有机物螯合钙肥对樱桃番茄产量、品质和养分吸收的影响[J].中国土壤与肥料,2015(05):61-66. [154] 陈兴强.不同钙肥对几种蔬菜幼苗质量的影响[D].华南农业大学,2018. [155] 路亚,王春晓,于天一,等.土壤施磷与叶面追肥互作对花生根系形态、结瘤特性及氮代谢的影响[J].作物学报,2020,46(03):432-439. [156] 王军军.聚磷酸铵螯合镁、铁、锌的特性及肥效研究[D].华中农业大学,2019. [157] 吕涛,孙晓东,刘翠翠,等.不同螯合肥对草莓生长、产量和品质的影响[J].黑龙江农业科学,2021(05):18-22. [158] 林怡.喷施不同钙肥对蓝莓产量、果实品质及贮藏性的影响[J].中国南方果树,2019,48(06):103-105+109. [159] 李玉鹏,杨光,李飞,等.糖醇螯合钙肥对马铃薯产量、品质及养分吸收的影响[J].土壤,2020,52(04):773-780. [160] 李腾升,魏倩倩,王文昊,等.喷施山梨醇螯合钙对花生生长及钾、钙、镁吸收的影响[J].土壤,2022,54(06):1117-1123. [161] 翁伯琦,郑向丽,赵婷,等.不同施氮量对仁秆两用型花生生理特性及产量、品质的影响[J].福建农业学报,2013,28(07):659-663. [162] 王飞,王建国,李林等.不同施肥模式对花生Ca、Zn吸收、积累及分配的影响[J].中国农业科技导报,2020,22(05):166-173. [163] 赵慧玲,周希萌,张鲲,等.花生重要农艺性状QTL/基因定位研究进展[J].花生学报,2021,50(01):19-32. [164] 马薛茗.多效唑对不同源库类型花生品种生理特性及产量品质的调控效应[D].山东农业大学,2022. [165] 赵亚飞,张彩军,孟谣,等.施钙对花生荚果不同发育时期光合特性及叶面积指数的影响[J].青岛农业大学学报(自然科学版),2019,36(04):247-254. [166] 于景丽,张小平,李登煜,等.石灰性紫色土施铁肥与接种根瘤菌对花生-根瘤菌共生固氮作用的影响[J].土壤学报,2005(02):295-300. [167] 孙虎,李尚霞,王月福,等.施氮量对不同花生品种积累氮素来源和产量的影响[J].植物营养与肥料学报,2010,16(01):153-157. [168] 索炎炎,张翔,司贤宗,等.施用磷和钙对花生生长、产量及磷钙利用效率的影响[J].作物杂志,2021(01):187-192. [169] 王建国,张佳蕾,郭峰,等.钙与氮肥互作对花生干物质和氮素积累分配及产量的影响[J].作物学报,2021,47(09):1666-1679. [170] 甄志高,段莹,吴峰,等.Zn、B、Mo、Ca肥对花生产量和品质的影响[J].土壤肥料,2005(03):48-50. [171] 李媛媛,汪代斌,王高峰,等.钾肥配施对烤烟钾积累、烟叶产量和质量的影响[J].湖南农业科学,2022(08):30-35. [172] 丁红,徐扬,张冠初,等.不同生育期干旱与氮肥施用对花生氮素吸收利用的影响[J].作物学报,2022,48(03):695-703. [173] 夏来坤,陶洪斌,王璞,等.施氮期对夏玉米氮素积累运转及氮肥利用的影响[J].玉米科学,2011,19(01):112-116. |
中图分类号: | S56 |
开放日期: | 2023-06-17 |