中文题名: | 37份菊属植物的遗传多样性和耐旱性鉴定 |
姓名: | |
学号: | 2017104114 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 0902Z1 |
学科名称: | 农学 - 园艺学 - 观赏园艺学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 观赏植物种质资源研究与创新 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2020-06-04 |
答辩日期: | 2020-09-03 |
外文题名: | Genetic diversity and drought tolerance of 37 chrysanthemum accessions |
中文关键词: | |
外文关键词: | Chrysanthemum ; Genetic diversity ; Fingerprint ; SRAP markers ; Drought tolerance |
中文摘要: |
菊花(Chrysanthemum morifolium)系菊科菊属植物,是我国传统名花和世界重要切花之一。菊花遗传背景狭窄,耐旱性普遍较弱,因此干旱是影响菊花高效生产的主要非生物限制因子。我国是菊属植物的分布中心,菊花野生近缘种在长期进化过程中形成了较强耐旱等抗逆性,这些近缘野生资源的挖掘和有效利用将有助于菊花抗逆性状的遗传改良,为菊花抗性新品种培育开辟新途径。目前,关于菊花野生近缘种的遗传多样性评价和耐旱性鉴定的报道较少。本研究利用形态性状和SRAP分子标记调查了37个菊属植物的遗传多样性,构建了DNA指纹图谱,通过盆栽模拟干旱处理和主成分分析、隶属函数值分析等方法评价了菊属植物的耐旱性,筛选出部分耐旱种质,为后续菊属植物种质资源利用和菊花耐旱性遗传改良等研究提供依据。主要研究结果如下: 1. 37份菊属植物的叶片、茎以及花序形态变异丰富,变异系数在21.31% - 193.46%之间,其中叶正面绒毛和花色的变异系数较大,而叶长、叶宽、萼片长、萼片宽和盘花径的变异系数相对较小。对20个表型性状进行主成分分析提取出6个主成分,累积贡献率为81.22%。基于形态指标的聚类分析可将37份菊属材料分为三大类,与传统分类方法基本吻合,表明本研究所涉及的性状指标可以作为菊属系统发生关系研究的有效辅助指标。 2. 28对多态性SRAP引物组合在37份菊属材料共扩增出404个位点,其中多态性位点376个,多态性比例为93.07%,平均每对引物组合检测多态性位点13.42个;遗传相似系数变化范围为0.52 - 0.99,平均值为0.66,说明37份菊属材料间存在较丰富的遗传多样性。UPGMA聚类分析在遗传相似系数为0.56时可将37份菊属材料分为4大类。利用核心引物组合Me21/Em4构建了37份菊属材料的DNA数字指纹图谱,该图谱可鉴别全部37份菊属植物种质资源。相关结果为今后菊属植物种质鉴定、评价和创新利用提供了重要依据。 3. 干旱胁迫下37份菊属材料的数量性状表现差异较大,变异系数在16.67% - 76.47%之间。主成分分析提取出3个主成分可以解释84.08%的表型变异,其中地上鲜重、地上干重、株高、萎蔫指数、鲜重根冠比和干重根冠比的权重比较大,说明与耐旱性密切相关。基于耐旱相关指标平均隶属函数值的聚类分析将供试材料分为强耐旱、耐旱、低耐旱和不耐旱4类,平均隶属函数值依次为0.50、0.38、0.28和0.23,其中耐旱性最强的是云台山野菊(0.67),耐旱性最差的是泉水野菊(0.19)。挖掘出的耐旱种质为菊花耐旱性遗传改良提供重要亲本材料。 |
外文摘要: |
Chrysanthemum (Chrysanthemum morifolium Ramat.) is a famous traditional flower in China and one of the important cut flowers in the world. Drought is the main abiotic limiting factor that affects the efficient production of chrysanthemum because of the narrow genetic background and weak drought resistance. China is the distribution center of chrysanthemum, and the wild Chrysanthemum species have formed strong drought resistance and other stress resistance in the long-term evolution process. The exploitation and effective utilization of these resources will contribute to the genetic improvement of the stress resistance characters of chrysanthemum, and open up a new way for the development of new resistant varieties of chrysanthemum. At present, there are few reports on genetic diversity evaluation and drought resistance identification of wild Chrysanthemum species. This study investigated the genetic diversity and constructed DNA fingerprinting of 37 Chrysanthemum accessions by using the morphological characters and SRAP markers. Drought resistance of Chrysanthemum species was evaluated by simulated drought treatment, principal component analysis, and subordinate function analysis, and some drought-resistant germplasm were screened out, which provided the basis for the subsequent innovative utilization of germplasm resources and genetic improvement of chrysanthemum targeting drought resistance. The main results are as follows: 1. The total coefficient of variation was between 21.31% and 193.46%, of which the difference in frontal-leaf villi and flower color were particularly obvious, while the coefficients of variation of leaf length, leaf width, sepal length, sepal width and disc-floret diameter were relatively small. Six principal components were extracted by principal component analysis of 20 phenotypic traits, and the cumulative contribution rate was 81.22%. The morphological index based cluster analysis divided 37 Chrysanthemum accessions into three categories, which is basically consistent with the traditional classification method, indicating that the trait index involved in this study can be used as an effective auxiliary index for the study of the phylogenetic relationship of Chrysanthemum species. 2. A total of 404 bands were amplified from 28 pairs of polymorphic SRAP primers in 37 Chrysanthemum accessions, 376 of which were polymorphic, with a polymorphism ratio of 93.07%. On average, 13.42 polymorphic bands were detected for each pair of primers. The variation range of genetic similarity coefficient was 0.52-0.99, and the average value was 0.66, indicating that there was abundant genetic diversity among 37 Chrysanthemum accessions. When the genetic similarity coefficient was 0.56, the UPGMA cluster analysis divided 37 Chrysanthemum accessions into 4 categories. The core primer combination Me21/Em4 was used to construct DNA digital fingerprint, which could identify all 37 Chrysanthemum germplasm resources. These results provide important basis for germplasm identification, evaluation and innovation in Chrysanthemum in the future. 3. The drought tolerance of different Chrysanthemum accessions was significantly different, and the total coefficient of variation ranged between 16.67% - 76.47%. Among the 9 drought tolerance traits, shoot weight, root dry weight, plant height, wilting index, fresh root-shoot ratio and dry weight root-shoot ratio were more closely related to drought tolerance. The analysis based on the average membership function values of drought tolerance-related indicators divided the test materials into 4 categories: strong drought resistance (0.50), drought resistance (0.38), low drought resistance (0.28) and no drought resistance (0.23). Among them, Chrysanthemum indicum Yuntaishan chrysanthemum has the strongest drought tolerance (0.67), and Chrysanthemum indicum Quanshui chrysanthemum has the weakest drought tolerance (0.19). The accessions with strong drought tolerance could be used as candidate parental materials in future crossbreeding researches. |
参考文献: |
Abdel-Twab M, Kondo K. Molecular cytogenetic identification of the parental genomes in the intergeneric hybrid between Leucanthemella linearis and Nipponanthemum nipponicum during meiosis and mitosis[J]. Caryologia, 2001, 54(2):109-114. Abdel-Twab M, Kondo K. Physical mapping of 5S rDNA in chromosomes of Dendranthema by fluorescence in situ hybridization[J]. Chromosome Science, 2002, (6):13-16. Abdoli N, Maryam, Rahimi M. Evaluation of genetic diversity and classification of watermelon (Citrullus lanatus) ecotypes using SRAP molecular markers[R]. Nova Biologica Rep, 2017, 4: 201-208. Anderson N. Reclassifications of the genus Chrysanthemum L.[J]. Hortscience, 1987, 22(2):313-313. Atia M, Sakr M, Adawy S. Assessing date palm genetic diversity using different molecular markers [J]. Methods in Molecular Biology, 2017, 1638: 125-142. Aytekin E, Suat S. Determination of genetic diversity using phenotypic and molecular methods among bean genotypes (Phaseolus vulgaris L.) in Lake Van Basin[J]. Turkish Journal of Agriculture - Food Science and Technology, 2018, 6(7): 893-902. Baliyan D, Sirohi A, Kumar M, et al. Comparative genetic diversity analysis in chrysanthemum: A pilot study based on morpho-agronomic traits and ISSR markers[J]. Scientia Horticulturae, 2014, 167:164-168. Bian Y, Gu X, Sun D, et al. Mapping dynamic QTL of stalk sugar content at different growth stages in maize[J]. Euphytica, 2015, 205(1):85-94. Blair M, Galeano C, Tovar E , et al. Development of a Mesoamerican intra-genepool genetic map for quantitative trait loci detection in a drought tolerant[J]. Molecular Breeding, 2012, 29(1):71-88. Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production[J]. Plant Cell and Environment, 2016, 40(1):4-10. Bog M, Landrock M, Drefahl D, et al. Fingerprinting by amplified fragment length polymorphism (AFLP) and barcoding by three plastidic markers in the genus Wolffiella Hegelm[J]. Plant Systematics and Evolution, 2017, 304(1):1-14. Bourke P, Arens P, Voorrips R, et al. Partial preferential chromosome pairing is genotype dependent in tetraploid rose[J]. The Plant Journal, 2017, 90(2):330-343. Bremer K, Humphries C. Generic monograph of the Asteraceae-Anthemideae[J]. Bulletin of the Natural History Museum Botany, 1993, 23(2). Cai C, Cheng F, Wu J, et al. The first high-density genetic map construction in tree peony (Paeonia Sect. Moutan) using genotyping by specific-locus amplified fragment sequencing[J]. PLoS One, 2015, 10 (5):e0128584. Chen S, Cui X, Chen Y, et al. CgDREBa transgenic chrysanthemum confers drought and salinity tolerance[J]. Environmental and Experimental Botany, 2011, 74:255-260. Chong X, Zhang F, Wu Y, et al. A SNP-enabled assessment of genetic Diversity, evolutionary relationships and the identification of candidate genes in chrysanthemum[J]. Genome Biology and Evolution, 2016, 8(12):3661-3671. Cleber M, Castro A , Luís F, et al. Drought tolerance in upland rice: Identification of genotypes and agronomic characteristics[J]. Acta Scientiarum Agronomy, 2016, 38(2):201. Desnoues E, Baldazzi V, Génard M, et al. Dynamic QTLs for sugars and enzyme activities provide an overview of genetic control of sugar metabolism during peach fruit development[J]. Journal of Experimental Botany, 2016, 67(11): 3419-3431. Easterling D. Climate extremes: observations, modeling, and impacts[J]. Science, 2000, 289(5487):2068-2074. Fu M, Li G, Yang Q, et al. Preliminary analysis of application that PEG6000 simulated drought stress treatment in selecting rape resistance (tolerance) materials[J]. Journal of Agricultural Science and Technology, 2009,11(S2):60-62. Fan Q, Song A, Jiang J, et al. CmWRKY1 enhances the dehydration tolerance of chrysanthemum through the regulation of ABA-associated genes[J]. PLoS One, 2016, 11(3):e0150572. Farris J. Methods for computing Wagner-tree[J]. Systematic Zoology, 1970, 19:83-92. Gechev T, Breusegem F, Stone J, et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death[J]. BioEssays, 2006, 28(11):1091-1101. Geest G, Bourke P, Voorrips R, et al. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis[J]. Theoretical and Applied Genetics, 2017, 130(12):2527-2541. Grzesiak M, Rzepka A, Hura T, et al. Changes in response to drought stress of triticale and maize genotypes differing in drought tolerance[J]. Photosynthetica (Prague), 2007, 45(2):280-287. He Y, Yuan W, Dong M, et al. The first genetic map in sweet osmanthus (Osmanthus fragrans L.) using specific locus amplified fragment sequencing[J]. Frontiers in Plant Science, 2017, 8:1621 Heinonen, Bitz, Rokka. Genetic diversity and structure in the northern populations of European hazelnut (Corylus avellana L.)[J]. Genome, 2019. Jaffar M, Song A, Faheem M, et al. Involvement of CmWRKY10 in drought tolerance of chrysanthemum through the ABA-signaling pathway[J]. International Journal of Molecular Sciences, 2016, 17(5): 693. Jaleel C, Manivannan P, Wahid A, et al. Drought stress in plants: A review on morphological characteristics and pigments composition[J]. International Journal of Agriculture and Biology (Pakistan), 2009, 11(1):100-105. Jeroni G, Miquel C, John M, et al. Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum[J]. Plant Cell and Environment, 2011, 34(2):245-260. Kishimoto S, Aida R, Shibata M. Identification of chloroplast DNA variations by PCR-RFLP analysis in Dendranthema[J]. Journal of The Japanese Soceity for Horticultural Science, 2003, 72(3):197-204. Lawlor D. Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP[J]. Annals of Botany, 2002, 89(7):871-885. Lefi E, Medrano H, Cifre J. Water uptake dynamics, photosynthesis and water use efficiency in field-grown Medicago arborea and Medicago citrina under prolonged Mediterranean drought conditions[J]. Annals of Applied Biology, 2004, 144(3):299-307. Li G, Quiros C. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica[J]. Theoretical and Applied Genetics, 2001, 103 (2):455-461 Li J, Lindqvist-Kreuze H, Tian Z, et al. Conditional QTL underlying resistance to late blight in a diploid potato population[J]. Theoretical and Applied Genetics, 2012, 124 (7):1339-1350. Li P, Zhang F, Chen S, et al. Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.)[J]. Molecular Genetics and Genomics, 2016, 291(3):1117-1125. Liu J, Yang Y, Zhou X, et al. Genetic diversity and population structure of worldwide eggplant (Solanum melongena L.) germplasm using SSR markers[J]. Genetic Resources and Crop Evolution, 2018, 65(9):1663-1670. Liu P, Wan Q, Guo Y, et al. Phylogeny of the genus Chrysanthemum L.: evidence from single-copy nuclear gene and chloroplast DNA sequences[J]. PLoS One, 2012, 7(11): e48970. Liu Q, Xu K, Zhong M, et al. Overexpression of a novel chrysanthemum Cys2/His2-type zinc finger protein gene DgZFP3 confers drought tolerance in tobacco[J]. Biotechnology Letters, 2013, 35(11): 1953-1959. Lobell D, Burke M, Tebaldi C, et al. Prioritizing climate change adaptation needs for food security in 2030[J]. Science, 2008, 319(5863): 607-610. Lu J, Liu Y, Xu J, et al. High-density genetic map construction and stem total polysaccharide content-related QTL exploration for Chinese endemic Dendrobium (Orchidaceae)[J]. Frontiers in Plant Science, 2018, 9:398. Ma X, Wang A, Wang F, et al. A revised classification of Chinese Davalliaceae based on new evidence from molecular phylogenetics and morphological characteristics[J]. PLoS One, 2018, 13(11): e0206345. Mccouch S, Zhao K, Wright M, et al. Development of genome-wide SNP assays for rice[J]. Breeding Science, 2010, 60 (5):524-535. Millet E, Welcker C, Kruijer W, et al. Genome-wide analysis of yield in Europe: allelic effects vary with drought and heat scenarios[J]. Plant Physiology, 2016, 172: 749-764. Moreira A, Paulo M, Claudete F, et al. Genetic diversity, population structure and genetic parameters of fruit traits in Capsicum chinense[J]. Scientia Horticulturae, 2018, 236:1-9. Nadeem M, Nawaz M, Shahid M, et al. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing[J]. Biotechnology & Biotechnological Equipment, 2018, 32 (2):261-285. Nakata M, Hong D, Qiu J, et al. Cytogenetic studies on wild Chrysanthemum sensu lato in China:1. Karyotype of Dendranthema vestitum[J]. Journal of Japanese Botany, 1991, 66(4): 199-204. Ohashi H, Yonekura K. New combinations in Chrysanthemum (Compositae-Anthemideae) of Asia with a list of Japanese species[J]. Journal of Japanese Botany, 2004, 79:186-195. Oyant LHS, Crespel L, Rajapakse S, et al. Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits[J]. Tree Genetics & Genomes, 2008, 4(1): 11-23. Porch T, Ramirez V, Santana D, et al. Evaluation of common bean for drought tolerance in Juana Diaz, Puerto Rico[J]. Journal of Agronomy and Crop Science, 2009, 195(5):328-334. Porebski S, Bailey L, Baum B. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components[R]. Plant Molecular Biology Reporter, 1997, 15(1):8-15. Provan J, Powell W, Hollingsworth P. Chloroplast microsatellites: new tools for studies in plant ecology and evolution[J]. Trends in Ecology & Evolution, 2001, 16(3):142-147. Queiros, F, Almeida J, Fidalgo F, et al. Assessment of genetic variation in potato callus tissue under salinity using RAPD markers[J]. Acta Horticulturae, 2012, 935(935):177-184. Rajendrakumar P, Biswal A, Balachandran S, et al. Simple sequence repeats in organellar genomes of rice: frequency and distribution in genic and intergenic regions[J]. Bioinformatics, 2006, 23(1):1-4. Roein Z, Asil M, Sabouri A, et al. Genetic structure of chrysanthemum genotypes from Iran assessed by AFLP and phenotypic traits[J]. Plant System and Evolution, 2014, 300:493-503. Shahin A, Arens P, Heusden A, et al. Genetic mapping in Lilium: mapping of major genes and quantitative trait loci for several ornamental traits and disease resistances[J]. Plant Breeding, 2011, 130: 372-382. Spaargaren J, van Geest G. Chrysanthemum. In: Ornamental Crops[M]. Springer, 2018, pp319-348. Sun C, Chen F, Teng N, et al. Interspecific hybrids between Chrysanthemum grandiflorum (Ramat.) Kitamura and C. indicum (L.) Des Moul. and their drought tolerance evaluation[J]. Euphytica, 2010, 174(1):51-60. Sun J, Gu J, Zeng J, et al. Changes in leaf morphology, antioxidant activity and photosynthesis capacity in two different drought-tolerant cultivars of chrysanthemum during and after water stress[J]. Scientia Horticulturae, 2013, 161: 249-258. Sutkowska A, Andrzej P, Warzecha T, et al. Multiple cryptic refugia of forest grass Bromus benekenii, in Europe as revealed by ISSR fingerprinting and species distribution modelling[J]. Plant Systematics and Evolution, 2014, 300(6):1437-1452. Talukder Z, Gong L, Hulke B, et al. A high-density SNP map of sunflower derived from RAD-sequencing facilitating fine-mapping of the rust resistance gene R12[J]. PLoS One, 2014, 9(7):3-33. Vinocur B, Altman A. Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations[J]. Current Opinion in Biotechnology, 2005, 16(2):123-132. Vukosavljev M, Arens P, Voorrips R, et al. High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array[J]. Horticulture Research, 2016, 3:16052. Wang X, Wang H, Long Y. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L.[J]. Theoretical and Applied Genetics, 2015, 128(6):1175-1192. Wang Z, Cheng J, Chen Z, et al. Identification of QTLs with main, epistatic and QTL× environment interaction effects for salt tolerance in rice seedlings under different salinity conditions[J]. Theoretical and Applied Genetics, 2012, 125 (4):807-815. Xu Y, Gao S, Yang Y, et al. Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress[J]. BMC Genomics, 2013, 14:662. Yagi M, Shirasawa K, Waki T. Construction of an SSR and RAD marker-based genetic linkage map for carnation (Dianthus caryophyllus L.)[R]. Plant Molecular Biology Reporter, 2017, 35 (1):110-117. Yan M, Byrne D, Klein P, et al. Black spot partial resistance in diploid roses: QTL discovery and linkage map creation[J]. Acta Horticulturae, 2019(1232):135-142. Yan M, Byrne D, Klein P, et al. Genotyping-by-sequencing application on diploid rose and a resulting high-density SNP-based consensus map[J]. Horticulture Research, 2018, 5 (1):17. Yang Y, Ma C, Xu Y, et al. A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis[J]. Plant Cell, 2014, 26: 2038-2054. Yang Y, Zhu K, Wu J, et al. Identification and characterization of a novel NAC-like gene in chrysanthemum (Dendranthema lavandulifolium)[J]. Plant Cell Reports, 2016, 35(8):1783-1798. Zhang J, Zhang Q, Cheng T, et al. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc)[J]. DNA Research, 2015, 22(3):183-191. Zhang W, Fukai S, Goi N. Morphology of campitulum initiation and floret development of Dendranthema species native to Japan[J]. Journal of The Japanese Society for Horticultural Science, 1998, 67(3):347-351. Zhang X, Huang C, Wu D, et al. High-throughput phenotyping and QTL mapping reveals the genetic architecture of maize plant growth[J]. Plant Physiology, 2017, 173(3):1554-1564. Zhang Y, Zhang X, Chen X, et al. Genetic diversity and structure of tea plant in Qinba area in China by three types of molecular markers [J]. Hereditas, 2018(155): 22. 查美琴, 赵玉玲, 李疆, 等. 新疆枸杞种质资源遗传多样性分析及DNA指纹图谱构建[J]. 植物遗传资源学报, 2016, 17(6):1065-1071. 陈素梅, 陈发棣, 赵宏波, 等. 基于rpl16-rpl14、GS 序列的广义菊属若干分类群亲缘关系研究[J]. 江苏农业科学, 2007, 35(6):111-115. 陈星, 高子厚. DNA分子标记技术的研究与应用[J]. 分子植物育种, 2019, 17(06):1970-1977. 陈雪鹃, 孙明, 菅琳, 等. 部分菊属植物及其近缘种的胚拯救与杂种鉴定[J]. 东北林业大学学报, 2014, 42(07):74-79. 崔娜欣. 几种菊属植物及其杂种减数分裂行为与亲缘关系研究[D]. 南京: 南京农业大学,2004. 代希茜, 赵银月, 詹和明, 等. 云南省夏大豆种质资源表型鉴定和综合评价模型构建[J]. 植物遗传资源学报, 2018, 19(5):14-29. 戴思兰, 陈俊愉. 菊属7个种的人工种间杂交试验. 北京林业大学学报, 1996, 18 (4):16-21. 丁玲, 陈发棣, 房伟民. 菊属8个种27份材料遗传多样性的同工酶分析[J]. 西北植物学报, 2007, 27(2):249-256. 傅鸿妃, 吕晓菡, 陈建瑛, 等. 辣椒种质表型性状与SSR分子标记的遗传多样性分析[J]. 核农学报, 2018, 32(07):1309-1319. 高小宽, 刘国杰, 白丽荣. 聚乙二醇(PEG)模拟干旱胁迫对野生大豆与栽培大豆萌发的影响[J]. 大豆科学, 2012, 31(06):1027-1029. 关春景, 焦孟月, 张彦妮. 8个矮牵牛品种耐旱性综合评价分析[J]. 西北林学院学报, 2018, 33(02):62-69. 胡志刚, 夏叶, 郑贝, 等. 菊属植物DNA分子鉴定研究进展[J]. 世界科学技术-中医药现代化, 2014, 16(8):1840-1845. 华树妹, 贺佩珍, 陈芝华, 等. 应用SRAP标记构建山药种质资源DNA指纹图谱[J]. 植物遗传资源学报, 2014, 15(3):597-603. 贾子昉, 王清连, 董娜. 陆地棉种质资源的表型及SSR遗传多样性分析[J]. 生物技术通讯, 2019, 30(5):653-661. 孔德政, 于红芳, 李永华, 等. 干旱胁迫对不同品种菊花叶片光合生理特性的影响[J]. 西北农林科技大学学报, 2010, 38(11):103-108. 孔志新, 王亚, 孙明, 等. 地被菊品种及其近缘种的数量分类[J]. 东北林业大学学报, 2013, 041(003):73-77, 81. 黎瑞源, 石桃雄, 陈其皎, 等. 中国35个苦荞审定品种EST-SSR指纹图谱构建与遗传多样性分析[J]. 植物科学学报, 2017, 35(02):267-275. 李畅, 苏家乐, 刘晓青, 等. 杜鹃花不同品种的观赏性和耐旱性比较[J]. 江苏农业科学, 2019, 47(22):138-142. 李鸿渐. 中国菊花[M]. 南京: 江苏科学技术出版社. 1993. 李禄军, 蒋志荣, 李正平, 等. 3树种耐旱性的综合评价及其耐旱指标的选取[J]. 水土保持研究, 2006, 13(6):253-254. 李丕睿. 切花菊品种遗传多样性及观赏性状、抗逆性与分子标记的关联分析[D]. 南京: 南京农业大学, 2014. 李阳, 秦智伟, 周秀艳, 等. 黄瓜主要种质资源耐旱性评价[J]. 北方园艺, 2016, 40(20):5-8. 栗燕, 黎明, 袁晓晶, 等. 干旱胁迫下菊花叶片的生理响应及耐旱性评价[J]. 石河子大学学报, 2011, 29(1):30-34. 刘晨, 高明伟, 刘超, 等. 基于表型和SRAP标记的唐菖蒲品种遗传多样性分析[J]. 中国农业大学学报, 2016, 21(5):57-65. 刘倩倩. 中国大菊品种形态分类及细胞学研究[D]. 北京: 北京林业大学, 2007. 刘颖鑫, 李沛曈, 迟天华, 等. 菊花脑×甘菊种间F1杂种的鉴定和遗传多样性分析[J]. 园艺学报, 2019, 46(08):1553-1564. 雒新艳, 戴思兰. 大菊品种表型性状的分类学价值[J].北京林业大学学报, 2010, 32(3):135-1403 马杰, 徐婷婷, 苏江硕, 等. 菊花F1代舌状花耐寒性遗传变异与QTL定位[J]. 园艺学报, 2018, 45(04):717-724. 马克平. 试论生物多样性的概念[J]. 生物多样性, 1993, 1(1):20-22. 缪恒彬, 陈发棣, 赵宏波, 等. 应用ISSR对25个小菊品种进行遗传多样性分析及指纹图谱构建[J]. 中国农业科学, 2008, 41(11):3735-3740. 庞新华, 檀小辉, 韦丽君, 等. 35份甘蔗种质的遗传多样性分析及DNA指纹图谱构建[J]. 南方农业学报, 2019, 50(06):1157-1164. 秦贺兰, 曹靖, 姚士才, 等. 小菊花色芽变品系的SRAP鉴定[J]. 北方园艺, 2010, 34(2):111-113. 石铸, 彭广芳, 张素芹, 等. 中国菊属二新种[J]. 中国科学院大学学报, 1999, 37(6):598-600. 宋海斌, 崔喜波, 马鸿艳, 等. 基于SSR标记的甜瓜品种(系)DNA 指纹图谱库的构建[J]. 中国农业科学, 2012, 45(13):2676-2689. 宋雪彬, 黄河, 张辕, 等. 中日两国部分大菊品种的数量分类研究[C]. 中国观赏园艺研究进展(2014). 2014. 孙静. 切花菊耐旱性评价及耐旱机理研究[D]. 南京: 南京农业大学, 2012. 唐生森, 唐鑫, 吴东山, 等. 不同马尾松家系耐旱性评价[J].森林与环境学报, 2018, 38(2):222-228. 田赟. 菊花RAPD反应体系的建立及在相似品种鉴定中的应用[C]. 中国风景园林学会菊花研究专业委员会.2007中国(中山小榄)国际菊花研讨会论文集.中国风景园林学会菊花研究专业委员会:中国风景园林学会, 2007:25-26. 王爱玲. DNA 分子标记在无核葡萄育种中的应用[J]. 西北园艺(综合), 2018(5): 56-58. 王福祥, 肖开转, 姜身飞, 等.干旱胁迫下植物体内活性氧的作用机制[J].科学通报, 2019, 64(17):1765-1779. 王海岗, 贾冠清, 智慧, 等. 谷子核心种质表型遗传多样性分析及综合评价[J]. 作物学报, 2016, 42(1):19-30. 王兰芬, 武晶, 王昭礼, 等. 普通菜豆种质资源表型鉴定及多样性分析[J]. 植物遗传资源学报, 2016, 17(6):983. 王彦华, 侯喜林, 徐明宇. 正交设计优化不结球白菜ISSR反应体系研究[J]. 西北植物学报, 2004(05):899-902. 王玉红, 金关荣, 陶爱芬, 等. 利用SRAP标记绘制中国芥菜基因源分子指纹图谱[J]. 热带作物学报, 2016, 37(09):1719-1724. 吴国盛, 陈发棣, 陈素梅, 等. 基于 PCR-RFLP 多态的部分菊属与亚菊属植物亲缘关系研究[J]. 江苏农业科学, 2008, 36(2):58-61. 吴国盛. 部分菊属与亚菊属植物亲缘关系研究[D]. 南京: 南京农业大学, 2007. 吴盼婷, 王江民, 沈佳逾, 等. 不同菊花品种根系、地上部和叶片相关指标分析及抗逆性评价[J]. 植物资源与环境学报, 2017, 26(2):46-54. 夏法刚, 黄金星, 季彪俊, 等. 基于SRAP标记的薏苡种质资源遗传多样性及DNA指纹图谱构建[J]. 植物遗传资源学报, 2017, 18(3):413-420. 肖春旺, 周广胜, 马风云. 施水量变化对毛乌素沙地优势植物形态与生长的影响[J]. 植物生态学报, 2002, 26(1):69-76. 熊发前. 一种分子标记技术的新分类思路[C]. 中国作物学会油料作物专业委员会、《中国油料作物学报》编辑部.中国作物学会油料作物专业委员会第八次会员代表大会暨学术年会综述与摘要集.中国作物学会油料作物专业委员会、《中国油料作物学报》编辑部:中国作物学会, 2018:237. 徐君, 李欣, 江君, 等. 基于表型和ISSR标记的小株型荷花遗传多样性分析[J].江苏农业科学, 2019, 47(19):137-141. 徐婷婷, 马杰, 迟天华, 等. 切花菊苗期抗寒性评价及相关的分子标记挖掘[J]. 核农学报, 2019, 33(01):199-207. 许莉莉, 朱文莹, 王海滨, 等. 菊属与菊蒿属、亚菊属和芙蓉菊属的属间杂种的育种利用研究[J]. 园艺学报, 2015, 42(03):513-522. 许耀照, 曾秀存, 王勤礼, 等. PEG模拟干旱胁迫对不同黄瓜品种种子萌发的影响[J]. 中国蔬菜, 2010(14):54-59. 杨若鹏, 张祖芸. 干旱胁迫对菊花生理指标的影响[J]. 红河学院学报, 2017, 15(2):126-128. 袁王俊, 叶松, 董美芳, 等. 菊花品种表型性状与SSR和SCoT分子标记的关联分析[J]. 园艺学报, 2017, 44(02):364-372. 张安世, 司清亮, 齐秀娟, 等. 猕猴桃种质资源的SRAP遗传多样性分析及指纹图谱构建[J]. 江苏农业学报, 2018,34(1):144-150. 张安世, 张素敏, 范定臣, 等. 皂荚种质资源SRAP遗传多样性分析及指纹图谱的构建[J]. 浙江农业学报, 2017, 29(9):1524-1530. 张常青, 洪波, 李建科, 等. 地被菊花幼苗耐旱性评价方法研究[J]. 中国农业科学, 2005, 38(4):789-796. 张飞, 陈发棣, 房伟民, 等. 菊花管状花数量和花心直径的QTL分析[J]. 中国农业科学, 2011, 44(7):1443-1450. 张贵一, 于丽杰, 刘玉晶. 东北菊属的新变种[J]. 植物研究, 1994, 14(2):152-153. 张晓雪, 陈婧, 黄好, 等. 菊花近缘种属植物耐旱生理机理初探[J]. 江苏农业科学, 2012, 40(4):207-208. 赵惠恩, 汪小全, 陈俊愉, 等. 基于核糖体DNA的ITS序列和叶绿体trnT-trnL及trnL-trnF基因间区的菊花起源与中国菊属植物分子系统学研究[J].分子植物育种, 2003, 1(5):597-604. 钟扬, 陈家宽, 黄德世. 数量分类的方法与程序[M]. 武汉大学出版社, 1990. 周春玲, 戴思兰. 菊属部分植物的AFLP分析[J]. 北京林业大学学报, 2002, 24(5):71-75. 朱世杨, 张小玲, 刘庆, 等. PEG模拟干旱胁迫下花椰菜种质资源萌发特性及耐旱性评价[J].核农学报, 2019, 33(9):1833-1840. 朱珍珍, 陈宏伟, 廖芳丽, 等. 小豆种子萌发期耐旱性评价及耐旱种质资源筛选[J]. 南方农业学报, 2019, 50(6):1183-1190. 庄南生, 郑成木, 黄东益, 等. 甘蔗种质遗传基础的AFLP分析[J]. 作物学报, 2005(4):444-450. |
中图分类号: | S68 |
开放日期: | 2020-09-11 |