题名: | 小麦TM-ARM基因家族分析和分蘖相关基因功能验证 |
作者: | |
学号: | 2022101130 |
保密级别: | 保密两年 |
语种: | chi |
学科代码: | 090102 |
学科: | 农学 - 作物学 - 作物遗传育种 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 小麦分子遗传学 |
导师姓名: | |
导师单位: | |
完成日期: | 2025-06-18 |
答辩日期: | 2025-05-29 |
外文题名: | Analysis of Wheat TM-ARM Gene Family and Functional Validation of Tillering-Related Genes |
关键词: | 小麦 ; TM-ARM基因家族 ; 基因编辑 ; 分蘖数 ; 育种价值 |
外文关键词: | Wheat ; TM-ARM gene family ; Gene editing ; Tiller number ; Breeding value |
摘要: |
小麦(Triticum aestivum L.)作为全球最重要的粮食作物之一,为超过40%的人口提供基础能量来源。在气候变化和人口增长的双重压力下,提高小麦单产已成为保障全球粮食安全的关键战略目标。分蘖(tillering)作为小麦重要的株型构成因素和产量形成的关键农艺性状,其发育过程直接决定了单位面积有效穗数,进而对最终产量产生决定性影响。尽管在水稻和拟南芥等模式植物中,分蘖调控机制已取得较为系统的解析,但由于小麦异源六倍体的基因组特性,目前对小麦分蘖相关基因的研究仍处于初步阶段。因此,深入发掘调控小麦分蘖数的关键基因,阐明分蘖发育与产量形成协同优化的分子机制,对小麦产量的提升具有重要的理论和实践意义。 本研究基于实验室前期通过图位克隆技术鉴定的小麦分蘖关键调控基因TaETN1-D(Effective tiller number 1),该基因编码一个具有10个跨膜结构域(Transmembrane, TM)和1个犰狳折叠结构域(Armadillo, ARM)的蛋白。为深入解析TaETN1-D的生物学功能及其调控网络,本研究通过全基因组扫描和结构域分析,系统鉴定了小麦TM-ARM家族基因;从中鉴定出一个新的分蘖调控相关基因TaETN2-D(Effective tiller number 2),并对TaETN1-D调控小麦分蘖生长的分子机制进行了初步探究。本研究不仅拓展了对小麦分蘖调控网络的认识,而且为小麦分子设计育种提供了新的基因资源和理论依据。取得的主要研究成果如下: 1. TM-ARM基因家族成员的鉴定及分析 本研究针对普通小麦中功能注释尚不完善的TM-ARM基因家族开展了系统性研究。通过比较基因组学分析,我们在11个代表性植物物种中鉴定出198个TM-ARM基因,发现其家族规模存在显著的物种特异性差异。值得注意的是,该基因家族在普通小麦及其近缘物种中呈现明显的扩张现象,暗示其在禾本科作物基因组进化中经历了特异性扩增。基于系统发育分析,我们将TM-ARM基因家族划分为3个主要进化分支。普通小麦的家族成员均匀分布于各分支,提示其可能通过亚功能化或新功能化实现功能多样化。染色体定位分析显示,该家族在普通小麦A、B、D亚基因组间呈非对称分布,其中第2部分同源群表现出显著的基因富集现象(22个,占46.8%)。共线性分析进一步表明,片段复制是家族扩张的主要驱动力,且与古多倍化事件密切相关。在基因结构特征方面,我们发现17%的小麦TM-ARM基因为单外显子结构,这种结构可能与其快速响应环境刺激或抗逆功能相关;而45%的成员完整保留12个保守基序,部分成员的基序缺失变异或可能促进了功能分化。表达特征分析显示,部分成员呈现组成型表达模式,暗示其可能具有基础生理功能,在顶端分生组织高表达的基因可能参与分蘖调控,具10个跨膜结构域的成员显著富集于第2部分同源群,推测其可能通过跨膜信号转导参与光合作用或生殖发育调控。 2. TM-ARM基因家族成员功能的初步研究 利用VIGE技术对小麦TM-ARM基因家族进行系统性功能筛选。成功构建16个sgRNA的表达载体,覆盖39个家族成员高通量的靶向编辑。通过UGENE软件进一步分析编辑类型(如插入、缺失或点突变)及其在靶位点的分布特征和对编辑产物的序列分析,结果发现小麦品种Fielder中TM-ARM基因家族成员的VIGE效率存在显著差异,TM-ARM基因家族成员主要呈现嵌合突变(mosaic mutation)的编辑特征。本研究获得的嵌合体材料为TM-ARM基因家族成员的研究创制了宝贵的遗传材料,也为进一步分析该家族基因的功能奠定了基础。 通过温室加代、分子标记筛选和Sanger测序验证,最终获得4株分蘖相关基因TaETN2-D纯合突变体株系(M1-M4)。表型调查分析发现,TaETN2-D作为分蘖数目的正向调控因子,其功能缺失导致分蘖数目显著降低,但不影响其他重要农艺性状,这一发现为小麦株型改良提供了新的靶基因。对该基因家族中另一分蘖相关基因的功能分析发现,野生型TaETN1-D单碱基突变致使其编码蛋白第二跨膜结构域构象改变,其突变基因Taetn1-dL58F转基因可显著增加小麦分蘖数,表现为功能获得性突变。 膜酵母双杂交及荧光素酶互补成像实验表明,TaETN1-D/Taetn1-dL58F蛋白与钙调蛋白、TM_HPP结构域蛋白及HR-like损伤诱导蛋白具有互作关系,结合共有转录组分析,提出TaETN1-D/Taetn1-dL58F通过激活下游钙信号通路并增强碳代谢与糖类代谢的双重机制促进分蘖,为解析小麦分蘖调控网络提供了新视角。 3. 分蘖相关基因Taetn1-dL58F的育种应用分析 基于Taetn1-dL58F功能获得性突变位点和野生型TaETN1-D基因的SNP差异,本研究开发了特异性KASP标记。在望水白、etn1(Taetn1-dL58F 1)、(渭麦4号×etn1)BC2F4以及(长方贡形麦×etn1)BC2F4衍生的姊妹系群体材料中进行标记效能验证。验证结果显示,该标记在不同遗传背景的小麦材料中能够表现出稳定的扩增特异性和分型准确性,为分子标记辅助选择加速分蘖性状改良提供工具。将Taetn1-dL58F基因导入不同遗传背景的小麦品种的表型分析显示,基因型为Taetn1-dL58F的材料有效分蘖数提升但穗粒数和千粒重降低,存在产量性状权衡现象。 |
外摘要要: |
Wheat (Triticum aestivum L.), one of the world’s most vital food crops, provides fundamental energy for over 40% of the global population. Under the dual pressures of climate change and population growth, increasing wheat yield per unit area has become a critical strategic objective for ensuring global food security. Tillering, a key agronomic trait shaping plant architecture and yield formation, directly determines the number of effective panicles per unit area, thereby exerting a decisive impact on final yield. Although the regulatory mechanisms of tillering have been systematically resolved in model plants such as rice and Arabidopsis, research on tiller-related genes in wheat remains in its infancy due to the complexity of its allohexaploid genome. Therefore, identifying key genes regulating tiller number and elucidating the molecular mechanisms underlying the coordinated optimization of tiller development and yield formation are of profound theoretical and practical significance for enhancing wheat productivity. This study focuses on TaETN1-D (Effective tiller number 1), a key tiller-regulating gene previously identified via map-based cloning in our laboratory. This gene encodes a protein containing 10 transmembrane (TM) domains and one Armadillo (ARM) fold domain. To dissect the biological functions and regulatory network of TaETN1-D, we systematically identified TM-ARM family genes in wheat through genome-wide scanning and domain analysis, identified a novel tillering-regulated gene TaETN2-D (Effective tiller number 2), and explored the molecular mechanisms by which TaETN1-D governs wheat tillering. This research expands our understanding of the wheat tillering regulatory network and provides new gene resources and theoretical foundations for molecular design breeding in wheat. The main findings are as follows: 1. Identification and analysis of TM-ARM gene family members. We conducted a systematic investigation of the poorly annotated TM-ARM gene family in common wheat. Through comparative genomics across 11 representative plant species, we identified 198 TM-ARM genes, revealing significant species-specific variations in family size. Notably, this gene family exhibited pronounced expansion in common wheat and its close relatives, suggesting specific amplification during the genome evolution of Poaceae crops. Phylogenetic analysis classified the TM-ARM gene family into three major evolutionary clades, with wheat members evenly distributed across clades, indicating potential functional diversification through subfunctionalization or neofunctionalization. Chromosomal localization revealed asymmetric distribution among the A, B, and D subgenomes of common wheat, with striking gene enrichment (22 genes, 46.8%) on homeologous group 2. Collinearity analysis further demonstrated that segmental duplication, closely associated with ancient polyploidization events, was the primary driver of family expansion. In terms of gene structural features, 17% of wheat TM-ARM genes exhibited a single-exon structure, possibly linked to rapid responses to environmental stimuli or stress resistance, while 45% retained 12 conserved motifs; motif deletions in certain members may have promoted functional divergence. Expression profiling showed that some members displayed constitutive expression patterns, implying roles in basic physiological functions; genes highly expressed in the shoot apical meristem were likely involved in tiller regulation; and members with 10 TM domains were significantly enriched in homeologous group 2, suggesting potential involvement in transmembrane signal transduction related to photosynthesis or reproductive development. 2. Preliminary functional characterization of TM-ARM gene family members We performed systematic functional screening of the wheat TM-ARM gene family using CRISPR-Cas9-mediated gene editing (VIGE, virus-induced gene editing). Sixteen sgRNA expression vectors were constructed to achieve high-throughput targeted editing of 39 family members. Analysis of editing types (insertions, deletions, point mutations), their distribution at target sites, and edited product sequences using UGENE software revealed significant differences in editing efficiency among family members in the wheat cultivar Fielder, with most exhibiting mosaic mutation characteristics. The obtained chimeric materials provide valuable genetic resources for studying family members and lay a foundation for further functional analysis. Through greenhouse generation acceleration, molecular marker screening, and Sanger sequencing, four homozygous mutant lines (M1-M4) of the tiller-related gene TaETN2-D were obtained. Phenotypic analysis showed that TaETN2-D, acting as a positive regulator of tiller number, exhibited a significant reduction in tillering upon loss-of-function without affecting other major agronomic traits, identifying it as a new target for wheat plant architecture improvement. Functional analysis of another tiller-related gene (TaETN1-D) revealed that a single-base mutation in the wild-type allele caused a conformational change in the second transmembrane domain of its encoded protein. Transgenic expression of the mutant gene Taetn1-dL58F significantly increased wheat tiller number, demonstrating a gain-of-function mutation. Membrane yeast two-hybrid and luciferase complementation imaging assays revealed interactions between TaETN1-D/Taetn1-dL58F proteins and calmodulin, TM_HPP domain proteins, and HR-like damage-induced proteins. Integrating transcriptome analysis, we proposed that TaETN1-D/Taetn1-dL58F promotes tillering through a dual mechanism: activating downstream calcium signaling pathways and enhancing carbon/sugar metabolism, providing a new perspective on the wheat tillering regulatory network. 3. Breeding application of the tiller-related gene Taetn1-dL58F Based on SNP differences between the gain-of-function mutation site of Taetn1-dL58F and the wild-type TaETN1-D, a highly specific KASP (Kompetitive Allele-Specific PCR) marker was developed. Marker efficacy was validated in diverse wheat populations, including Wangshuibai, etn1 (Taetn1-dL58F1), (Weimai 4×etn1) BC2F4, and (Changfanggongxingmai ×etn1) BC2F4 sister lines. Results showed stable amplification specificity and genotyping accuracy across genetic backgrounds, providing a powerful tool for molecular marker-assisted selection in tiller trait improvement. Phenotypic analysis of the Taetn1-dL58F gene introduced into wheat varieties with diverse genetic backgrounds revealed that materials carrying the Taetn1-dL58F genotype exhibited an increase in effective tillering, accompanied by a reduction in grains per spike and thousand-grain weight. There exists a trade-off phenomenon in yield traits. |
参考文献: |
[1] 范可馨,关义新,曾可欣,等.玉米的腋生分生组织及其发育模式调控[J].土壤与作物,2024,13(4):471-478. [2] 葛奇,席会鹏.植物spl转录因子研究进展[J].安徽农业科学,2023,51(23):25-29. [3] 韩佳婷,冯光燕,帅杨,等.植物miR156及靶基因SPL家族的研究进展[J].草业科学,2021,38(5):890-902. [4] 刘震,陈丽敏.马铃薯arm基因家族的全基因组鉴定及表达分析[J].作物学报,2024,50(6):1451-1466. [5] 茹振钢,冯素伟,李淦.黄淮麦区小麦品种的高产潜力与实现途径[J].中国农业科学,2015,48(17):3388-3393. [6] 田晶,赵雪媛,谢隆聖,等.Spl转录因子调控植物花发育及其分子机制研究进展[J].南京林业大学学报,2018,42(03):159-166. [7] 徐涛.小麦分蘖调控基因TaRBG1的精细定位和克隆[D].南京农业大学,2020. [8] 周羊梅,郭文善,封超年,等.不同生育时期小麦茎蘖光合产物的分配[J].麦类作物学报,2004,24(3):60-63. [9] Akiyama K, Matsuzaki K, Hayashi H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi[J]. Nature, 2005, 435(7043): 824-827. [10] Amador V, Monte E, García-Martínez J, et al. Gibberellins signal nuclear import of PHOR1, a photoperiod-responsive protein with homology to drosophila armadillo[J]. Cell, 2001, 106(3): 343-354. [11] An J, Niu H, Ni Y, et al. The miRNA–mRNA networks involving abnormal energy and hormone metabolisms restrict tillering in a wheat mutant dmc[J]. International Journal of Molecular Sciences, 2019, 20(18): 4586. [12] Aziz M, Caetano-Anollés G. Evolution of networks of protein domain organization[J]. Scientific Reports, 2021, 11(1): 12075. [13] Bainbridge K, Sorefan K, Ward S, et al. Hormonally controlled expression of the Arabidopsis MAX4 shoot branching regulatory gene[J]. The Plant Journal, 2005, 44(4): 569-580. [14] Ballaré C, Scopel A, Sánchez R. Far-red radiation reflected from adjacent leaves: An early signal of competition in plant canopies[J]. Science, 1990, 247(4940): 329-332. [15] Bangerth F. Response of cytokinin concentration in the xylem exudate of bean (phaseolus vulgaris L.) plants to decapitation and auxin treatment, and relationship to apical dominance[J]. Planta, 1994, 194(3): 439-442. [16] Bencivenga S, Simonini S, Benková E, et al. The transcription factors BEL1 and SPL are required for cytokinin and auxin signaling during ovule development in Arabidopsis[J]. The Plant Cell, 2012, 24(7): 2886-2897. [17] Bergler J, Hoth S. Plant U-box armadillo repeat proteins AtPUB18 and AtPUB19 are involved in salt inhibition of germination in Arabidopsis[J]. Plant Biology, 2011, 13(5): 725-730. [18] Beveridge C. Axillary bud outgrowth: Sending a message[J]. Current Opinion in Plant Biology, 2006, 9(1): 35-40. [19] Beveridge C, Weller J, Singer S, et al. Axillary meristem development. Budding relationships between networks controlling flowering, branching, and photoperiod responsiveness[J]. Plant Physiology, 2003, 131(3): 927-934. [20] Beveridge C, Symons G, Murfet I, et al. The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s)[J]. Plant Physiology, 1997, 115(3): 1251-1258. [21] Braun N, de Saint Germain A, Pillot J, et al. The pea TCP transcription factor PsBRC1 acts downstream of strigolactones to control shoot branching[J]. Plant Physiology, 2012, 158(1): 225-238. [22] Cai Y, Zhou X, Wang C, et al. Quantitative trait loci detection for three tiller-related traits and the effects on wheat (Triticum aestivum L.) yields[J]. Theoretical and Applied Genetics,2024, 137(4): 87. [23] Cao X, Wang J, Xiong Y, et al. A self-activation loop maintains meristematic cell fate for branching[J]. Current biology, 2020, 30(10): 1893-1904. [24] Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin metabolism in plants[J]. Cold Spring Harbor Perspectives in Biology, 2021, 13(3): a039867. [25] Chatfield S, Stirnberg P, Forde B, et al. The hormonal regulation of axillary bud growth in Arabidopsis[J]. The Plant Journal, 2000, 24(2): 159-169. [26] Chen L, Zhao Y, Xu S, et al. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice[J]. New Phytologist, 2018, 218(1): 219-231. [27] Clark J. Genome evolution in plants and the origins of innovation. New Phytologist, 2023, 240(6), 2204-2209. [28] Coates J. Armadillo repeat proteins: Beyond the animal kingdom[J]. Trends in Cell Biology, 2003, 13(9): 463-471. [29] Coates J, Laplaze L, Haseloff J. Armadillo-related proteins promote lateral root development in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5): 1621-1626. [30] Cook C, Whichard L, Turner B, et al. Germination of witchweed (striga lutea lour.): Isolation and properties of a potent stimulant[J]. Science, 1966, 154(3753): 1189-1190. [31] Crawford S, Shinohara N, Sieberer T, et al. Strigolactones enhance competition between shoot branches by dampening auxin transport[J]. Development, 2010, 137(17): 2905-2913. [32] Cubas P, Lauter N, Doebley J, et al. The TCP domain: a motif found in proteins regulating plant growth and development[J]. The Plant Journal, 1999, 18(2): 215-222. [33] Dabbert T, Okagaki R, Cho S, et al. The genetics of barley low-tillering mutants: Low number of tillers-1 (lnt1)[J]. Theoretical and Applied Genetics, 2010, 121(4): 705-715. [34] Deng J, Yang X, Sun W, et al. The calcium sensor CBL2 and its interacting kinase CIPK6 are involved in plant sugar homeostasis via interacting with tonoplast sugar transporter TST21[J]. Plant Physiology, 2020, 183(1): 236-249. [35] Dharmasiri N, Dharmasiri S, Estelle M. The F-box protein TIR1 is an auxin receptor[J]. Nature, 2005, 435(7041): 441-445. [36] Dixon L, Greenwood J, Bencivenga S, et al. TEOSINTE BRANCHED1 regulates inflorescence architecture and development in bread wheat (Triticum aestivum)[J]. The Plant Cell, 2018, 30(3): 563-581. [37] Doebley J, Stec A, Hubbard L. The evolution of apical dominance in maize[J]. Nature, 1997, 386(6624): 485-488. [38] Domagalska M, Leyser O. Signal integration in the control of shoot branching[J]. Nature Reviews, 2011, 12(4): 211-221. [39] Dun E, Ferguson B, Beveridge C. Apical dominance and shoot branching. Divergent opinions or divergent mechanisms[J]. Plant Physiology, 2006, 142(3): 812-819. [40] Dong C, Zhang L, Zhang Q, et al. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat[J]. Nature Communications, 2023, 14(1): 836. [41] Duggan B, Richards R, Herwaarden A, et al. Agronomic evaluation of a tiller inhibition gene (tin) in wheat. I. Effect on yield, yield components, and grain protein[J]. Australian Journal of Agricultural Research, 2005, 56(2): 169-178. [42] El-Showk S, Ruonala R, Helariutta Y. Crossing paths: Cytokinin signalling and crosstalk[J]. Development, 2013, 140(7): 1373-1383. [43] Evers J, Vos J, Andrieu B, et al. Cessation of tillering in spring wheat in relation to light interception and red : Far-red ratio[J]. Annals of Botany, 2006, 97(4): 649-658. [44] Ferguson B, Beveridge C. Roles for auxin, cytokinin, and strigolactone in regulating shoot branching[J]. Plant Physiology, 2009, 149(4): 1929-1944. [45] Gadaleta A. Wheat breeding through genetic and physical mapping[J]. International journal of molecular sciences, 2020, 21(22): 8739. [46] Girault T, Bergougnoux V, Combes D, et al. Light controls shoot meristem organogenic activity and leaf primordia growth during bud burst in Rosa sp[J]. The Plant Cell, 2008, 31(11): 1534-1544. [47] González-Grandío E, Pajoro A, Franco-Zorrilla J, et al. Abscisic acid signaling is controlled by a BRANCHED1/HD-ZIP I cascade in Arabidopsis axillary buds[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(2): 245-254. [48] Greb T, Clarenz O, Schafer E, et al. Molecular analysis of the LATERAL SUPPRESSOR gene in Arabidopsis reveals a conserved control mechanism for axillary meristem formation[J]. Genes & Development, 2003, 17(9): 1175-1187. [49] Guo D, Zhang J, Wang X, et al. The WRKY Transcription Factor WRKY71/EXB1 Controls Shoot Branching by Transcriptionally Regulating RAX Genes in Arabidopsis[J]. The Plant Cell, 2015, 27(11): 3112-3127. [50] Hayward A, Stirnberg P, Beveridge C, et al. Interactions between auxin and strigolactone in shoot branching control[J]. Plant Physiology, 2009, 151(1): 400-412. [51] Hibara K, Karim M, Takada S, et al. Arabidopsis CUP-SHAPED COTYLEDON3 regulates postembryonic shoot meristem and organ boundary formation[J]. The Plant Cell, 2006, 18(11): 2946-2957. [52] Hubbard L, McSteen P, Doebley J, et al. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte[J]. Genetics, 2002, 162(4): 1927-1935. [53] Huber A, Nelson W, Weis W. Three-dimensional structure of the armadillo repeat region of β-catenin[J]. Cell, 1997, 90(5): 871-882. [54] Jiang L, Liu X, Xiong G, et al. DWARF 53 acts as a repressor of strigolactone signalling in rice[J]. Nature, 2013, 504(7480): 401-405. [55] Jiao Y, Wang Y, Xue D, et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice[J]. Nature Genetics, 2010, 42(6): 541-544. [56] Kebrom T, Brutnell T, Finlayson S. Suppression of sorghum axillary bud outgrowth by shade, phyB and defoliation signalling pathways[J]. Plant, Cell & Environment, 2010, 33(1): 48-58. [57] Kebrom T, Chandler P, Swain S, et al. Inhibition of tiller bud outgrowth in the tin mutant of wheat is associated with precocious internode development[J]. Plant Physiology, 2012, 160(1): 308-318. [58] Kebrom T, Spielmeyer W, Finnegan E. Grasses provide new insights into regulation of shoot branching[J]. Trends in Plant Science, 2013, 18(1): 41-48. [59] Kieber J, Schaller G. Cytokinin signaling in plant development[J]. Development, 2018, 145(4): 149344. [60] Kim K N, Cheong Y H, Gupta R, et al. Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases[J]. Plant Physiology, 2000, 124(4): 1844-1853. [61] Kim S, Choi H in, Ryu H J, et al. ARIA, an Arabidopsis arm repeat protein interacting with a transcriptional regulator of abscisic acid-responsive gene expression, is a novel abscisic acid signaling component[J]. Plant Physiology, 2004, 136(3): 3639-3648. [62] Kong X, Zhou S, Yin S, et al. Stress-inducible expression of an F-box gene TaFBA1 from wheat enhanced the drought tolerance in transgenic tobacco plants without impacting growth and development[J]. Frontiers in Plant Science, 2016, 7: 1295. [63] Langosch D, Hofmann M, Ungermann C. The role of transmembrane domains in membrane fusion[J]. Cellular and molecular life sciences, 2007, 64(7-8): 850-864. [64] Langridge P. Wheat genomics and the ambitious targets for future wheat production[J]. Genome, 2013, 56(10): 545-547. [65] Lawton-Rauh A. Evolutionary dynamics of duplicated genes in plants[J]. Molecular Phylogenetics and Evolution, 2003, 29(3): 396-409. [66] Liu G, Jia L, Lu L, et al. Mapping QTLs of yield-related traits using RIL population derived from common wheat and tiβn semi-wild wheat[J]. Theoretical and Applied Genetics, 2014, 127(11): 2415-2432. [67] Liu L, Hu B, Guo S, et al. miR394 and LCR cooperate with TPL to regulate AM initiation[J]. Nature Communications, 2024, 15(1): 10156. [68] Li Q, Li B, Wang J, et al. TaPUB15, a U-box E3 ubiquitin ligase gene from wheat, enhances salt tolerance in rice[J]. Food and Energy Security, 2021, 10(1): e250. [69] Li Q, Wang W, Wang W, et al. Wheat F-box protein gene TaFBA1 is involved in plant tolerance to heat stress[J]. Frontiers in Plant Science, 2018, 9: 521. [70] Li T, Hu J, Sun Y, et al. Highly efficient heritable genome editing in wheat using an RNA virus and bypassing tissue culture[J]. Molecular Plant, 2021, 14(11): 1787-1798. [71] Luan S, Lan W, Chul Lee S. Potassium nutrition, sodium toxicity, and calcium signaling: Connections through the CBL–CIPK network[J]. Current Opinion in Plant Biology, 2009, 12(3): 339-346. [72] Li S, Lei L, Somerville C, et al. Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 185-190. [73] Li W, Ahn I P, Ning Y, et al. The U-box/ARM E3 ligase PUB13 regulates cell death, defense, and flowering time in Arabidopsis[J]. Plant Physiology, 2012, 159(1): 239-250. [74] Lin H, Wang R, Qian Q, et al. DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth[J]. The Plant Cell, 2009, 21(5): 1512-1525. [75] Lincoln C, Britton J, Estelle M. Growth and development of the axr1 mutants of Arabidopsis[J]. The Plant Cell, 1990, 2(11): 1071-1080. [76] Liu J, Cheng X, Liu P, et al. miR156-targeted SBP-box transcription factors interact with DWARF53 to regulate TEOSINTE BRANCHED1 and BARREN STALK1 expression in bread wheat[J]. Plant Physiology, 2017, 174(3): 1931-1948. [77] Liu J, Tang H, Qu X, et al. A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat[J]. Plant Molecular Biology, 2020, 104(1-2): 173-185. [78] Liu R, Hou J, Li H, et al. Association of TaD14-4D, a gene involved in strigolactone signaling, with yield contributing traits in wheat[J]. International Journal of Molecular Sciences, 2021, 22(7): 3748. [79] Lo S, Yang S, Chen K, et al. A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice[J]. The Plant Cell, 2008, 20(10): 2603-2618. [80] Lu G, Coneva V, Casaretto J, et al. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution[J]. The Plant Journal, 2015, 83(5): 913-925. [81] Mandal A, Mishra A, Dulani P, et al. Identification, characterization, expression profiling, and virus-induced gene silencing of armadillo repeat-containing proteins in tomato suggest their involvement in tomato leaf curl new delhi virus resistance[J]. Functional & Integrative Genomics, 2018, 18(2): 101-111. [82] Martín-Trillo M, Grandío E, Serra F, et al. Role of tomato BRANCHED1-like genes in the control of shoot branching[J]. The Plant Journal, 2011, 67(4): 701-714. [83] Mason M, Ross J, Babst B, et al. Sugar demand, not auxin, is the initial regulator of apical dominance[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(16): 6092-6097. [84] Matthes M, Best N, Robil J, et al. Auxin EvoDevo: Conservation and diversification of genes regulating auxin biosynthesis, transport, and signaling[J]. Molecular Plant, 2019, 12(3): 298-320. [85] McSteen P, Leyser O. Shoot branching[J]. Annual review of plant biology, 2005, 56: 353-374. [86] Medford J I, Horgan R, El-Sawi Z, et al. Alterations of endogenous cytokinins in transgenic plants using a chimeric isopentenyl transferase gene[J]. The Plant Cell, 1989, 1(4): 403-413. [87] Minakuchi K, Kameoka H, Yasuno N, et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice[J]. Plant and Cell Physiology, 2010, 51(7): 1127-1135. [88] Mudgil Y, Shiu S, Stone S, et al. A large complement of the predicted Arabidopsis ARM repeat proteins are members of the U-box E3 ubiquitin ligase family[J]. Plant Physiology, 2004, 134(1): 59-66. [89] Napoli C A, Ruehle J. New mutations affecting meristem growth and potential in petunia hybridaVilm[J]. Journal of Heredity, 1996, 87(5): 371-377. [90] Nordström A, Tarkowski P, Tarkowska D, et al. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(21): 8039-8044. [91] Panda D, Mishra S, Behera P. Drought tolerance in rice: Focus on recent mechanisms and approaches[J]. Rice Science, 2021, 28(2): 119-132. [92] Pont C, Leroy T, Seidel M, et al. Tracing the ancestry of modern bread wheats[J]. Nature Genetics, 2019, 51(5): 905-911. [93] Prasad T, Li X, Abdel-Rahman A, et al. Does auxin play a role in the release of apical dominance by shoot inversion in ipomoea nil[J]. Annals of Botany, 1993, 71(3): 223-229. [94] Prasanth V, Babu M, Basava R, et al. Trait and marker associations in Oryza nivara and O. rufipogon derived rice lines under two different heat stress conditions[J]. Frontiers in Plant Science, 2017, 8: 1819. [95] Prusinkiewicz P, Crawford S, Smith R, et al. Control of bud activation by an auxin transport switch[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(41): 17431-17436. [96] Rameau C, Bertheloot J, Leduc N, et al. Multiple pathways regulate shoot branching[J]. Frontiers in Plant Science, 2015, 5: 741. [97] Reddy S, Holalu S, Casal J, et al. Abscisic acid regulates axillary bud outgrowth responses to the ratio of red to far-red light[J]. Plant Physiology, 2013, 163(2): 1047-1058. [98] Ren T, Hu Y, Tang Y, et al. Utilization of a Wheat55K SNP array for mapping of major QTL for temporal expression of the tiller number[J]. Frontiers in Plant Science, 2018, 9: 333. [99] Sakharkar M, Chow V, Chaturvedi I, et al. A report on single exon genes (SEG) in eukaryotes[J]. Frontiers in Bioscience, 2004, 9: 3262-3267. [100]Sang Q, Fan L, Liu T, et al. MicroRNA156 conditions auxin sensitivity to enable growth plasticity in response to environmental changes in Arabidopsis[J]. Nature Communications, 2023, 14(1): 1449. [101]Seale M, Bennett T, Leyser O. BRC1 expression regulates bud activation potential but is not necessary or sufficient for bud growth inhibition in Arabidopsis[J]. Development, 2017, 144(9): 1661-1673. [102]Seo D, Ahn M, Park K, et al. The N-terminal UND motif of the Arabidopsis U-box E3 ligase PUB18 is critical for the negative regulation of ABA-mediated stomatal movement and determines its ubiquitination specificity for exocyst subunit Exo70B1[J]. The Plant Cell, 2016, 28(12): 2952-2973. [103]Shang Q, Wang Y, Tang H, et al. Genetic, hormonal, and environmental control of tillering in wheat[J]. The Crop Journal, 2021, 9(5): 986-991. [104]Sharma M, Pandey G. OsPUB75, an armadillo/U-box protein interacts with GSK3 kinase and functions as negative regulator of abiotic stress responses[J]. Environmental and Experimental Botany, 2019, 161: 388-398. [105]Shao G, Lu Z, Xiong J, et al. Tiller bud formation regulators MOC1 and MOC3 cooperatively promote tiller bud outgrowth by activating FON1 expression in rice[J]. Molecular Plant, 2019, 12(8): 1090-1102. [106]Sharma M, Singh A, Shankar A, et al. Comprehensive expression analysis of rice armadillo gene family during abiotic stress and development[J]. DNA Research, 2014, 21(3): 267-283. [107]Shi B, Zhang C, Tian C, et al. Two-step regulation of a meristematic cell population acting in shoot branching in Arabidopsis[J]. PLoS Genetics, 2016, 12(7): 1006168. [108]Shimizu-Sato S, Tanaka M, Mori H. Auxin-cytokinin interactions in the control of shoot branching[J]. Plant Molecular Biology, 2009, 69(4): 429-435. [109]Silverstone A, Mak P, Martinez E, et al. The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana[J]. Genetics, 1997, 146(3): 1087-1099. [110]Si Y, Lu Q, Tian S, et al. Fine mapping of the tiller inhibition gene TIN5 in Triticum urartu[J]. TAG. Theoretical and Applied Genetics, 2022, 135(8): 2665-2673. [111]Smith H, Whitelam G. The shade avoidance syndrome: Multiple responses mediated by multiple phytochromes[J]. The Plant Cell, 1997, 20(6): 840-844. [112]Son S, Park S. Challenges facing CRISPR/Cas9-based genome editing in plants[J]. Frontiers in Plant Science, 2022, 13: 902413. [113]Sorefan K, Booker J, Haurogné K, et al. MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea[J]. Genes & Development, 2003, 17(12): 1469-1474. [114]Soundappan I, Bennett T, Morffy N, et al. SMAX1-LIKE/D53 family members enable distinct MAX2-dependent responses to strigolactones and karrikins in Arabidopsis[J]. The Plant Cell, 2015, 27(11): 3143-3159. [115]Spielmeyer W, Richards R. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S[J]. Theoretical and Applied Genetics, 2004, 109(6): 1303-1310. [116]Springer N. Shaping a better rice plant[J]. Nature Genetics, 2010, 42(6): 475-476. [117]Stief A, Altmann S, Hoffmann K, et al. Arabidopsis miR156 regulates tolerance to recurring environmental stress through SPL transcription factors[J]. The Plant Cell, 2014, 26(4): 1792-1807. [118]Stone S, Anderson E, Mullen R, et al. ARC1 is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatible brassica pollen[J]. The Plant Cell, 2003, 15(4): 885-898. [119]Stirnberg P, van de Sande K, Leyser H M O. MAX1 and MAX2 control shoot lateral branching in Arabidopsis[J]. Development, 2002, 129(5): 1131-1141. [120]Sunkar R, Zhu J. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis[J]. The Plant Cell, 2004, 16(8): 2001-2019. [121]Takeda T, Suwa Y, Suzuki M, et al. The OsTB1 gene negatively regulates lateral branching in rice[J]. The Plant Journal, 2003, 33(3): 513-520. [122]Tanaka M, Takei K, Kojima M, et al. Auxin controls local cytokinin biosynthesis in the nodal stem in apical dominance[J]. The Plant Journal, 2006, 45(6): 1028-1036. [123]Tantikanjana T, Yong J, Letham D, et al. Control of axillary bud initiation and shoot architecture in Arabidopsis through the SUPERSHOOT gene[J]. Genes & Development, 2001, 15(12): 1577-1588. [124]To J, Haberer G, Ferreira F, et al. Type-a Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling[J]. The Plant Cell, 2004, 16(3): 658-671. [125]Vysotskaya L, Korobova A, Veselov S, et al. ABA mediation of shoot cytokinin oxidase activity: Assessing its impacts on cytokinin status and biomass allocation of nutrient-deprived durum wheat[J]. Functional plant biology, 2009, 36(1): 66-72. [126]Wai A H, An G. Axillary meristem initiation and bud growth in rice[J]. Journal of Plant Biology, 2017, 60(5): 440-451. [127]Wang B, Smith S, Li J. Genetic regulation of shoot architecture[J]. Annual Review of Plant Biology, 2018, 69: 437-468. [128]Wang L, Wang B, Jiang L, et al. Strigolactone signaling in Arabidopsis regulates shoot development by targeting D53-like SMXL repressor proteins for ubiquitination and degradation[J]. The Plant Cell, 2015, 27(11): 3128-3142. [129]Wang M, Le Moigne M, Bertheloot J, et al. BRANCHED1: A key hub of shoot branching[J]. Frontiers in Plant Science, 2019, 10. [130]Wang W, Yu Z, He F, et al. Multiplexed promoter and gene editing in wheat using a virus-based guide RNA delivery system[J]. Plant Biotechnology Journal, 2022, 20(12): 2332-2341. [131]Wang W, Wang W, Wu Y, et al. The involvement of wheat U-box E3 ubiquitin ligase TaPUB1 in salt stress tolerance[J]. Journal of Integrative Plant Biology, 2020, 62(5): 631-651. [132]Wang Y. Stem cell basis for fractal patterns: Axillary meristem initiation[J]. Frontiers in Plant Science, 2021, 12: 805434. [133]Wang Y, Li J. Molecular basis of plant architecture[J]. Annual Review of Plant Biology, 2008, 59: 253-279. [134]Wang Y, Li J. Branching in rice[J]. Current Opinion in Plant Biology, 2011, 14(1): 94-99. [135]Wang Y, Sun F, Cao H, et al. TamiR159 directed wheat TaGAMYB cleavage and its involvement in anther development and heat response[J]. PloS One, 2012, 7(11): 48445. [136]Wang Y, Wang J, Shi B, et al. The stem cell niche in leaf axils is established by auxin and cytokinin in Arabidopsis[J]. The Plant Cell, 2014, 26(5): 2055-2067. [137]Wang Y, Wang Z, Chen Y, et al. Genomic insights into the origin and evolution of spelt (Triticum spelta L.) as a valuable gene pool for modern wheat breeding[J]. Plant Communications, 2024, 5(5): 100883. [138]Wang Z, Liu Y, Shi H, et al. Identification and validation of novel low-tiller number QTL in common wheat[J]. Theoretical and Applied Genetics, 2016, 129(3): 603-612. [139]Wang Z, Wu F, Chen X, et al. Fine mapping of the tiller inhibition gene TIN4 contributing to ideal plant architecture in common wheat[J]. Theoretical and Applied Genetics., 2022, 135(2): 527-535. [140]Wu G, Poethig R. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3[J]. Development, 2006, 133(18): 3539-3547. [141]Wenzl C, Lohmann J. 3D imaging reveals apical stem cell responses to ambient temperature[J]. Cells & Development, 2023, 175: 203850. [142]Wu Y, Wang W, Li Q, et al. The wheat E3 ligase TaPUB26 is a negative regulator in response to salt stress in transgenic brachypodium distachyon[J]. Plant Science, 2020, 294: 110441. [143]Xia K, Wang R, Ou X, et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice[J]. PloS One, 2012, 7(1): 30039. [144]Xing Y, Zhang Q. Genetic and molecular bases of rice yield[J]. Annual Review of Plant Biology, 2010, 61: 421-442. [145]Xu M, Hu T, Zhao J, et al. Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana[J]. PLoS Genetics, 2016, 12(8): e1006263. [146]Xu M, Zhu L, Shou H, et al. A PIN1 family gene, OsPIN1, involved in auxin-dependent adventitious root emergence and tillering in rice[J]. Plant & Cell Physiology, 2005, 46(10): 1674-1681. [147]Xu T, Bian N, Wen M, et al. Characterization of a common wheat (Triticum aestivum L.) high-tillering dwarf mutant[J]. Theoretical and Applied Genetics, 2017, 130(3): 483-494. [148]Yang G, Matsuoka M, Iwasaki Y, Komatsu S. A novel brassinolide-enhanced gene identified by cDNA microarray is involved in the growth of rice[J]. Plant molecular biology, 2003, 52(4): 843-854. [149]Yan Y, Ding C, Zhang G, et al. Genetic and environmental control of rice tillering[J]. The Crop Journal, 2023, 11(5): 1287-1302. [150]Yang J, Zhang Y, Hu W, et al. Characterization of a QTL on 7B for tiller number at the seedling stage in wheat landrace yanda 1817[J]. Euphytica, 2023, 219(4): 40. [151]Yang T, Jiao Y, Wang Y. Stem cell basis of shoot branching[J]. Plant & Cell Physiology, 2023, 64(3): 291-296. [152]Yao C, Finlayson S. Abscisic acid is a general negative regulator of Arabidopsis axillary bud growth[J]. Plant Physiology, 2015, 169(1): 611-626. [153]Yuan Y, Du Y, Delaplace P. Unraveling the molecular mechanisms governing axillary meristem initiation in plants[J]. Planta, 2024, 259(5): 101. [154]Yuan Y, Khourchi S, Li S, et al. Unlocking the multifaceted mechanisms of bud outgrowth: Advances in Understanding Shoot Branching[J]. Plants, 2023, 12(20): 3628. [155]Zeng L R, Qu S, Bordeos A, et al. Spotted leaf11, a negative regulator of plant cell death and defense, encodes a U-box/armadillo repeat protein endowed with E3 ubiquitin ligase activity[J]. The Plant Cell, 2004, 16(10): 2795-2808. [156]Zhang B, Liu X, Xu W, et al. Novel function of a putative MOC1 ortholog associated with spikelet number per spike in common wheat[J]. Scientific Reports, 2015, 5: 12211. [157]Zhang C, Liu S, Li X, et al. Virus-induced gene editing and its applications in plants[J]. International Journal of Molecular Sciences, 2022, 23(18): 10202. [158]Zhang J, Wang C, Yang C, et al. The role of Arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance[J]. The Plant Journal, 2010, 62(4): 539-548. [159]Zhang J, Zhang Y, Chen J, et al. Sugar transporter modulates nitrogen-determined tillering and yield formation in rice[J]. Nature Communications, 2024, 15(1): 9233. [160]Zhang J, Wu J, Liu W, et al. Genetic mapping of a fertile tiller inhibition gene, ftin, in wheat[J]. Molecular Breeding, 2013, 31(2): 441-449. [161]Zhang M, Zhao J, Li L, et al. The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation[J]. Plant, Cell & Environment, 2017, 40(11): 2831-2843. [162]Zhao B, Wu T, Ma S, et al. TaD27-B gene controls the tiller number in hexaploid wheat[J]. Plant Biotechnology Journal, 2020, 18(2): 513-525. [163]Zhao Y, Christensen S K, Fankhauser C, et al. A role for flavin monooxygenase-like enzymes in auxin biosynthesis[J]. Science, 2001, 291(5502): 306-309. |
中图分类号: | S33 |
开放日期: | 2027-06-19 |