中文题名: | 1-(2-氯-4-吡啶)-3-苯基脲作为抑菌剂的初步评估 |
姓名: | |
学号: | 2018816144 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085238 |
学科名称: | 工学 - 工程 - 生物工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 环境微生物学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2020-09-09 |
答辩日期: | 2020-08-10 |
外文题名: | Preliminary evaluation of 1-(2- chloro-4 - pyridine)-3-phenylurea as a bacteriostat |
中文关键词: | |
外文关键词: | forchlorfenuron ; bactericidal activity ; target ; super bacteria ; minimum inhibitory concentration |
中文摘要: |
1-(2-氯-4-吡啶)-3-苯基脲又称氯吡脲或膨大剂,是一种重要的植物生长调节剂,属于吡啶取代脲类细胞分裂素,有促进植物生长,增大果实的作用。本实验室前期在筛选氯吡脲的农药降解菌过程中,发现该化合物具有较广谱的抑菌效果。由于氯吡脲生物毒性较低,如果其具有很强的抑菌活性,则该化合物在治疗微生物感染方面有潜在应用价值。因此,本研究旨在评估氯吡脲作为抑菌剂的潜力,所获结果总结如下。 1.氯吡脲对土壤细菌、真菌以及模式细菌的抑制作用 首先,将两种土壤的悬液稀释涂布于含有不同浓度氯吡脲的平板,结果显示,50 μg/mL、75 μg/mL和100 μg/mL氯吡脲对细菌抑菌率能够达到90%以上。50 μg/mL、75 μg/mL和100 μg/mL氯吡脲对放线菌抑菌率基本达到100%,氯吡脲对真菌无显著抑制效果。氯吡脲对模式菌株Bacillus subtilis 168和Escherichia coli DH5α的最低抑菌浓度(MIC)分别为64 μg/mL和128 μg/mL。其次,以B. subtilis 168为材料初步探究了氯吡脲的抑菌机理。结果显示,氯吡脲并没有杀死细菌而是抑制细菌的生长;此外,氯吡脲的作用靶点不是脂肪酸合成酶编码基因fabI和fabL。说明氯吡脲的抑菌机制与其结构类似物三氯生(一种广谱抗菌剂)不同。 2.氯吡脲对常见“超级细菌”有普遍的抑制作用 为了进一步评估氯吡脲作为抑菌剂的潜力,首先收集了5株常见的“超级细菌”,包括耐碳青霉烯类Klebsiella pneumonia、耐碳青霉烯类E. coli、耐万古霉素Enterococcus、耐甲氧西林Staphylococcus argenteus、耐甲氧西林S. simulans,并通过分离纯化、形态特征、系统进化树分析和耐药基因扩增对这些菌株进行了验证。然后,测定了氯吡脲对这些菌株的MIC,结果显示,氯吡脲对耐碳青霉烯类K. pneumonia和耐碳青霉烯类E. coli的MIC为256 μg/mL,对耐万古霉素Enterococcus、耐甲氧西林S. argenteus和耐甲氧西林S. simulans的MIC为64 μg/mL。 综上所述,本研究发现氯吡脲对土壤细菌和常见“超级细菌”具有广谱的抑菌效果,比较氯吡脲对B. subtilis 168、E. coli DH5α和多株常见“超级细菌”的MIC,结果表明该化合物对革兰氏阳性菌的抑制效果强于革兰氏阴性菌。脂肪酸合成酶并非氯吡脲抑菌作用靶点,其抑菌机理仍需进一步探索。氯吡脲对常见“超级细菌”有显著的抑制效果,但对比常用抗生素,氯吡脲对5株“超级细菌”的MIC较高;鉴于氯吡脲本身毒性低、稳定性好,其应用于医学治疗的潜力还需进一步通过动物试验进行评估。 |
外文摘要: |
1-(2-chloro-4-pyridine)-3-phenylurea, also known as forchlorfenuron or bulking agent, is an important plant growth regulator. It belongs to pyridine instead of urea cytokinin, which promotes plant growth and increases the role of fruit. In the early stage of this laboratory, in the process of screening microorganisms that could degrade forchlorfenuron, it was unintentionally found that the compound had a broad-spectrum bacteriostatic effect. Due to its low biological toxicity, if it has strong antibacterial activity, the compound has potential application value in the treatment of microbial infections. Therefore, this study aimed to assess the potential of clopicarbamide as a bacteriostat. The results obtained are summarized below.
Firstly, suspension dilution of the two soils was applied to plates containing different concentrations of forchlorfenuron. The results showed that the bacteriostatic rate of 50 μg/mL, 75 μg/mL and 100 μg/mL of forchlorfenuron could reach more than 90%. The inhibitory rate of 50 μg/mL, 75 μg/mL and 100 μg/mL on actinomycetes was basically 100%, while the inhibitory rate of clopramide on fungi was not significant. The minimum inhibitory concentration (MIC) of chlorfenuron against model strains Bacillus subtilis 168 and Escherichia coli DH5 was 64 μg/mL and 128 μg/mL, respectively. Secondly, using B. subtilis 168 as the material, the antibacterial mechanism of chlorfenuron was preliminarily explored. The results showed that chlorfenuron did not kill bacteria but inhibited their growth. In addition, fabI and fabL, coding genes of fatty acid synthase, do not target forchlorfenuron. It is suggested that the antibacterial mechanism of forchlorfenuron is different from its structural analogue triclosan (a broad-spectrum antibacterial agent).. 2. Forchlorfenuron has a general inhibitory effect on "super bacteria". To further assess its potential as an antimicrobial agent, we worked with the Jiangsu Provincial Center for Disease Control and Prevention to identify the inhibitory effect of clopramide on common "superbugs". We first collected 5 strains of common "superbacteria", including Carbapenem-resistant Klebsiella pneumonia, Carbapenem- resistant E.coli, Vancomycin-resistant Enterococcus, Methicillin-resistant Staphylococcus argenteus and Methicillin-resistant S.simulans, and validated these strains through morphological characteristics, phylogenetic tree analysis and drug resistance gene expansion. The MIC for forchlorfenuron against these strains was determined and showed that the MIC for Carbapenem-resistant K. pneumonia, Carbapenem-resistant E. coli were 256 μg/mL, and that for Vancomycin-resistant Enterococcus, Methicillin-resistant S. argenteus and Methicillin-resistant S. simulans were 64 μg/mL. To sum up, this study found that forchlorfenuron had a broad-spectrum inhibitory effect on soil bacteria and common "superbacteria". By comparing MIC of B. subtilis 168, E. coli DH5 and common "superbacteria", the inhibitory effect of this compound on gram-positive bacteria was stronger than that on gram-negative bacteria. Fatty acid synthase is not the target of bacteriostatic action of chlorfenuron. Chlorfenuron had a significant inhibitory effect on common "superbacteria", but compared with common antibiotics, the MIC of forchlorfenuron on 5 "superbacteria" was higher. In view of its low toxicity and good stability, the potential of forchlorfenuron in medical treatment needs to be further evaluated by animal experiments. |
参考文献: |
[1] Pesticide Fact Sheet Name of CheMICal:Forchlorfenuron Reason for Issuance: New CheMICal Date Issued: September 2004. [2] A Pesticides, VM Authority. Evaluation of the new active forchlorfenuron in the product sitofex 10 Ec plant growth regulator, 2005 [3] 高金山, 边庆华, 张永忠, 等. 细胞分裂素CPPU的研究进展[J], 农药, 42(2006)151-154. [4] K. Shudo, T. Okamoto, Y. Isogai. N-(2-chloro-4-pyridyl) ureas [P]. US 4193788, 1980-03-18. [5] G. Gong, H. Kam, Y. Tse, et al.Cardiotoxicity of forchlorfenuron (CPPU) in zebrafish (Danio rerio) and H9c2 cardiomyocytes [J], Chemosphere, 235(2019) 153-16. [6] Q. Hu, W. Nelson, E. T Spiliotis, et al. Forchlorfenuron Alters Mammalian Septin Assembly, Organization, and Dynamics [J]. Biological Chemistry, 283 (2008) 29563-29571. [7] GB 2763-2014 National food safety standard maximum residue limits for pesticides in food. [8] US govermment printing office federal digital system flectronic code of federal regulations [DB/OL]. [2015-11-2]. [9] The Japan food cheMICal research foundation Maximum residue limits(MRLs)list of agricultural cheMICals in foods [DB/DL]. [2015-10-30]. [10] EU pesticides datebase [DB/DL]. [2015-10-28]. [11] C.A.I. Goring. Principle of pesticide degradation in soil in environmental dynaMICa of pesicides , New York: Plenum press, 5 (1975) 135-172. [12] D. Sharma, M.D. Awasthi. Behaviour of forchlorfenuron on residue in grape, soil and water [J], Chemosphere, 50 (2003) 589-594. [13] 李瑞娟, 于建垒, 宋国春, 等. 氯吡脲的环境行为及其安全性的研究进展[J], 农药, 47 (2008) 240-243. [14] 林利美, 黄大伟, 郭娇娇, 等. 氯吡脲对小鼠的毒性实验研究[J], 食品工业科技, 14 (2012) 360-362. [15] US environmental protection agency, Office of prevention, Pesticides and toxic substances. Pesticide fact sheet [EB/OL]. U.S. EPA, 2004. [16] L. Zhao, Q. Ma, L. Ma, et al. Determination of forchlorfenuron residue in vegetables and fruits [J], Journal of analytical science, 29 (2013) 583-586. [17] C.P. Yang, Z.J. Li, H. Ning, et al. Pretreatment method of for chlorfenuron residues in loquat by HPL analysis [J], J Zhejiang Univ, 42 (2016) 350-357. [18] Y.R. Hou, Y. Yang, L. Shi, et al. Study of determination of forchlofenuron in grape by solid-phase extraction and high-performance liquid chromatography [J], Food Sci Technol, 36 (2011) 255-258. [19] Evaluation of the new active forchlorfenuron in the prroduct sitofex 10 ec plant growth regulator, 2015. [20] Dennis M. Pesticide fact sheet name cheMICal:Forchlorfenuron reason for issuance [EB/OL]. 2004. [21] R.J. Zhang, B. Cui, S.B. Huang, et al. Algae consumption and nitrate removal in a raw water transport system by limnoperna fortunei and its associated MICroorganisms [J]. Water Environment, 86 (2014) 2301-2308. [22] E. Di Fiori, H. Pizarro, M. Afonso, et al. Impact of the invasive mussel Limnoperna fortunei on glyphosate concentration in water [J]. Ecotoxicol Environment, 81 (2012) 106-113. [23] R.J. Zhang, B. Cui, S.B. Huang, et al. Degradation of forchlorfenuron by nitrification and denitrification reactions in the gut and shell biofilm of limnoperna fortunei, 24 (2015) 381-472. [24] R.D. Jones, H.B. Jampani, J.L. Newman, et al.Triclosan: a review of effectiveness and safety in health care settings [J]. American Journal Of Infenction Control, 28 (2000) 184-196. [25] S. Sharma, T.N. Ramya, et al. A triclosan as a systemoc antibacterial agent in a mouse model of acute bacterial challenge [J]. AntiMICrob Agents Chemother, 47 (2003) 3859-3866. [26] 刘丹华, 张晓伟, 等. 抗生素滥用与超级细菌[J]. 国外医药, 1 (2019) 1-4. [27] 李桂梅, 黄宏章, 等. 医院耐甲氧西林金黄色葡萄球菌的临床分布特征及耐药性分析[J].中外医疗, 22 (2018) 190-192. [28] Y.H. Min, et al. In vitro synergistic effect of retapamulin with erythromycin and quinupristin against Enterococcus faecalis [J]. The Journal of Antibiotics, 32 (2018) 176-186. [29] P. Gaibani, M.C. Re, C. Campoli, et al. Bloodstream infection caused by KPC-producing Klebsiella pneumoniae resistant to ceftazidime/avibactam: epidemiology and genomic characterization [J]. 26 (2020) 1-4. [30] H. Valadbeigi, M. HatamiLak, A. Maleki, et al. Molecular characteristics, antimicrobial resistance profiles, and antibiotic resistance determinants in uropathogenic fluoroquinolone resistant-Escherichia coli isolates [J]. Gene Reports, 18 (2020) 1-6. [31] 张京海, 陈世敏, 崔海荣, 等. 耐甲氧西林金黄色葡萄球菌的研究近况[J]. 实用医药杂志, 21(2004)952-953.M. [32] H. Suginaka, P.M. Blumberg, J.L. Strominger, et al. Multiple penicillin-binding components in Bacillus subtilis cereus, Staphylococcus aureus, and Escherichia coli, 32 (2012) 820-822. [33] 熊亚莉, 青霉素结合蛋白研究进展[J]. 国外医药抗生素分册, 25 (2004) 193-197. [34] 陈斌泽, 李泽慧, 冯强生, 等. 耐甲氧西林金黄色葡萄球菌耐药机制与分子分型研究进展[J]. 检验医学与临床, 13 (2016) 2824-2827. [35] M.J. Noto, G.L. Archer , et al. A subset of Staphylococcus aureus strains harboring Staphylococcal cassette chromosome mec(SCCmec) typeⅣ is deficient in ccrAB mediated SCCmec excision[J]. AntiMICrob Agents Chemother, 50(2006)2782-2788. [36] 俞蕙, 吴霞. 耐甲氧西林金黄色葡萄球菌耐药机制及研究进展[J]. 中华实用儿科临床杂志, 27 (2012) 1704-1706. [37] 刘丹华, 张晓伟, 等. 抗生素滥用与超级细菌[J]. 国外医药, 1 (2019) 1-4. [38] P.E. Akpaka, S. Kissoon, C. Wilson, et al. Molecular characterization of vancomycin resistant Enterococcus faecium isolates from Bermuda [J]. Plos One, 12 (2017). [39] 燕吉广, 董春忠, 赵广敏, 等. 耐万古霉素屎肠球菌基因检测与多位点序列分析分型研究[J]. 中华医院感染学杂志, 26 (2016) 4092-4094. [40] G. Marcade, J.B. MICol, H. Jacquier, et al. Outbreak in a haematology unit involving an unusal strain of glycopeptide-resistant Enterococcus faecium carrying both vanA and vanB genes [J]. J AntiMICrob Chemother, 69 (2014) 500-505. [41] L.K. Logan, R.A. Weinstein, et al. The eqidemiology of carbapenem resistant Enterobacteriaceae:the iopact and evolution of a global menace[J]. J Infect Dis, 215 (2017) 28-36. [42] K.L. Wyres, K.E. Holt, et al. Klebsiella pneumoniae as a key trafficker of drug resistance genes from environmental to clinically important bacteria[J]. Curr Opin MICrobiol, 45 (2018) 131-139. [43] C.R. Lee, J.H. Lee, K.S. Park, et al. Global dissemination of carbapenemase-producing Klebsiellapneumoniae:epidemiology genetic context treatment options and detection methods [J]. Front MICrobiol, 7 (2016) 895. [44] J.L. Shen, Y.P. Pan, Y.H. Xu, et al. Susceptibility of Escherichia coli strains in hospitals across China:results from the Chinet antiMICrobial resistance suiveillance program, 2005-2014[J]. Chinese Journal of Infection and Chemotherapy, 16 (2016) 129-140. [45] R.A. Howe, J.M. Andrews. BSAC standardized disc susceptibility testing method [J]. J AntiMICrob Chemother, 67 (2012) 2783-2784. [46] M. Hornsey, L. Phee, D.W. Wareham, Anovel variant, NAM-5, producing Klebseilla pneumoniae coinfection in a 6-month-old infant [J]. AntiMICrobial Agents & Chemotherapy, 60 (2016) 4416-4417. [47] 徐德强,周德庆等.微生物学实验教程[M]. [48] 2012年美国临床实验室标准委员会(CLSI)的M02-A11的标准. [54] 王唯霖,中草药提取物的抑菌机理及对大肠杆菌的耐药研究[J].2015. [50] J.C. Elizabenth, W. Nicholas, et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan re modeling [J].Nature, 578 (2020) 582-587. [51] S.A. Miller, D.D. Dykes, H.F. Polesky, et al. A simple salting out procedure for extracting DNA from human nucleated cells, (1988). [52] C. Anagnostopoulos, J. Spizizen. Requirements for transformation in Bacillus subtilis, J Bacteriol, 81 (1961) 741-746. [53] J.C. Elizabenth, W. Nicholas, et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodeling [J].Nature,578 (2020) 582-587. [54] 王唯霖,中草药提取物的抑菌机理及对大肠杆菌的耐药研究[J].2015. [55] J.C. Elizabenth, W. Nicholas, et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodeling[J].Nature,578 (2020) 582-587. [56] J.C. Elizabenth, W. Nicholas, et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodeling [J].Nature,578 (2020) 582-587. [57] D. E. Deatherage, J. E. Barrick, Identification of mutations in laboratory-evolved microbes from next-generation sequencing data using breseq[J].Methods Mol. Biol. 1151 (2014) 165-188. [58] J.C. Elizabenth, W. Nicholas, et al. Evolution-guided discovery of antibiotics that inhibit peptidoglycan remodeling [J].Nature,578 (2020) 582-587. [59] Y. Song, G. Fu, H. Dong, et al. High-efficiency secretion of β-mannanase in Bacillus subtilis through protein synthesis and secretion optimization [J]. J Agric Food Chem, 65 (2017) 2540-2548. [60] R.J. Ma, Y.H. Wang, L. Liu, et al. Production enhancement of the extracellular lipase LipA in Bacillus subtilis: Effects of regulatory elements and Sec pathway components [J]. Protein Expr Purif, 142 (2017). [61] J.E. Thwaite, L.W.J. Baillie, N.M. Carter, et al. Optimization of the cell wall MICroenvironment allows increased production of recombinant Bacillus anthracis protective antigen from B. subtili [J]., Appl Environ MICrobiol, 68 (2002) 227. [62] Y. Chen, D. Cai, P. He, et al. Enhanced production of heterologous proteins by Bacillus licheniformis with defective d-alanylation of lipoteichoic acid [J]. World J MICrobiol Biotechnol, 34 (2018) 135.4 |
中图分类号: | Q93 |
开放日期: | 2020-09-17 |