中文题名: | 大豆三个NAC转录因子调控耐旱和耐盐性的功能研究 |
姓名: | |
学号: | 2016201059 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090102 |
学科名称: | 农学 - 作物学 - 作物遗传育种 |
学生类型: | 博士 |
学位: | 农学博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 大豆遗传育种 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2020-08-18 |
答辩日期: | 2020-07-17 |
外文题名: | Functional Study of Three NAC Transcription Factors in the Tolerance to Drought and Salt in Soybean |
中文关键词: | |
外文关键词: | soybean ; NAC transcription factor ; drought tolerance ; salt tolerance ; CRISPR/Cas9 ; protein interaction |
中文摘要: |
大豆是重要的经济作物,富含油脂和蛋白质,对人类健康的改善、生物燃料的应用和土壤肥力的提高具有重要作用。然而,大豆在生长发育过程中经常会遭受各种逆境胁迫的伤害,其中干旱、盐害是影响大豆正常生长的两种主要逆境胁迫。干旱、盐害引起的不良反应包括渗透失衡、膜系统损伤、光合作用速率降低等,不仅抑制作物在各个阶段的生长发育和生理代谢,而且还影响作物的品质和产量。为了应对干旱、盐害,植物已经在形态、生理和分子水平上进化出多种生存策略,例如改变根、茎、叶组织的结构、改变代谢产物的组成以及调节胁迫相关基因的表达等。 转录组测序技术的发展,有助于从转录水平上了解植物对逆境胁迫的响应机理。本文研究了正常条件和干旱处理后大豆幼苗根、叶组织的转录组,分析了大豆响应干旱胁迫的分子机理;结合大豆转基因和基因编辑技术,对耐旱候选基因GmNAC8、GmNAC12及另一高度同源基因GmNAC100进行了功能研究。本研究的主要结果如下: 1. 干旱胁迫下大豆幼苗根、叶组织的转录组分析 对正常条件和干旱处理后天隆一号大豆幼苗根、叶组织进行转录组分析,在根中共筛选到10078个差异表达基因(DEGs),其中5179个基因显著上调表达,4899个基因显著下调表达。在叶中共筛选到8501个差异表达基因,其中4108个基因显著上调表达,4393个基因显著下调表达。KEGG富集分析显示,这些DEGs主要参与了植物激素信号转导途径、苯丙素合成代谢通路、植物病原菌互作通路。在根和叶的DEGs中分别发现了1113个和773个转录因子,包括AP2/ERF、AUX/IAA、bHLH、bZIP、C2H2、GATA、GRAS、MYB/MYB-Related、NAC、WRKY等转录因子家族。其中,在根、叶的DEGs中分别发现了61个、37个NAC转录因子,有13个NAC基因在根和叶中同时上调表达,有3个NAC基因在根和叶中同时下调表达。GmNAC8和GmNAC12是一对同源基因,在干旱胁迫下都显著上调表达,之前也多次被报道与大豆的耐旱性相关。因此,将GmNAC8和GmNAC12假定为调控大豆耐旱性的候选基因。 2. 耐旱候选基因GmNAC8的功能研究 从大豆中克隆了GmNAC8的编码序列,全长为1092 bp,编码363个氨基酸;亚细胞定位分析显示GmNAC8是一个核定位蛋白。通过qRT-PCR分析显示GmNAC8在干旱、高盐、高温胁迫下均显著上调表达,其中在干旱胁迫下上调表达最明显。GmNAC8在逆境相关植物激素ABA、ETH、SA处理后3 h表达上调到峰值。表达模式分析推测GmNAC8可能通过植物激素信号转导通路,参与大豆对逆境胁迫的调控。通过农杆菌介导的大豆遗传转化,获得4个GmNAC8过表达株系;通过CRISPR/Cas9介导的基因编辑,获得4种类型的GmNAC8的基因敲除株系,即GmNAC8-KO1(缺失8 bp)、GmNAC8-KO2(插入1 bp)、GmNAC8-KO3(缺失1 bp)、GmNAC8-KO4(缺失5 bp)。与野生型比较,GmNAC8-KO1、GmNAC8-KO2、GmNAC8-KO3、GmNAC8-KO4都发生了移码突变,导致翻译提前终止。干旱处理后,与野生型相比,GmNAC8过表达株系的存活率、SOD活性和PRO含量显著更高,表现出耐旱性;而GmNAC8基因敲除株系显著降低的存活率、SOD活性和PRO含量表现出干旱敏感性,表明GmNAC8正向调控大豆植株的耐旱性。通过酵母双杂技术筛选了119个GmNAC8的互作蛋白,通过GO注释和KEGG富集分析,发现这些互作蛋白参与铁离子响应,泛素依赖的代谢过程,ABA和水分缺失的响应等。基于GmDi19-3参与对干旱和ABA的响应,因此着重研究了GmNAC8与GmDi19-3之间的蛋白互作。通过双分子荧光互补实验和荧光素酶互补实验在烟草体内验证了GmNAC8与GmDi19-3之间存在相互作用。为了研究GmDi19-3的功能,通过农杆菌介导的大豆遗传转化获得8个GmDi19-3过表达株系,干旱处理后,GmDi19-3过表达植株表现出比野生型更强的耐旱性。综合以上结果,推测GmNAC8可能通过与GmDi19-3互作正向调控大豆的耐旱性。 3. 耐旱候选基因GmNAC12的功能研究 从大豆中克隆了GmNAC12的编码序列,全长为1062 bp,编码353个氨基酸;亚细胞定位分析显示GmNAC12在细胞核表达。通过qRT-PCR分析显示GmNAC12在干旱、高盐、高温胁迫下均显著上调表达,在干旱胁迫下上调最明显。GmNAC12在ABA、ETH、SA处理后的3 h表达达到峰值,在MeJA处理后12 h表达达到峰值,推测GmNAC12可能通过植物激素信号转导通路,参与大豆对逆境胁迫的调控。通过农杆菌介导的大豆遗传转化,获得3个GmNAC12过表达株系;通过CRISPR/Cas9介导的基因编辑技术,获得5种类型的GmNAC12基因敲除株系,即GmNAC12-KO1(缺失1 bp)、GmNAC12-KO2(缺失2 bp)、GmNAC12-KO3(缺失3 bp)、GmNAC12-KO4(缺失4 bp)、GmNAC12-KO5(缺失5 bp)。与野生型比较,GmNAC12-KO1、GmNAC12-KO2、GmNAC12-KO4、GmNAC12-KO5都发生了移码突变,导致翻译提前终止。干旱处理后,与野生型相比,GmNAC12过表达株系的存活率显著升高,表现出耐旱性;而GmNAC12基因敲除株系的存活率显著降低,表现出对干旱的敏感,表明GmNAC12是大豆耐旱性的一个正向调控因子。通过酵母双杂技术筛选了185个GmNAC12的互作蛋白,通过互作蛋白的GO注释和KEGG富集分析,推测GmNAC12可能通过抗氧化防御通路来增强大豆的耐旱性。 4. 与GmNAC8和GmNAC12高度同源的GmNAC100的功能研究 从大豆中克隆了GmNAC100的编码序列,全长为1224 bp,编码407个氨基酸,亚细胞定位分析显示,GmNAC100定位于细胞核。通过qRT-PCR分析显示GmNAC100在干旱、高盐、高温胁迫下均显著上调表达,其中在高盐胁迫下上调表达最为迅速。GmNAC100的表达在ABA、ETH、SA处理后的3 h上调表达到达峰值,在MeJA处理后的12 h上调表达到达峰值,推测GmNAC100可能通过植物激素信号转导通路,参与大豆对逆境的调控。通过农杆菌介导的大豆遗传转化,获得9个GmNAC100过表达株系,通过CRISPR/Cas9介导的基因编辑技术,获得3种类型的GmNAC100基因敲除株系,即GmNAC100-KO1(缺失1 bp)、GmNAC100-KO2(缺失2 bp)、GmNAC100-KO3(缺失4 bp)。与野生型比较,GmNAC100-KO1发生移码突变,导致翻译提前终止;GmNAC100-KO2和GmNAC100-KO3发生移码突变,导致氨基酸序列改变。正常生长条件下,相对于野生型,GmNAC100的过表达株系有更发达的侧根,根鲜重更大,而GmNAC100基因敲除株系的侧根明显发育不良,表明GmNAC100调控大豆的侧根发育。150 mM NaCl处理后,与野生型相比,GmNAC100的过表达株系有更高的叶绿素含量和更低的相对电导率,表现出耐盐性,而GmNAC100基因敲除株系叶绿素含量更低、相对电导率更高,表明GmNAC100正向调控大豆的耐盐性。综合以上结果,推测GmNAC100可能通过调控大豆的侧根发育,从而影响大豆的耐盐性。 |
外文摘要: |
Soybean is an important economic crop, rich in oil and protein, and plays an important role in the improvement of human health and soil fertility, and the application of biofuels. However, soybeans often suffer from various stresses during growth and development. Among them, drought and salt stress are the two main stresses that affect the normal growth of soybeans. The adverse reactions caused by drought and salt stress include osmotic imbalance, membrane system damage, and reduced photosynthesis rate, etc., which not only inhibit the growth and physiological metabolism of crops at various stages, but also affect the quality and yield of crops. To adapt to drought and salt stress, plants have evolved various survival strategies at the morphological, physiological, and molecular levels, such as changing the structure of root, stem, and leaf tissues, changing the composition of metabolites, and regulating the expression of stress-related genes. The development of transcriptome sequencing technology helps to understand the mechanism of plants response to stress at the transcription level. In this study, the transcriptome of the root and leaf tissues of soybean seedlings under normal conditions and drought treatment was analyzed, and the molecular mechanism of soybean response to drought stress was analyzed; combined with soybean transgene and gene editing techniques, the candidate genes for drought tolerance GmNAC8 and GmNAC12, and another highly homologous gene GmNAC100, were conducted for functional study. The main results of this study are as follows: 1. Transcriptome analysis of root and leaf tissues of soybean seedlings under drought stress Transcriptome analysis was performed using root and leaf tissues of soybean seedlings under normal conditions and drought treatment. A total of 10078 differentially expressed genes (DEGs) were screened in the roots, of which 5179 genes were significantly up-regulated and 4899 genes were significantly down-regulated. A total of 8501 DEGs were screened in leaves, of which 4108 genes were significantly up-regulated and 4393 genes were significantly down-regulated. KEGG enrichment analysis showed that these DEGs were mainly involved in plant hormone signal transduction pathway, phenylpropanoid biosynthesis pathway, and plant-pathogen interaction pathway. 1113 and 773 transcription factors were found respectively in DEGs of roots and leaves, including AP2/ERF, AUX/IAA, bHLH, bZIP, C2H2, GATA, GRAS, MYB/MYB-Related, NAC, WRKY and other transcription factor families. 61 and 37 NAC transcription factors were found in the DEGs of roots and leaves, respectively. 13 NAC genes were up-regulated in roots and leaves, and 3 NAC genes were down-regulated in roots and leaves. GmNAC8 and GmNAC12 are a pair of homologous genes, both of which showed significant up-regulation expression under drought stress. It has also been reported many times that they related to soybean drought tolerance. Therefore, GmNAC8 and GmNAC12 were assumed to be candidate genes for regulating drought tolerance in soybean. 2. Functional study of drought tolerance candidate gene GmNAC8 The CDs of GmNAC8 was cloned from soybean, with a total length of 1092 bp, and encodes 363 amino acids. Subcellular localization analysis showed that GmNAC8 is a nuclear localization protein. GmNAC8 was significantly up-regulated under drought, high salt and high temperatures, of which GmNAC8 was up-regulated most under drought stress. GmNAC8 was up-regulated to the peak value at 3 h after stress-related plant hormones ABA, ETH and SA treatment. Analysis of expression patterns speculated that GmNAC8 may be involved in the response to stress through plant hormone signal transduction pathways. Through Agrobacterium-mediated genetic transformation of soybean, four overexpression lines of GmNAC8 were obtained. Through CRISPR/Cas9-mediated gene editing, four types of GmNAC8 gene knockout lines were obtained, namely GmNAC8-KO1 (deletion 8 bp), GmNAC8-KO2 (insertion 1 bp), GmNAC8-KO3 (deletion 1 bp), GmNAC8-KO4 (deletion 5 bp). Compared with the wild-type, GmNAC8-KO1, GmNAC8-KO2, GmNAC8-KO3, and GmNAC8-KO4 all experienced frameshift mutations, leading to early termination of translation. After drought treatment, compared with wild-type, GmNAC8 overexpression lines had significantly higher survival rate, SOD activity and PRO content, showing drought tolerance; while GmNAC8 gene knockout lines showed significantly lower survival rate, SOD activity and PRO content, indicating that GmNAC8 positively regulates the drought tolerance of soybean. Through yeast two-hybrid analysis, 119 proteins interacting with GmNAC8 were screened. Through GO annotation and KEGG enrichment, these interaction proteins were found to be involved in iron response, ubiquitin-dependent metabolic processes, response to ABA and water deficit etc. Based on GmDi19-3 response to water deficit and ABA, the study focused on the interaction between GmNAC8 and GmDi19-3. The interaction between GmNAC8 and GmDi19-3 was verified in tobacco by bimolecular fluorescence complementation and luciferase complementation experiments. In order to study the function of GmDi19-3, eight overexpression lines of GmDi19-3 were obtained through Agrobacterium-mediated genetic transformation of soybean. After drought treatment, GmDi19-3 overexpression plants showed stronger drought tolerance than wild-type. Based on the above results, it is speculated that GmNAC8 positively regulate soybean drought tolerance probably by interacting with GmDi19-3. 3. Functional study of drought tolerance candidate gene GmNAC12 The CDs of GmNAC12 was cloned from soybean, with a total length of 1062 bp, encodes 353 amino acids. Subcellular localization analysis revealed that GmNAC12 is a nuclear localization protein. GmNAC12 was significantly up-regulated under drought, high salt and high temperature stress. Among them, GmNAC12 was up-regulated most under drought stress. GmNAC12 was up-regulated to the peak value at 3 h after ABA, ETH, SA treatment, and at 12 h after MeJA treatment. It is speculated that GmNAC12 may participate in the regulation of stress through the plant hormone signal transduction pathway. Through Agrobacterium-mediated genetic transformation of soybean, three overexpression lines of GmNAC12 were obtained. Through CRISPR/Cas9-mediated gene editing, five types of GmNAC12 gene knockout lines were obtained, namely GmNAC12-KO1 (deletion 1 bp), GmNAC12-KO2 (deletion 2 bp), GmNAC12-KO3 (deletion 3 bp), GmNAC12-KO4 (Deletion 4 bp), GmNAC12-KO5 (deletion 5 bp). Compared with the wild-type, frameshift mutations occurred in GmNAC12-KO1, GmNAC12-KO2, GmNAC12-KO4, and GmNAC12-KO5, leading to early termination of translation. After drought treatment, compared with wild-type, the survival rate of GmNAC12 overexpression lines was significantly higher, showing drought tolerance; and the survival rate of GmNAC12 gene knockout lines was significantly lower, showing sensitivity to drought. This indicates that GmNAC12 is a positive regulator of soybean drought tolerance. 185 proteins interacting with GmNAC12 were screened by yeast two-hybrid technology. Through GO annotation and KEGG enrichment analysis of interaction proteins, it is speculated that GmNAC12 may enhance soybean drought tolerance through antioxidant defense pathways. 4. Functional study of GmNAC100 highly homologous to GmNAC8 and GmNAC12 The CDs of GmNAC100 was cloned from soybean, with a total length of 1224 bp, encodes 407 amino acids. Subcellular localization analysis revealed that GmNAC100 is a nuclear localization protein. GmNAC100 was up-regulated under drought, high salt and high temperature stress. Among them, the expression of GmNAC100 was up-regulated most rapidly under high salt stress. The expression of GmNAC100 was up-regulated to peak value at 3 h after ABA, ETH, SA treatment and at 12 h after MeJA treatment. Expression pattern analysis speculated that GmNAC100 may also participate in the regulation of stress through plant hormone signal transduction pathways. Through Agrobacterium-mediated genetic transformation of soybean, 9 overexpression lines of GmNAC100 were obtained. Through CRISPR/Cas9-mediated gene editing, three types of GmNAC100 gene knockout lines were obtained, namely GmNAC100-KO1 (deletion 1 bp), GmNAC100-KO2 (deletion 2 bp), GmNAC100-KO3 (deletion 4 bp). Compared with the wild-type, frameshift mutations occurred in GmNAC100-KO1, leading to early termination of translation; frameshift mutations occurred in GmNAC100-KO2 and GmNAC100-KO3, resulting in amino acid sequence changes. Under normal growth conditions, GmNAC100 overexpression lines had stronger lateral roots and larger root fresh weight than wild-type, and the lateral roots of GmNAC100 gene knockout lines were obviously underdeveloped, indicating that GmNAC100 regulates the development of soybean lateral roots. After 150 mM NaCl treatment, compared to wild type, GmNAC100 overexpression lines had higher chlorophyll content and lower relative electrical conductivity, showing salt tolerance; while GmNAC100 gene knockout lines had lower chlorophyll content, higher relative electrical conductivity, showing salt sensitivity. It indicated that GmNAC100 positively regulates soybean salt tolerance. In summary, it is speculated that GmNAC100 may regulate soybean salt tolerance by affecting the development of lateral roots. |
参考文献: |
1. Ali Z, Park H C, Ali A, et al. TsHKT1;2, a HKT1 homolog from the Extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl[J]. Plant Physiology, 2012, 158(3): 1463-1474. 2. Bao A, Chen H, Chen L, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmSPL9 genes alters plant architecture in soybean[J]. BMC Plant Biology, 2019, (19): 131. 3. Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signaling[J]. Journal of Experimental Botany, 2014, 65(5): 1229-1240. 4. Boudsocq M, Sheen J. CDPKs in immune and stress signaling[J]. Trends in Plant Science, 2013, 18(1): 30-40. 5. Cai Y, Chen L, Liu X, et al. CRISPR/Cas9-mediated targeted mutagenesis of GmFT2a delays flowering time in soya bean[J]. Plant Biotechnology Journal, 2018, 16(1): 176-185. 6. Cai Y, Chen L, Liu X, et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots[J]. PLoS One. 2015, 10(8): e136064. 7. Cao L, Yu Y, Ding X, et al. The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity[J]. Plant Molecular Biology, 2017, 95(3): 253-268. 8. Carvalho M H C D. Drought stress and reactive oxygen species: Production, scavenging and signaling. Plant Signaling Behavior, 2008, (3): 156-165. 9. Chaves M M. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture[J]. Journal of Experimental Botany, 2004, 55(407): 2365-2384. 10. Chen H, Cui S, Fu S, et al. Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.)[J]. Australian Journal of Agricultural Research, 2008, (59): 1086–1091. 11. Chen Y, Chi Y, Meng Q, et al. GmSK1, an SKP1 homologue in soybean, is involved in the tolerance to salt and drought[J]. Plant Physiology and Biochemistry, 2018, (127): 25-31. 12. Chen N, Wu S, Fu J, et al. Overexpression of the eggplant (Solanum melongena) NAC family transcription factor SmNAC suppresses resistance to bacterial wilt[J]. Scientific Reports, 2016, (6): 31568. 13. Chen L M, Fang Y S, Zhang C J, et al. GmSYP24, a putative syntaxin gene, confers osmotic/drought, salt stress tolerances and ABA signal pathway[J]. Scientific Reports, 2019, 9(1): 5990. 14. Chen X, Lu S, Wang Y, et al. OsNAC2 encoding a NAC transcription factor that affects plant height through mediating the gibberellic acid pathway in rice[J]. The Plant Journal, 2015, 82(2): 302-314. 15. Chen X, Cheng J, Chen L, et al. Auxin-independent NAC pathway acts in response to explant-specific wounding and promotes root tip emergence during de Novo root organogenesis in Arabidopsis[J]. Plant Physiology, 2016, 170(4): 2136-2145. 16. Chimungu J G, Brown K M, Lynch J P. Reduced root cortical cell file number improves drought tolerance in maize[J]. Plant Physiology, 2014, 166(4): 1943-1955. 17. Cong L, Ran F A, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819-823. 18. Dalman K, Wind J J, Nemesio-Gorriz M, et al. Overexpression of PaNAC03, a stress induced NAC gene family transcription factor in Norway spruce leads to reduced flavonol biosynthesis and aberrant embryo development[J]. BMC Plant Biology, 2017, (17): 6. 19. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants[J]. Frontiers in Environmental Science, 2014, (2): 53. 20. Delessert C, Kazan K, Wilson IW, et al. The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. The Plant Journal, 2005, (43): 745–757. 21. Ernst H A, Olsen A N, Skriver K, et al. Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors[J]. EMBO Reports, 2004, 5(3): 297-303. 22. Evans M J, Choi W, Gilroy S, et al. A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress[J]. Plant Physiology, 2016, 171(3): 1771-1784. 23. Fang Y, Xiong L. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689. 24. Farooq M, Wahid A, Kobayashi N, et al. Plant drought stress: effects, mechanisms and management. Agronomy for Sustainable Development, 2009, (29): 185-212. 25. Farooq M, Hussain M, Wakeel A, et al. Salt stress in maize: effects, resistance mechanisms, and management. A review[J]. Agronomy for Sustainable Development, 2015, 35(2): 461-481. 26. Foyer C H, Noctor G. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria[J]. Physiologia Plantarum, 2003, 119(3): 355-364. 27. Fujita M, Fujita Y, Maruyama K, et al. A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway[J]. The Plant Journal, 2004, 39(6): 863-876. 28. Fuli Z. Factors influencing agrobacterium-mediated plant genetic transformation[J]. Biotechnology Bulletin, 2012, 29(7): 14-19. 29. Golldack D, Li C, Mohan H, et al. Tolerance to drought and salt stress in plants: Unraveling the signaling networks[J]. Frontiers in Plant Science, 2014, (5): 151. 30. Hao Y, Wei W, Song Q, et al. Soybean NAC transcription factors promote abiotic stress tolerance and lateral root formation in transgenic plants[J]. The Plant Journal, 2011, 68(2): 302-313. 31. Harb A, Awad D, Samarah N. Gene expression and activity of antioxidant enzymes in barley (Hordeum vulgare L.) under controlled severe drought[J]. Journal of Plant Interactions, 2015, 10(1): 109-116. 32. Hayat S, Hayat Q, Alyemeni M N, et al. Role of proline under changing environments: A review[J]. Plant Signaling & Behavior, 2012, 7(11): 1456-1466. 33. He X J, Mu R L, Cao W H, et al. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development[J]. The Plant Journal, 2005, 44(6): 903-916. 34. Hong Y, Zhang W, Wang X. Phospholipase D and phosphatidic acid signalling in plant response to drought and salinity[J]. Plant, Cell & Environment, 2010, 33(4): 627-635. 35. Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(35): 12987-12992. 36. Hu H, You J, Fang Y, et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant Molecular Biology, 2008, 67(1-2): 169-181. 37. Huang D, Wang S, Zhang B, et al. A gibberellin-mediated DELLA-NAC signaling cascade regulates cellulose synthesis in rice[J]. The Plant Cell, 2015, 27(6): 1681-1696. 38. Huang Y, Xuan H, Yang C, et al. GmHsp90A2 is involved in soybean heat stress as a positive regulator[J]. Plant Science, 2019, 285: 26-33. 39. Hussain R M, Ali M, Feng X, et al. The essence of NAC gene family to the cultivation of drought-resistant soybean (Glycine max L. Merr.) cultivars[J]. BMC Plant Biology, 2017, 17(1): 55. 40. Hussain S, Junhua Z, Chu Z, et al. Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review[J]. Journal of Integrative Agriculture, 2017, 16(11): 2357-2374. 41. Iqbal N, Umar S, Khan N A, et al. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism[J]. Environmental and Experimental Botany, 2014, (100): 34-42. 42. Iuchi S, Kobayashi M, Taji T, et al. Regulation of drought tolerance by gene manipulation of 9‐cis‐epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis[J]. The Plant Journal, 2001, 27(4): 325-333. 43. Jensen M K, Rung J H, Gregersen P L, et al. The HvNAC6 transcription factor: a positive regulator of penetration resistance in barley and Arabidopsis[J]. Plant Molecular Biology, 2007, 65(1-2): 137-150. 44. Jiang Y, Deyholos M K. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses[J]. Plant Molecular Biology, 2009, 69(1-2): 91-105. 45. Ju Y, Yue X, Min Z, et al. VvNAC17, a novel stress-responsive grapevine (Vitis vinifera L.) NAC transcription factor, increases sensitivity to abscisic acid and enhances salinity, freezing, and drought tolerance in transgenic Arabidopsis[J]. Plant Physiology and Biochemistry, 2020, (146): 98-111. 46. Jumrani K, Bhatia V S. Identification of drought tolerant genotypes using physiological traits in soybean[J]. Physiology & Molecular Biology of Plants, 2019, (25): 697-711. 47. Kaur G, Asthir B. Molecular responses to drought stress in plants[J]. Biologia Plantarum, 2017, 61(2): 201-209. 48. Kim H S, Park B O, Yoo J H, et al. Identification of a Calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis[J]. Journal of Biological Chemistry, 2007, 282(50): 36292-36302. 49. Kjaersgaard T, Jensen M K, Christiansen M W, et al. Senescence-associated barley NAC (NAM, ATAF1,2, CUC) transcription factor interacts with Radical-induced Cell Death 1 through a disordered regulatory domain[J]. Journal of Biological Chemistry, 2011, 286(41): 35418-35429. 50. Kondetti P, Jawali N, Apte S K, et al. Salt tolerance in Indian soybean (Glycine max (L.) Merill) varieties at germination and early seedling growth[J]. Annals of Biological Research, 2012, 3 (3):1489-1498. 51. Kopittke P M. Interactions between Ca, Mg, Na and K: alleviation of toxicity in saline solutions[J]. Plant and Soil, 2012, 352(1-2): 353-362. 52. Kou X, Liu C, Han L, et al. NAC transcription factors play an important role in ethylene biosynthesis, reception and signaling of tomato fruit ripening[J]. Molecular Genetics and Genomics, 2016, 291(3): 1205-1217. 53. Krebs M, Beyhl D, Gorlich E, et al. Arabidopsis V-ATPase activity at the tonoplast is required for efficient nutrient storage but not for sodium accumulation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(7): 3251-3256. 54. Kurusu T, Kuchitsu K, Nakano M, et al. Plant mechanosensing and Ca2+ transport[J]. Trends in Plant Science, 2013, 18(4): 227-233. 55. Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants[J]. Journal of Experimental Botany, 2011, 62(14): 4731-4748. 56. Le D T, Nishiyama R, Watanabe Y, et al. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PloS One, 2012, 7(11): e49522. 57. Le D T, Nishiyama R, Watanabe Y, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA Research, 2011a, 18(4): 263-276. 58. Le D T, Nishiyama R, Watanabe Y, et al. Genome-wide expression profiling of soybean two-component system genes in soybean root and shoot tissues under dehydration stress[J]. DNA Research, 2011b, 18(1): 17-29. 59. Lee M H, Jeon H S, Kim H G, et al. An Arabidopsis NAC transcription factor NAC4 promotes pathogen-induced cell death under negative regulation by microRNA164[J]. New Phytologist, 2017, (214): 343–360. 60. Lichtenthaler H K. Chlorophylls and carotenoids, the pigment of photosynthetic biomembranes[J]. Methods in Enzymology, 1987, 148C(1): 350-382. 61. Li M Chen X A Z W. Genome-wide transcriptional analysis of two soybean genotypes under dehydration and rehydration conditions[J]. BMC Genomics, 2013, 14(1): 687. 62. Li S, Cong Y, Liu Y, et al. Optimization of agrobacterium-mediated transformation in soybean[J]. Frontiers in Plant Science, 2017, (8): 246. 63. Li S, Wang N, Ji D, et al. A GmSIN1/GmNCED3s/GmRbohBs feed-forward loop acts as a signal amplifier that regulates root growth in soybean exposed to salt stress[J]. The Plant Cell, 2019, 31(9): 662-704. 64. Li Y, Zhang S, Zhang N, et al. MYB-CC transcription factor, TaMYBsm3, cloned from wheat is involved in drought tolerance[J]. BMC Plant Biology, 2019, 19(1): 143. 65. Liang W, Ma X, Wan P, et al. Plant salt-tolerance mechanism: A review[J]. Biochemical and Biophysical Research Communications, 2018, 495(1): 286-291. 66. Liu W, Zhang F, Zhang W, et al. Arabidopsis Di19 functions as a transcription factor and modulates PR1, PR2, and PR5 expression in response to drought stress[J]. Molecular Plant, 2013, 6(5): 1487-1502. 67. Liu F, Guo Y, Gu D, et al. Salt tolerance of transgenic plants with BADH cDNA. Acta Genetica Sinica, 1997, 24(1): 54–58. 68. Mao H, Wang H, Liu S, et al. A transposable element in a NAC gene is associated with drought tolerance in maize seedlings[J]. Nature Communications, 2015, 6(1): 8326. 69. Marok M A, Tarrago L, Ksas B, et al. A drought-sensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety[J]. Journal of Plant Physiology, 2013, 170(7): 633-645. 70. Melo B P, Fraga O T, Silva J C F, et al. Revisiting the Soybean GmNAC Superfamily[J]. Frontiers in Plant Science, 2018, (9): 1864. 71. Mochida K, Yoshida T, Sakurai T, et al. Genome-wide analysis of two-component systems and prediction of stress-responsive two-component system members in soybean[J]. DNA Research, 2010, 17(5): 303-324. 72. Moghe G D, Shiu S. The causes and molecular consequences of polyploidy in flowering plants[J]. Annals of the New York Academy of Sciences, 2014, 1320(1): 16-34. 73. Moon J C, Yim W C, Lee J E, et al. Transcriptome analysis in response to UV-B stress in soybean [Glycine max (L.) Merr.][J]. Australian Journal of Crop Science, 2012, 6(9): 1395-1400. 74. Morran S, Eini O, Pyvovarenko T, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors[J]. Plant Biotechnology Journal, 2011, 9(2): 230-249. 75. Nakashima K, Tran L P, Van Nguyen D, et al. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant Journal, 2007, 51(4): 617-630. 76. Nakashima K, Takasaki H, Mizoi J, et al. NAC transcription factors in plant abiotic stress responses[J]. Biochimica et Biophysica Acta, 2012, 1819(2): 97-103. 77. Negi S, Tak H, Ganapathi T R. A banana NAC transcription factor (MusaSNAC1) impart drought tolerance by modulating stomatal closure and H2O2 content[J]. Plant Molecular Biology, 2018, 96(4-5): 457-471. 78. Nguyen K H, Mostofa M G, Li W, et al. The soybean transcription factor GmNAC085 enhances drought tolerance in Arabidopsis[J]. Environmental and Experimental Botany, 2018, (151): 12-20. 79. Oda-Yamamizo C, Mitsuda N, Sakamoto S, et al. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves[J]. Scientific Reports, 2016, (6): 23609. 80. Oh D, Lee S Y, Bressan R A, et al. Intracellular consequences of SOS1 deficiency during salt stress[J]. Journal of Experimental Botany, 2010, 61(4): 1205-1213. 81. Olsen A N, Ernst H A, Leggio L L, et al. DNA-binding specificity and molecular functions of NAC transcription factors[J]. Plant Science (Oxford), 2005, 169(4): 785-797. 82. Ooka H, Satoh k, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[j]. DNA Research, 2003, 10(6): 239-247. 83. Park H J, Kim W Y, Yun D J. A new insight of salt stress signaling in plant[J]. Molecules and Cells, 2016, 39(6): 447-459. 84. Per T S, Khan N A, Reddy P S, et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics[J]. Plant Physiology and Biochemistry, 2017, (115): 126-140. 85. Phang T, Shao G, Lam H. Salt Tolerance in Soybean[J]. Journal of Integrative Plant Biology, 2008, 50(10): 1196-1212. 86. Pimenta M R, Silva P A, Mendes G C, et al. The stress-induced soybean NAC transcription factor GmNAC81 plays a positive role in developmentally programmed leaf senescence[J]. Plant & Cell Physiology, 2016, 57(5): 1098-1114. 87. Prasad P V V, Pisipati S R, Momcˇilovic′ I, et al. Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat[J]. Journal of Agronomy & Crop Science, 2011, 197(6): 430-441. 88. Prodhan M Y, Munemasa S, Nahar M N, et al. Guard cell salicylic acid signaling is integrated into abscisic acid signaling via the Ca2+/CPK-dependent pathway[J]. Plant Physiology, 2018, 178(1): 441-450. 89. Puranik S, Sahu P P, Srivastava P S, et al. NAC proteins: regulation and role in stress tolerance[J]. Trends in Plant Science, 2012, 17(6): 369-381. 90. Qin L, Li Y, Li D, et al. Arabidopsis drought-induced protein Di19-3 participates in plant response to drought and high salinity stresses[J]. Plant Molecular Biology, 2014, 86(6): 609-625. 91. Quach T N, Phan L S, Babu V, et al. Functional analysis of water stress-responsive soybean GmNAC003 and GmNAC004 transcription factors in lateral root development in Arabidopsis[J]. PLoS One, 2014, 9(1): e84886. 92. Rauf M, Arif M, Fisahn J, et al. NAC transcription factor SPEEDY HYPONASTIC GROWTH regulates flooding-induced leaf movement in Arabidopsis[J]. The Plant Cell, 2014, 25(12): 4941-4955. 93. Ren T, Wang J, Zhao M, et al. Involvement of NAC transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet[J]. Planta, 2018, 247(1): 53-68. 94. Ren S, Lyle C, Jiang G, et al. Soybean Salt Tolerance 1 (GmST1) reduces ROS production, enhances ABA sensitivity, and abiotic stress tolerance in Arabidopsis thaliana[J]. Frontiers in Plant Science, 2016, (7): 445. 95. Rensing Stefan A. Gene duplication as a driver of plant morphogenetic evolution[J]. Current Opinion in Plant Biology, 2014, (17): 43-48. 96. Roulin A, Auer P L, Libault M, et al. The fate of duplicated genes in a polyploid plant genome[J]. The Plant Journal, 2013, 73(1): 143-153. 97. Ruelland E, Kravets V, Derevyanchuk M, et al. Role of phospholipid signalling in plant environmental responses[J]. Environmental and Experimental Botany, 2015, (114): 129-143. 98. Saad A S I, Li X, Li H, et al. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses[J]. Plant Science, 2013, (203-204): 33-40. 99. Sablowski R W M, Meyerowitz E M. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA[J]. Cell, 1998, 92(1): 93-103. 100. Shahnejat-Bushehri S, Allu A D, Mehterov N, et al. Arabidopsis NAC transcription factor JUNGBRUNNEN1 exerts conserved control over gibberellin and brassinosteroid metabolism and signaling genes in tomato[J]. Frontiers in Plant Science, 2017, (8): 214. 101. Sharma P, Jha A B, Dubey R S, et al. Reactive Oxygen Species, Oxidative Damage, and Antioxidative Defense Mechanism in Plants under Stressful Conditions[J]. Journal of Botany, 2012, 2012: 1-26. 102. Sharmin R A, Bhuiyan M R, Lv W, et al. RNA-Seq based transcriptomic analysis revealed genes associated with seed-flooding tolerance in wild soybean (Glycine soja Sieb. & Zucc.)[J]. Environmental and Experimental Botany, 2020, (171): 103906. 103. Shatil-Cohen A, Attia Z, Moshelion M. Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA[J]. The Plant Journal, 2011, 67(1): 72-80. 104. Shen H, Yin Y, Chen F, et al. A bioinformatic analysis of NAC genes for plant cell wall development in relation to lignocellulosic bioenergy production[J]. BioEnergy Research. 2009, 2(4): 217-232. 105. Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2006, 58(2): 221-227. 106. So H A, Lee J H. NAC transcription factors from soybean (Glycine max L.) differentially regulated by abiotic stress[J]. Journal of Plant Biology, 2019, 62(2): 147-160. 107. Souer E, Van H A, Kloos D, et al. The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J]. Cell, 1996, 85(2): 159-170. 108. Smet R D, Peer Y V D. Redundancy and rewiring of genetic networks following genome-wide duplication events[J]. Current Opinion in Plant Biology, 2012, 15(2): 168-176. 109. Tak H, Negi S, Ganapathi T R. Banana NAC transcription factor MusaNAC042 is positively associated with drought and salinity tolerance[J]. Protoplasma, 2017, 254(2): 803-816. 110. Tak H, Negi S, Gupta A, et al. A stress associated NAC transcription factor MpSNAC67 from banana (Musa x paradisiaca) is involved in regulation of chlorophyll catabolic pathway[J]. Plant Physiology and Biochemistry, 2018, (132): 61-71. 111. Takasaki H, Maruyama K, Kidokoro S, et al. The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice[J]. Molecular Genetics and Genomics, 2010, 284(3): 173-183. 112. Tran L S P. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter[J]. The Plant Cell, 2004, 16(9): 2481-2498. 113. Tran L P, Nakashima K, Sakuma Y, et al. Co-expression of the stress-inducible zinc finger homeodomain ZFHD1 and NAC transcription factors enhances expression of the ERD1 gene in Arabidopsis[J]. The Plant Journal, 2007, 49(1): 46-63. 114. Tran L P, Quach T N, Guttikonda S K, et al. Molecular characterization of stress-inducible GmNAC genes in soybean[J]. Molecular Genetics and Genomics, 2009, 281(6): 647-664. 115. Tran, L.-S, P, et al. Functional analysis of AHK1\/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007. 104(2007): 20623-20628. 116. Verma V, Ravindran P, Kumar P. Plant hormone-mediated regulation of stress responses[J]. BMC Plant Biology, 2016, (16): 86. 117. Ulrich Deinlein, Aaron B. Stephan, Tomoaki Horie, et al. Plant salt-tolerance mechanisms[J]. Trends in Plant Science, 2014, (19): 6. 118. Verslues P E, Zhu J K. Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress[J]. Biochemical Society Transactions, 2005, 33(2): 375-379. 119. Wang L, Yu C, Xu S, et al. OsDi19-4 acts downstream of OsCDPK14 to positively regulate ABA response in rice[J]. Plant, Cell & Environment, 2016, 39(12): 2740-2753. 120. Wang Z, Xia Y, Lin S, et al. Osa‐miR164a targets OsNAC60 and negatively regulates rice immunity against the blast fungus Magnaporthe oryzae[J]. The Plant Journal, 2018, (95): 584–597. 121. Wani S H, Kumar V, Shriram V, et al. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants[J]. The Crop Journal, 2016, 4(3): 162-176. 122. Wu H, Fu B, Sun P, et al. A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance[J]. Plant Physiology, 2016, 172(3): 1532-1547. 123. Wu D, Sun Y, Wang H, et al. The SlNAC8 gene of the halophyte Suaeda liaotungensis enhances drought and salt stress tolerance in transgenic Arabidopsis thaliana[J]. Gene, 2018, (662): 10-20. 124. Wu Y, Deng Z, Lai J, et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses[J]. Cell Research, 2009, 19(11): 1279-1290. 125. Yan J, Tong T, Li X, et al. A novel NAC-type transcription factor, NAC87, from oilseed rape modulates reactive oxygen species accumulation and cell death[J]. Plant and Cell Physiology, 2018, 59(2): 290-303. 126. Yang W, Wang M, Yue A, et al. QTLs and epistasis for drought-tolerant physiological index in soybean (Glycine max L.) across different environments[J]. Caryologia: Giornale de Citologia, Citosistematica e Citogenetica, 2014, 1(67): 72–78. 127. Yang X, Kim M Y, Ha J, et al. Overexpression of the soybean NAC gene GmNAC109 increases lateral root formation and abiotic stress tolerance in transgenic Arabidopsis plants[J]. Frontiers in Plant Science, 2019, (10): 1036. 128. Shiboleth Y, Tzfira T. Plant biotechnology and agriculture: Prospects for the 21st century [M]. Academic Press, 2012: 99-116. 129. Zhang W, Liao X, Cui Y, et al. A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean[J]. PLoS Genetics, 2019, 15(1): e1007798. 130. Zhang J, Huang G, Zou D, et al. The cotton (Gossypium hirsutum) NAC transcription factor (FSN1) as a positive regulator participates in controlling secondary cell wall biosynthesis and modification of fibers[J]. New Phytologist, 2018, (217): 625-640. 131. Zhao Q, Gallego-Giraldo L, Wang H, et al. A NAC transcription factor orchestrates multiple features of cell wall development in Medicago truncatula[J]. The Plant Journal, 2010, 63(1): 100-114. 132. Zhao C, Lasses T, Bako L, et al. XYLEM NAC DOMAIN1, an angiosperm NAC transcription factor, inhibits xylem differentiation through conserved motifs that interact with RETINOBLASTOMA-RELATED[J]. New Phytologist, 2017, 216(1): 76-89. 133. Zheng L, Liu G, Meng X, et al. A WRKY gene from Tamarix hispida, ThWRKY4, mediates abiotic stress responses by modulating reactive oxygen species and expression of stress-responsive genes[J]. Plant Molecular Biology, 2013, 82(4-5): 303-320. 134. Zhu J. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53(1): 247-273. 135. Zhu J. Abiotic Stress Signaling and Responses in Plants[J]. Cell, 2016, 167(2): 313-324. 136. Zolla G, Heimer Y M, Barak S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots[J]. Journal of Experimental Botany, 2009, 61(1): 211-224. 137. 柏梦焱,袁珏慧,孙嘉丰,等. 基于CRISPR-Cas9基因编辑技术创制大豆gmnark超结瘤突变体[J]. 大豆科学, 2019, 38(4): 525-532. 138. 陈丽飞,刘越,李雪萌,等. 植物抗旱性研究进展[J]. 吉林农业, 2019, (2): 78-79. 139. 迟琳琳. 科尔沁沙地4种灌木对干旱胁迫的生理响应[J]. 干旱区资源与环境, 2017, (5): 158-162. 140. 曹晓敏,弟豆豆,许茜,等. NaCl胁迫下3种苹果砧木组培苗耐盐性比较[J]. 烟台果树, 2019, (3): 16-19. 141. 范惠玲,刘秦,白生文,等. 不同生态型芸芥中有机物质对盐胁迫的响应[J]. 中国农学通报, 2017, 33(3): 52-56. 142. 方义生,刘宝红,陈水莲,等. 大豆转录因子GmNAC8的克隆及耐旱性功能分析[J]. 中国油料作物学报, 2017, 39(1): 1-12. 143. 郭秀秀,李照君,樊守金,等. 大豆种质资源芽期耐盐性鉴定及耐盐品种筛选[J]. 安徽农业科学, 2019, 47(6): 47-51. 144. 黄春燕,苏文斌,樊福义,等. NaCl胁迫对不同苗龄甜菜生长及生理特性的影响[J]. 华北农学报, 2019, 34(5): 163-169. 145. 霍晋彦,李姣,荆雅峰,等. CRISPR/Cas9系统在植物基因功能研究中的应用进展[J]. 植物生理学报, 2019, 55(3): 241-246. 146. 何江峰,王力伟,房永雨,等. 干旱胁迫和复水处理后梭梭转录因子的转录组分析[J]. 华北农学报, 2020, 35(1): 36-43. 147. 姜丽静,马春玲,车淑静. 大豆育种中转基因技术的研究进展[J]. 现代化农业, 2017, (12): 15-16. 148. 李媛媛,南海洋,刘宝辉,等. 大豆GmFDL06基因抗干旱及耐盐性研究[J]. 大豆科学, 2017, 36(3): 351-359. 149. 李晨,李秀杰,韩真,等. 非生物胁迫对葡萄光合作用的影响研究进展[J]. 山东农业科学, 2017, 49(12): 144-148. 150. 李晓雅,赵翠珠,程小军,等. 盐胁迫对亚麻荠幼苗生理生化指标的影响[J]. 西北农业学报, 2015, 24(4): 76-83. 151. 李慧峰,董庆龙,赵强,等. 13个苹果NAC转录因子基因的克隆与表达分析[J]. 植物遗传资源学报, 2019, 20(4): 1041-1051. 152. 李灿东,郭泰,王志新,等. 转基因技术的过去与现在[J]. 大豆科技, 2019, (4): 63-65. 153. 李艳超, 赵青松, 王凤敏,等. 大豆遗传转化技术研究进展[J]. 大豆科学, 2015, 34(1): 155-162. 154. 刘谢香,常汝镇,关荣霞,等. 大豆出苗期耐盐性鉴定方法建立及耐盐种质筛选[J]. 作物学报, 2020, 46(1): 1-8. 155. 刘强,张贵友,陈受宜. 植物转录因子的结构与调控作用[J]. 科学通报, 2000, (14): 1465-1474. 156. 刘济明,李鹏,廖小锋,等. 干旱胁迫对小蓬竹生理生化特性的影响[J]. 西北农业学报, 2013, 22(9): 153-157. 157. 刘云芬,彭华,王薇薇,等. 植物耐盐性生理与分子机制研究进展[J]. 江苏农业科学, 2019, 47(12): 30-36. 158. 刘昭军,李铁,刘丽艳,等. 花粉管通道介导的抗除草剂基因(bar)对大豆的遗传转化[J]. 大豆科学, 2007, (3): 310-314. 159. 卢从明,张其德,匡廷云,等. 水分胁迫抑制水稻光合作用的机理[J]. 作物学报, 1994, (5): 601-606. 160. 雷勃钧,钱华,李希臣,等. 通过直接引入外源DNA育成高产、优质、高蛋白大豆新品种黑生101[J]. 作物学报, 2000, (6): 725-730. 161. 孟繁昊, 王聪, 徐寿军. 盐胁迫对植物的影响及植物耐盐机理研究进展[J]. 内蒙古民族大学学报(自然科学版). 2014, 29(3): 315-318. 162. 宁丽华,张大勇,刘佳,等. 盐胁迫下苗期栽培大豆生理响应及Na~+动态平衡关键基因的表达[J]. 中国农业科学, 2016, 49(24): 4714-4725. 163. 屈聪玲,贺榆婷,王瑞良,等. 植物转基因技术的过去、现在和未来[J]. 山西农业科学, 2017, 45(8): 1376-1380. 164. 阮志平. 东澳棕叶片和根系对干旱和复水的生理响应[J]. 西北林学院学报, 2016, 31(5): 90-95. 165. 尚娜,李景富,吴明臣. 盐胁迫下番茄幼苗对赤霉素处理的响应[J]. 基因组学与应用生物学, 2017, 36(7): 2965-2972. 166. 苏谦,安冬,王库. 植物激素的受体和诱导基因[J]. 植物生理学通讯, 2008, 44(6): 1202-1208. 167. 孙卓婧,张安红,叶纪明. 转基因作物研发现状及展望[J]. 中国农业科技导报, 2018, 20(7): 11-18. 168. 孙雪慧,蔡勤安,尚丽霞,等. 耐旱基因cspB转化大豆的研究[J]. 大豆科学, 2017, 36(5): 699-704. 169. 孙璐,周宇飞,李丰先,等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响[J]. 中国农业科学, 2012, 45(16): 3265-3272. 170. 谭巍巍,王永斌,赵远玲,等. 全球转基因大豆发展概况[J]. 大豆科技, 2019, (4): 1674-3547 171. 王金英,丁峰,潘介春,等. 植物bZIP转录因子家族的研究进展[J]. 热带农业科学, 2019, 39(6): 39-45. 172. 王伟,姜伟,张金龙,等. 大豆种质的耐旱性鉴定及耐旱指标筛选[J]. 大豆科学, 2015, 34(5): 808-818. 173. 王应党,许孟歌,张雅娟,等. 江淮大豆育种种质苗期耐旱性鉴定[J]. 大豆科学, 2017, 36(5): 669-678. 174. 王康君,樊继伟,陈凤,等. 植物对盐胁迫的响应及耐盐调控的研究进展[J]. 江西农业学报, 2018, 30(12): 31-40. 175. 王兴宇,魏崃,王伟威,等. 转AtCBF4基因大豆株系的抗旱性评价[J]. 大豆科学, 2014, 33(3): 365-369. 176. 王彪,张鑫,李卉,等. 由转基因大豆谈开去[J]. 大豆科技, 2019, (5): 74-75. 177. 王邵宇. 转基因大豆的发展及其风险探究[J]. 粮食科技与经济, 2018, 43(7): 117-119. 178. 王华,张石虎,龚雪梅,等. 不同水分条件下杜鹃花转录因子的转录组分析[J]. 热带亚热带植物学报, 2018, 26(5): 515-522. 179. 汪琼,徐静,彭杰娣,等. PtrMYB106通过抑制内源脱落酸调节植物高盐胁迫适应能力[J]. 分子植物育种, 2019, 17(23): 7901-7908. 180. 吴敏,张文辉,周建云,等. 干旱胁迫对栓皮栎幼苗细根的生长与生理生化指标的影响[J]. 生态学报, 2014, (15): 4223-4233. 181. 肖建红,任志强,杨慧珍,等. 我国作物转基因方法研究进展[J]. 安徽农业科学, 2017, 45(33): 8-11. 182. 薛满德,龙艳,裴新梧. 基因编辑技术及其在作物育种中的应用与安全管理[J]. 中国农业科技导报, 2018, 20(9): 12-22. 183. 杨艳丽,李大红,李鸿雁. 过表达桃PpCuZnSOD基因提高大豆耐盐性研究[J]. 大豆科学, 2018a, 37(4): 525-530. 184. 杨艳丽,杨勇,李大红,等. 转桃PpCuZnSOD基因大豆的耐旱性[J]. 江苏农业学报, 2018b, 34(5): 978-983. 185. 杨静. 根癌农杆菌介导单子叶植物遗传转化研究进展[J]. 种子科技, 2019, 37(18): 10-12. 186. 杨淑萍,危常州,梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响[J]. 中国农业科学, 2010, 43(8): 1585-1593. 187. 闫婷. 植物抗逆性相关转录因子的研究进展[J]. 内蒙古林业科技, 2014, 40(2): 44-47. 188. 闫春娟,宋书宏,王文斌,等. 大豆耐旱种质的鉴定[J]. 大豆科学, 2015, 34(1): 163-167. 189. 于志晶,尚丽霞,蔡勤安,等. 水稻热激蛋白基因HSP90转化大豆的研究[J]. 大豆科学, 2016, 35(2): 222-227. 190. 张威,廖锡良,喻德跃. 大豆耐盐性研究进展[J]. 土壤与作物, 2018, 7(3): 284-292. 191. 张仁和,薛吉全,浦军,等. 干旱胁迫对玉米苗期植株生长和光合特性的影响[J]. 作物学报, 2011(3): 521-528. 192. 张金政,张起源,孙国峰,等. 干旱胁迫及复水对玉簪生长和光合作用的影响[J]. 草业学报, 2014(1): 167-176. 193. 张永芳,王润梅,张东旭,等. 我国大豆耐旱性研究进展[J]. 山西农业科学, 2011, 39(1): 88-90. 194. 张金林,李惠茹,郭姝媛,等. 高等植物适应盐逆境研究进展[J]. 草业学报, 2015, 24(12): 220-236. 195. 张纯,唐承晨,王吉永,等. 转录组学在植物应答逆境胁迫中的研究进展[J]. 生物学杂志, 2017, 34(2): 86-90. 196. 张梦娜,柯丽萍,孙玉强. 基因编辑新技术最新进展[J]. 中国细胞生物学学报, 2018, 40(12): 2098-2107. 197. 张增艳,陈洋,邵艳军. 植物激素调控植物防御反应的研究进展[J]. 作物杂志, 2009, (6): 13-17. 198. 赵山山,邸一桓,郝光飞. CRISPR-Cas9基因编辑技术在基因功能和作物育种中的研究进展[J]. 分子植物育种, 2019, 17(21): 7087-7093. 199. 周玉丽,朱平,胡能兵,等. 不同大豆品种发芽期耐旱性评价及耐旱种质筛选[J]. 大豆科学, 2015, 34(4): 616-623. 200. 周鸿慧,黄红,徐彬磊,等. NAC转录因子在植物对生物和非生物胁迫响应中的功能[J]. 植物生理学报, 2017, 53(8): 1372-1382. 201. 周艳,刘慧英,王松,等. 外源GSH对盐胁迫下番茄幼苗生长及抗逆生理指标的影响[J]. 西北植物学报, 2016, 36(3): 515-520. 202. 朱巍. 世界大豆产业概况[J]. 现代农业研究, 2018, (12): 39. 203. 朱智博,郁万文,曹福亮,等. PEG6000模拟干旱胁迫下银杏幼苗叶片的转录组分析[J].分子植物育种, 2020. 204. 曾志锋,闫小红,胡文海. NaCl胁迫对黄瓜幼苗生长及光合作用特征的影响[J]. 井冈山大学学报(自然科学版), 2014, 35(1): 39-42. |
中图分类号: | S33 |
开放日期: | 2020-08-19 |