- 无标题文档
查看论文信息

中文题名:

 Mito-ROS/HIF-1α/Glycolysis通路调控甲型流感病毒H1N1(A/WSN/1933)复制机制的初步研究    

姓名:

 常丽凤    

学号:

 2021107019    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090601    

学科名称:

 农学 - 兽医学 - 基础兽医学    

学生类型:

 硕士    

学位:

 兽医硕士    

学校:

 南京农业大学    

院系:

 动物医学院    

专业:

 基础兽医学    

研究方向:

 动物解剖学    

第一导师姓名:

 苏娟    

第一导师单位:

 南京农业大学    

完成日期:

 2024-06-05    

答辩日期:

 2024-05-23    

外文题名:

 Mito-ROS/HIF-1α/Glycolysis pathway regulates the replication mechanism of influenza A virus H1N1 (A/WSN/1933)     

中文关键词:

 代谢组学 ; 糖酵解 ; HIF-1α ; 线粒体ROS ; 甲型流感病毒(A/WSN/1933 (H1N1))    

外文关键词:

 Metabolomics ; Glycolysis ; HIF-1α ; Mitochondria ROS ; Influenza A virus (A/WSN/1933 (H1N1))    

中文摘要:

甲型流感病毒(IAV)是一种有包膜、负义、单链的RNA病毒,可在全球范围内造成大流行,导致较高的人类发病率和死亡率。由于抗原漂移、抗原转变及人畜共患等原因,导致甲型流感病毒的传播性、致病性不断发生改变,为防治工作带来持续挑战。

流感病毒感染会引起宿主细胞的代谢重编程,导致细胞中代谢物和代谢通路发生变化,从而为其复制提供能量和物质。但流感病毒如何引起代谢物和代谢通路发生变化,以及代谢物和代谢通路如何调控流感病毒复制,目前都未完全阐明。为了深入探索流感病毒感染与代谢物和代谢通路间的作用关系,我们以感染复数(MOI)为3的A/WSN/1933(WSN/H1N1)感染人非小细胞肺癌细胞(A549),12小时后收取细胞对其进行代谢组学和转录组学测序。本研究共筛选到101个上调的显著差异代谢物和108个下调的显著差异代谢物,对差异代谢物进行KEGG分析,发现碳水化合物代谢(糖代谢)、氨基酸代谢、脂代谢以及核苷酸代谢被富集到。通过MASE分析发现糖酵解和线粒体氧化中的代谢物浓度变化显著,因此我们将进一步研究糖酵解途径和线粒体氧化。通过代谢组学和转录组学联合分析发现,WSN感染激活HIF-1α信号通路,而HIF-1α信号通路与糖酵解具有关联性,糖酵解部分关键酶是HIF-1α信号通路的靶基因。有研究报道病毒感染后损伤线粒体,刺激线粒体产生大量活性氧(Mito-ROS),而Mito-ROS是HIF-1α的激活剂。

基于代谢组学和转录组学分析结果,我们构建了WSN感染的A549细胞和小鼠模型,深入研究Mito-ROS/HIF-1α-糖酵解轴在感染过程中对病毒复制的作用。结果发现WSN感染引发线粒体损伤,产生大量活性氧(mtROS),从而激活下游HIF-1α信号通路,导致葡萄糖转运体(Glut)、己糖激酶(HK2)以及乳酸脱氢酶(LDHA)的表达升高,最终促进葡萄糖摄取和糖酵解反应。另外,通过抑制A549细胞或小鼠体内的糖酵解、HIF-1α和ROS可有效缓解体外病毒的复制以及缓解感染WSN引起的损伤。综上,我们对WSN感染的A549细胞进行代谢组学分析以及代谢组学和转录组学的联合分析,在此基础上深入研究了Mito-ROS/HIF-1α-糖酵解轴在WSN感染过程中的调控作用以及分子机制,证实了Mito-ROS/HIF-1α -糖酵解轴在WSN感染过程中的分子机制,揭示了糖酵解作为抗流感病毒药物开发的潜在靶点。

甲型流感病毒(IAV)是一种有包膜、负义、单链的RNA病毒,可在全球范围内造成大流行,导致较高的人类发病率和死亡率。由于抗原漂移、抗原转变及人畜共患等原因,导致甲型流感病毒的传播性、致病性不断发生改变,为防治工作带来持续挑战。

流感病毒感染会引起宿主细胞的代谢重编程,导致细胞中代谢物和代谢通路发生变化,从而为其复制提供能量和物质。但流感病毒如何引起代谢物和代谢通路发生变化,以及代谢物和代谢通路如何调控流感病毒复制,目前都未完全阐明。为了深入探索流感病毒感染与代谢物和代谢通路间的作用关系,我们以感染复数(MOI)为3的A/WSN/1933(WSN/H1N1)感染人非小细胞肺癌细胞(A549),12小时后收取细胞对其进行代谢组学和转录组学测序。本研究共筛选到101个上调的显著差异代谢物和108个下调的显著差异代谢物,对差异代谢物进行KEGG分析,发现碳水化合物代谢(糖代谢)、氨基酸代谢、脂代谢以及核苷酸代谢被富集到。通过MASE分析发现糖酵解和线粒体氧化中的代谢物浓度变化显著,因此我们将进一步研究糖酵解途径和线粒体氧化。通过代谢组学和转录组学联合分析发现,WSN感染激活HIF-1α信号通路,而HIF-1α信号通路与糖酵解具有关联性,糖酵解部分关键酶是HIF-1α信号通路的靶基因。有研究报道病毒感染后损伤线粒体,刺激线粒体产生大量活性氧(Mito-ROS),而Mito-ROS是HIF-1α的激活剂。

基于代谢组学和转录组学分析结果,我们构建了WSN感染的A549细胞和小鼠模型,深入研究Mito-ROS/HIF-1α-糖酵解轴在感染过程中对病毒复制的作用。结果发现WSN感染引发线粒体损伤,产生大量活性氧(mtROS),从而激活下游HIF-1α信号通路,导致葡萄糖转运体(Glut)、己糖激酶(HK2)以及乳酸脱氢酶(LDHA)的表达升高,最终促进葡萄糖摄取和糖酵解反应。另外,通过抑制A549细胞或小鼠体内的糖酵解、HIF-1α和ROS可有效缓解体外病毒的复制以及缓解感染WSN引起的损伤。综上,我们对WSN感染的A549细胞进行代谢组学分析以及代谢组学和转录组学的联合分析,在此基础上深入研究了Mito-ROS/HIF-1α-糖酵解轴在WSN感染过程中的调控作用以及分子机制,证实了Mito-ROS/HIF-1α -糖酵解轴在WSN感染过程中的分子机制,揭示了糖酵解作为抗流感病毒药物开发的潜在靶点。

外文摘要:

Influenza A virus (IAV) is a negative-sense, single-stranded RNA virus enclosed in an envelope, capable of causing global pandemics with significant human morbidity and mortality rates. The evolving nature of influenza A virus, driven by antigenic drift, antigenic shift, and zoonotic transmission, presents ongoing challenges for prevention and control strategies.

Infection with the influenza virus can induce metabolic alterations in host cells, resulting in changes in metabolites and metabolic pathways that facilitate viral replication by providing necessary energy and materials. However, the precise mechanisms through which the influenza virus modulates metabolites and metabolic pathways, as well as how these components influence viral replication, remain incompletely understood. To delve deeper into the interplay between influenza virus infection and cellular metabolism, human lung epithelial cells (A549) were infected with A/WSN/1933 (WSN/H1N1) at a multiplicity of infection (MOI) of 3, and cell samples were collected 12 hours post-infection for metabolomic and transcriptomic sequencing. The analysis identified 101 significantly upregulated and 108 significantly downregulated differential metabolites. KEGG analysis of these metabolites revealed enrichment in carbohydrate metabolism (glycolysis), amino acid metabolism, lipid metabolism, and nucleotide metabolism. Notably, MASE analysis indicated notable alterations in metabolite concentrations within glycolysis and mitochondrial oxidation pathways, prompting further investigation into these areas. Integrated metabolomic and transcriptomic analysis unveiled that WSN infection triggers the HIF-1α signaling pathway, linked to glycolysis, with key glycolysis enzymes being target genes of this pathway. Viral infection was found to impair mitochondria, leading to increased production of reactive oxygen species (Mito-ROS) within mitochondria, which in turn activates HIF-1α.

Utilizing metabolomics and transcriptomics analyses, we established A549 cell and mouse models infected with WSN to explore the involvement of the Mito-ROS/HIF-1α-glycolysis axis in viral replication during infection. Findings indicated that WSN infection induced mitochondrial impairment, leading to heightened reactive oxygen species (mtROS) production, which in turn activated the downstream HIF-1α signaling cascade. This activation resulted in elevated expression levels of glucose transporter (Glut), hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA), consequently enhancing glucose uptake and glycolytic activity. Notably, inhibition of glycolysis, HIF-1α, and ROS in A549 cells or mice effectively attenuated viral replication in vitro and mitigated WSN-induced damage. In summary, our study integrated metabolomics analysis of WSN-infected A549 cells with transcriptomics analysis to elucidate the regulatory function of the Mito-ROS/HIF-1α-glycolysis axis in WSN infection, unveiling the underlying molecular mechanisms of viral infection. The investigation substantiated the molecular underpinnings of the Mito-ROS/HIF-1α-glycolysis axis in WSN infection and identified glycolysis as a prospective target for the advancement of antiviral interventions against influenza viruses.

参考文献:

[1] 李金桐,晏军,任志鸿,等.甲型流感病毒H1N1感染致小鼠肠道损伤机制的研究[J].疾病监测,2023,38(09):1108-1115.

[2] 徐攀洋.新冠肺炎患者康复期血清和尿液代谢组学研究[D].吉林大学, 2023.

[3] 徐思.猪繁殖与呼吸综合征病毒感染IPAM细胞的非靶向代谢组学分析[D].华中农业大学,2023.

[4] 姚伦.伪狂犬病毒感染猪肺泡巨噬细胞代谢组学研究及靶向树突状细胞的新型疫苗构建[D].华中农业大学,2023.

[5] Abrantes J L, Alves C M, Costa J, et al. Herpes simplex type 1 activates glycolysis through engagement of the enzyme 6-phosphofructo-1-kinase (PFK-1) [J]. Biochimica ET Biophysica Acta-molecular basis of disease, 2012, 1822(8):1198-1206.

[6] Ajaz S, McPhail M J, Singh K K, et al. Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19 [J]. American Journal of Physiology- Cell Physiol, 2021, 320(1):C57-c65.

[7] Allen C N S, Arjona S P, Santerre M, et al. Hallmarks of Metabolic Reprogramming and Their Role in Viral Pathogenesis [J]. Viruses, 2022, 14(3).

[8] Alnahhas N, Pouliot E and Saucier L. The hypoxia-inducible factor 1 pathway plays a critical role in the development of breast muscle myopathies in broiler chickens: a comprehensive review [J]. Frontiers in Physiology, 2023, 14:1260987.

[9] Alonso A, Marsal S and Julià A. Analytical methods in untargeted metabolomics: state of the art in 2015 [J]. Frontiers in Bioengineering and Biotechnology, 2015, 3:23.

[10] Andrieux P, Chevillard C, Cunha-Neto E, et al. Mitochondria as a Cellular Hub in Infection and Inflammation [J]. International Journal of Molecular Science, 2021, 22(21).

[11] Bappy S S, Haque Asim M M, Ahasan M M, et al. Virus-induced host Cell Metablismolic alteration [J]. Review in Medical Virology, 2024, 34(1):e2505.

[12] Bardell D. Glucose uptake and lactic acid production of adenovirus type 5-infected HEp-2 cells cultured under exponential growth and stationary phase conditions [J]. Microbios, 1977, 20(81-82):139-144.

[13] Belongia E A, Simpson M D, King J P, et al. Variable influenza vaccine effectiveness by subtype: a systematic review and meta-analysis of test-negative design studies [J]. Lancet Infectious Diseases, 2016, 16(8):942-951.

[14] Bhatt A N, Kumar A, Rai Y, et al. Glycolytic inhibitor 2-deoxy-d-glucose attenuates SARS-CoV-2 multiplication in host cells and weakens the infective potential of progeny virions [J]. Life Scienceence, 2022, 295:120411.

[15] Bhutia Y D and Ganapathy V. Glutamine transporters in mammalian cells and their functions in physiology and cancer [J]. Biochimica ET Biophysica Acta-molecular basis of disease, 2016, 1863(10):2531-2539.

[16] Birnbaum M J, Haspel H C and Rosen O M. Cloning and characterization of a cDNA encoding the rat brain glucose-transporter protein [J]. Proceedings of the National Academy of Science of the United States of America, 1986, 83(16):5784-5788.

[17] Bloise F F, Santos A T, de Brito J, et al. Sepsis Impairs Thyroid Hormone Signaling and Mitochondrial Function in the Mouse Diaphragm [J]. Thyroid, 2020, 30(7):1079-1090.

[18] Bodily J M, Mehta K P and Laimins L A. Human papillomavirus E7 enhances hypoxia-inducible factor 1-mediated transcription by inhibiting binding of histone deacetylases [J]. Cancer Research, 2011, 71(3):1187-1195.

[19] Bojkova D, Costa R, Reus P, et al. Targeting the Pentose Phosphate Pathway for SARS-CoV-2 Therapy [J]. Metabolites, 2021, 11(10).

[20] Bojkova D, Klann K, Koch B, et al. Proteomics of SARS-CoV-2-infected host cells reveals therapy targets [J]. Nature, 2020, 583(7816):469-472.

[21] Boodhoo N, Kamble N, Sharif S, et al. Glutaminolysis and Glycolysis Are Essential for Optimal Replication of Marek's Disease Virus [J]. Journal of Virology, 2020, 94(4).

[22] Brody H. Influenza [J]. Nature, 2019, 573(7774):S49.

[23] Cai T T, Ye S B, Liu Y N, et al. LMP1-mediated glycolysis induces myeloid-derived suppressor cell expansion in nasopharyngeal carcinoma [J]. PLoS Pathogens, 2017, 13(7):e1006503.

[24] Carroll P A, Kenerson H L, Yeung R S, et al. Latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors [J]. Journal of Virology, 2006, 80(21):10802-10812.

[25] Chattopadhyay D, Mukhopadhyay A, Ojha D, et al. Immuno-metabolic changes in herpes virus infection [J]. Cytokine, 2018, 112:52-62.

[26] Chauhan R P and Gordon M L. An overview of influenza A virus genes, protein functions, and replication cycle highlighting important updates [J]. Virus Genes, 2022, 58(4):255-269.

[27] Chen L, Lu W, Wang L, et al. Metabolite discovery through global annotation of untargeted metabolomics data [J]. Nature Methods, 2021, 18(11):1377-1385.

[28] Chen L F, Cai J X, Zhang J J, et al. Respiratory syncytial virus co-opts hypoxia-inducible factor-1α-mediated glycolysis to favor the production of infectious virus [J]. mBio, 2023, 14(5):e0211023.

[29] Ciminski K, Chase G P, Beer M, et al. Influenza A Viruses: Understanding Human Host Determinants [J]. Trends in Molecular Medicine, 2021, 27(2):104-112.

[30] Codo A C, Davanzo G G, Monteiro L B, et al. Elevated Glucose Levels Favor SARS-CoV-2 Infection and Monocyte Response through a HIF-1α/Glycolysis-Dependent Axis [J]. Cell Metablism, 2020, 32(3):437-446.e435.

[31] Cowling B J, Ip D K, Fang V J, et al. Aerosol transmission is an important mode of influenza A virus spread [J]. Nature Communications, 2013, 4:1935.

[32] Cox N J and Subbarao K. Global epidemiology of influenza: past and present [J]. Annual Review of Medicine, 2000, 51:407-421.

[33] de Vries R D, Herfst S and Richard M. Avian Influenza A Virus Pandemic Preparedness and Vaccine Development [J]. Vaccines (Basel), 2018, 6(3).

[34] DeBerardinis R J and Chandel N S. Fundamentals of cancer metabolism [J]. Science Advances, 2016, 2(5):e1600200.

[35] Delgado T, Carroll P A, Punjabi A S, et al. Induction of the Warburg effect by Kaposi's sarcoma herpesvirus is required for the maintenance of latently infected endothelial cells [J]. Proceedings of the National Academy of Science of the United States of America, 2010, 107(23):10696-10701.

[36] Delgado T, Sanchez E L, Camarda R, et al. Global metabolic profiling of infection by an oncogenic virus: KSHV induces and requires lipogenesis for survival of latent infection [J]. PLoS Pathogens, 2012, 8(8):e1002866.

[37] Deyde V M, Sheu T G, Trujillo A A, et al. Detection of molecular markers of drug resistance in 2009 pandemic influenza A (H1N1) viruses by pyrosequencing [J]. Antimicrob Agents Chemother, 2010, 54(3):1102-1110.

[38] Diamond D L, Syder A J, Jacobs J M, et al. Temporal proteome and lipidome profiles reveal hepatitis C virus-associated reprogramming of hepatocellular metabolism and bioenergetics [J]. PLoS Pathogens, 2010, 6(1):e1000719.

[39] Dou D, Revol R, Östbye H, et al. Influenza A Virus Cell Entry, Replication, Virion Assembly and Movement [J]. Frontiers in Immunology, 2018, 9:1581.

[40] Downes N L, Laham-Karam N, Kaikkonen M U, et al. Differential but Complementary HIF1α and HIF2α Transcriptional Regulation [J]. Molecular Therapy, 2018, 26(7):1735-1745.

[41] Eagle H and Habel K. The nutritional requirements for the propagation of poliomyelitis virus by the HeLa cell [J]. The Journal of Experimental Medicine, 1956, 104(2):271-287.

[42] Eisenreich W, Rudel T, Heesemann J, et al. How Viral and Intracellular Bacterial Pathogens Reprogram the Metabolism of Host Cells to Allow Their Intracellular Replication [J]. Frontiers in Cellular and Infection Microbiology, 2019, 9:42.

[43] Esparza M, Bhat P and Fontoura B M. Viral-host interactions during splicing and nuclear export of influenza virus mRNAs [J]. Current Opinion in Virology, 2022, 55:101254.

[44] Feng J, Li J, Wu L, et al. Emerging roles and the regulation of aerobic glycolysis in hepatocellular carcinoma [J]. Journal of Experimental & Clinnical Cancer Research, 2020, 39(1):126.

[45] Fodor E and Te Velthuis A J W. Structure and Function of the Influenza Virus Transcription and Replication Machinery [J]. Cold Spring Harbor Perspectives in Medicine, 2020, 10(9).

[46] Fontaine K A, Camarda R and Lagunoff M. Vaccinia virus requires glutamine but not glucose for efficient replication [J]. Journal of Virology, 2014, 88(8):4366-4374.

[47] Forrest H L and Webster R G. Perspectives on influenza evolution and the role of research [J]. Animal Health Research Reviews, 2010, 11(1):3-18.

[48] Fukumoto H, Seino S, Imura H, et al. Sequence, tissue distribution, and chromosomal localization of mRNA encoding a human glucose transporter-like protein [J]. Proceedings of the National Academy of Science of the United States of America, 1988, 85(15):5434-5438.

[49] Ganapathy-Kanniappan S and Geschwind J F. Tumor glycolysis as a target for cancer therapy: progress and prospects [J]. Molecular Cancer, 2013, 12:152.

[50] Garland P B, Randle P J and Newsholme E A. Citrate as an intermediary in the inhibition of phosphofructokinase in rat heart muscle by fatty acids, ketone bodies, pyruvate, diabetes, and starvation [J]. Nature, 1963, 200:169-170.

[51] Geraghty R J, Aliota M T and Bonnac L F. Broad-Spectrum Antiviral Strategies and Nucleoside Analogues [J]. Viruses, 2021, 13(4).

[52] Girdhar K, Powis A, Raisingani A, et al. Viruses and Metabolism: The Effects of Viral Infections and Viral Insulins on Host Metabolism [J]. Annual Review of Virology, Vol 8, 2021, 8(1):373-391.

[53] Gong Y, Ji P, Yang Y S, et al. Metabolic-Pathway-Based Subtyping of Triple-Negative Breast Cancer Reveals Potential Therapeutic Targets [J]. Cell Metablism, 2021, 33(1):51-64.e59.

[54] Gong Y, Tang N, Liu P, et al. Newcastle disease virus degrades SIRT3 via PINK1-PRKN-dependent mitophagy to reprogram energy metabolism in infected cells [J]. Autophagy, 2022, 18(7):1503-1521.

[55] Gou H, Bian Z, Li Y, et al. Metabolomics Exploration of Pseudorabies Virus Reprogramming Metabolic Profiles of PK-15 Cells to Enhance Viral Replication [J]. Frontiers in Cellular and Infection Microbiology, 2020, 10:599087.

[56] Gualdoni G A, Mayer K A, Kapsch A M, et al. Rhinovirus induces an anabolic reprogramming in host Cell Metablismolism essential for viral replication [J]. Proceedings of the National Academy of Science of the United States of America, 2018, 115(30):E7158-e7165.

[57] Guo Y, Meng X, Ma J, et al. Human papillomavirus 16 E6 contributes HIF-1α induced Warburg effect by attenuating the VHL-HIF-1α interaction [J]. International Journal of Molecular Sciences, 2014, 15(5):7974-7986.

[58] Haas K M, McGregor M J, Bouhaddou M, et al. Proteomic and genetic analyses of influenza A viruses identify pan-viral host targets [J]. Nature Communications, 2023, 14(1):6030.

[59] Han J, Perez J T, Chen C, et al. Genome-wide CRISPR/Cas9 Screen Identifies Host Factors Essential for Influenza Virus Replication [J]. Cell Reports, 2018, 23(2):596-607.

[60] Havers F P, Campbell A P, Uyeki T M, et al. Commentary: A Historical Review of Centers for Disease Control and Prevention Antiviral Treatment and Postexposure Chemoprophylaxis Guidance for Human Infections With Novel Influenza A Viruses Associated With Severe Human Disease [J]. Journal of Infectious Diseases, 2017, 216(suppl_4):S575-s580.

[61] Holmes E C, Hurt A C, Dobbie Z, et al. Understanding the Impact of Resistance to Influenza Antivirals [J]. Clinical Microbiol Reviews, 2021, 34(2).

[62] Hosotani M, Kawasaki T, Hasegawa Y, et al. Physiological and Pathological Mitochondrial Clearance Is Related to Pectoralis Major Muscle Pathogenesis in Broilers With Wooden Breast Syndrome [J]. Frontiers in Physiology, 2020, 11:579.

[63] [59] Houghton M. Hepatitis C Virus: 30 Years after Its Discovery [J]. Cold Spring Harbor Perspectives in Medicine, 2019, 9(12).

[64] Huang L E, Gu J, Schau M, et al. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway [J]. Proceedings of the National Academy of Science of the United States of America, 1998, 95(14):7987-7992.

[65] Hutchinson E C, Charles P D, Hester S S, et al. Conserved and host-specific features of influenza virion architecture [J]. Nature Communications, 2014, 5:4816.

[66] Iuliano A D, Roguski K M, Chang H H, et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study [J]. Lancet, 2018, 391(10127):1285-1300.

[67] Ivanisevic J and Want E J. From Samples to Insights into Metabolism: Uncovering Biologically Relevant Information in LC-HRMS Metabolomics Data [J]. Metabolites, 2019, 9(12).

[68] Jelic M D, Mandic A D, Maricic S M, et al. Oxidative stress and its role in cancer [J]. Journal of Cancer Research and Therapeutics, 2021, 17(1):22-28.

[69] Jiang S, Wang Y, Luo L, et al. AMP-activated protein kinase regulates cancer cell growth and metabolism via nuclear and mitochondria events [J]. J Cell Mol Med, 2019, 23(6):3951-3961.

[70] Johnson K E E, Song T, Greenbaum B, et al. Getting the flu: 5 key facts about influenza virus evolution [J]. PLoS Pathogens, 2017, 13(8):e1006450.

[71] Jorba N, Coloma R and Ortín J. Genetic trans-complementation establishes a new model for influenza virus RNA transcription and replication [J]. PLoS Pathogens, 2009, 5(5):e1000462.

[72] Kang H T and Hwang E S. 2-Deoxyglucose: an anticancer and antiviral therapeutic, but not any more a low glucose mimetic [J]. Life Science, 2006, 78(12):1392-1399.

[73] Kant R, Bali A, Singh N, et al. Prolyl 4 hydroxylase: a critical target in the pathophysiology of diseases [J]. Korean Journal of Physiology & Pharmacology, 2013, 17(2):111-120.

[74] Karlas A, Machuy N, Shin Y, et al. Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication [J]. Nature, 2010, 463(7282):818-822.

[75] Katam R, Lin C, Grant K, et al. Advances in Plant Metabolomics and Its Applications in Stress and Single-Cell Biology [J]. International Journal of Molecular Sciences, 2022, 23(13).

[76] Keshavarz M, Solaymani-Mohammadi F, Namdari H, et al. Metabolic host response and therapeutic approaches to influenza infection [J]. Cellular & Molecular Biology Letters, 2020, 25:15.

[77] Kierans S J and Taylor C T. Regulation of glycolysis by the hypoxia-inducible factor (HIF): implications for cellular physiology [J]. Journal of Physiology-London, 2021, 599(1):23-37.

[78] Killingley B, Greatorex J, Digard P, et al. The environmental deposition of influenza virus from patients infected with influenza A(H1N1)pdm09: Implications for infection prevention and control [J]. Journal of Infection and Public Health, 2016, 9(3):278-288.

[79] Killingley B and Nguyen-Van-Tam J. Routes of influenza transmission [J]. Influenza and Other Respiratory Viruses, 2013, 7 Suppl 2(Suppl 2):42-51.

[80] Kim H, Webster R G and Webby R J. Influenza Virus: Dealing with a Drifting and Shifting Pathogen [J]. Viral Immunology, 2018, 31(2):174-183.

[81] Klemperer H. Glucose breakdown in chick embryo cells infected with influenza virus [J]. Virology, 1961, 13:68-77.

[82] Kochs G, García-Sastre A and Martínez-Sobrido L. Multiple anti-interferon actions of the influenza A virus NS1 protein [J]. Journal of Virology, 2007, 81(13):7011-7021.

[83] Kohio H P and Adamson A L. Glycolytic control of vacuolar-type ATPase activity: a mechanism to regulate influenza viral infection [J]. Virology, 2013, 444(1-2):301-309.

[84] Korenaga M, Wang T, Li Y, et al. Hepatitis C virus core protein inhibits mitochondrial electron transport and increases reactive oxygen species (ROS) production [J]. Journal of Biological Chemistry, 2005, 280(45):37481-37488.

[85] Krischuns T, Lukarska M, Naffakh N, et al. Influenza Virus RNA-Dependent RNA Polymerase and the Host Transcriptional Apparatus [J]. Annual Review of Biochemistry, 2021, 90:321-348.

[86] Kuhajda F P, Pizer E S, Li J N, et al. Synthesis and antitumor activity of an inhibitor of fatty acid synthase [J]. Proceedings of the National Academy of Science of the United States of America, 2000, 97(7):3450-3454.

[87] Kuhn J H, Adkins S, Alkhovsky S V, et al. 2022 taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales [J]. Archives of Virology, 2022, 167(12):2857-2906.

[88] Kumar N, Sharma S, Kumar R, et al. Host-Directed Antiviral Therapy [J]. Clinical Microbiol Reviews, 2020, 33(3).

[89] Kumari R, Sharma S D, Kumar A, et al. Antiviral Approaches against Influenza Virus [J]. Clinical Microbiology Reviews, 2023, 36(1):e0004022.

[90] Kuszewski K and Brydak L. The epidemiology and history of influenza [J]. Biomedicine & Pharmacotherapy, 2000, 54(4):188-195.

[91] Lai D, Tan C L, Gunaratne J, et al. Localization of HPV-18 E2 at mitochondrial membranes induces ROS release and modulates host Cell Metablismolism [J]. PLoS One, 2013, 8(9):e75625.

[92] Landini M P. Early enhanced glucose uptake in human cytomegalovirus-infected cells [J]. Journal of General Virology, 1984, 65 ( Pt 7):1229-1232.

[93] Leslie W D and Morin S N. New Developments in Fracture Risk Assessment for Current Osteoporosis Reports [J]. Current Osteoporosis Reports, 2020, 18(3):115-129.

[94] Lewis V J, Jr. and Scott L V. Nutritional requirements for the production of herpes simplex virus. I. Influence of glucose and glutamine of herpes simplex virus production by HeLa cells [J]. Journal Of Bacteriology, 1962, 83(3):475-482.

[95] Li H, Lin C, Qi W, et al. Senecavirus A-induced glycolysis facilitates virus replication by promoting lactate production that attenuates the interaction between MAVS and RIG-I [J]. PLoS Pathogens, 2023, 19(5):e1011371.

[96] Li T C, Chan M C and Lee N. Clinical Implications of Antiviral Resistance in Influenza [J]. Viruses, 2015, 7(9):4929-4944.

[97] Li Z B, Liu J, Zhang S Q, et al. Novel potential metabolic biomarker panel for early detection of severe COVID-19 using full-spectrum metabolome and whole-transcriptome analyses [J]. Signal Transduction and Targeted Therapy, 2022, 7(1):129.

[98] Liang Y. Pathogenicity and virulence of influenza [J]. Virulence, 2023, 14(1):2223057.

[99] Liu P, Cai Y, Qiu S, et al. Critical roles of functional molecule metabolites [J]. Frontiers in Molecular Biosciences, 2023, 10:1119588.

[100] Long J S, Mistry B, Haslam S M, et al. Host and viral determinants of influenza A virus species specificity [J]. Nature Reviews Microbiology, 2019, 17(2):67-81.

[101] Lyu X, Wang J, Guo X, et al. EBV-miR-BART1-5P activates AMPK/mTOR/HIF1 pathway via a PTEN independent manner to promote glycolysis and angiogenesis in nasopharyngeal carcinoma [J]. PLoS Pathogens, 2018, 14(12):e1007484.

[102] Macias R I R, Cardinale V, Kendall T J, et al. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions [J]. Gut, 2022, 71(8):1669-1683.

[103] Manchester M and Anand A. Metabolomics: Strategies to Define the Role of Metabolism in Virus Infection and Pathogenesis [J]. Advances in Virus Research, 2017, 98:57-81.

[104] Mannella C A, Lederer W J and Jafri M S. The connection between inner membrane topology and mitochondrial function [J]. Journal of Molecular and Cellular Cardiology, 2013, 62:51-57.

[105] Masoodi M, Gastaldelli A, Hyötyläinen T, et al. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests [J]. Nature Reviews Gastroenterology & Hepatology, 2021, 18(12):835-856.

[106] Masoud G N and Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy [J]. Acta Pharmaceutica Sinica B, 2015, 5(5):378-389.

[107] Maxwell P H. Hypoxia-inducible factor as a physiological regulator [J]. Experimental Physiology, 2005, 90(6):791-797.

[108] Medina R A and García-Sastre A. Influenza A viruses: new research developments [J]. Nature Reviews Microbiology, 2011, 9(8):590-603.

[109] Moreira E A, Yamauchi Y and Matthias P. How Influenza Virus Uses Host Cell Pathways during Uncoating [J]. Cells, 2021, 10(7).

[110] Morens D M and Taubenberger J K. Making Universal Influenza Vaccines: Lessons From the 1918 Pandemic [J]. Journal of Infectious Diseases, 2019, 219(Suppl_1):S5-s13.

[111] Morinet F, Casetti L, François J H, et al. Oxygen tension level and human viral infections [J]. Virology, 2013, 444(1-2):31-36.

[112] Morinet F, Parent M, Pillet S, et al. Hypoxia inducible factor one alpha and human viral pathogens [J]. Current Research in Translational Medicine, 2017, 65(1):7-9.

[113] Morris D R, Qu Y, Agrawal A, et al. HIF-1α Modulates Core Metabolism and Virus Replication in Primary Airway Epithelial Cells Infected with Respiratory Syncytial Virus [J]. Viruses, 2020, 12(10).

[114] Munger J, Bajad S U, Coller H A, et al. Dynamics of the cellular metabolome during human cytomegalovirus infection [J]. PLoS Pathogens, 2006, 2(12):e132.

[115] Munger J, Bennett B D, Parikh A, et al. Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy [J]. Nature Biotechnology, 2008, 26(10):1179-1186.

[116] Nolan K E, Baer L A, Karekar P, et al. Metabolic shifts modulate lung injury caused by infection with H1N1 influenza A virus [J]. Virology, 2021, 559:111-119.

[117] Ohh M, Park C W, Ivan M, et al. Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein [J]. Nature Cell Biology, 2000, 2(7):423-427.

[118] Osterholm M T, Kelley N S, Sommer A, et al. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis [J]. Lancet Infectious Diseases, 2012, 12(1):36-44.

[119] Palomba E, Castelli V, Renisi G, et al. Antiviral Treatments for Influenza [J]. Seminars in Respiratory and Critical Care Medicine, 2021, 42(6):859-872.

[120] Pan T, Sun S, Chen Y, et al. Immune effects of PI3K/Akt/HIF-1α-regulated glycolysis in polymorphonuclear neutrophils during sepsis [J]. Critical Care, 2022, 26(1):29.

[121] Pang Y, Zhou Y, Wang Y, et al. Porcine Reproductive and Respiratory Syndrome Virus nsp1β Stabilizes HIF-1α to Enhance Viral Replication [J]. Microbiology Spectrum, 2022, 10(6):e0317322.

[122] Pant A, Dsouza L and Yang Z. Alteration in Cellular Signaling and Metabolic Reprogramming during Viral Infection [J]. mBio, 2021, 12(5):e0063521.

[123] Pardridge W M, Boado R J and Farrell C R. Brain-type glucose transporter (GLUT-1) is selectively localized to the blood-brain barrier. Studies with quantitative western blotting and in situ hybridization [J]. Journal of Biological Chemistry, 1990, 265(29):18035-18040.

[124] Passalacqua K D, Lu J, Goodfellow I, et al. Glycolysis Is an Intrinsic Factor for Optimal Replication of a Norovirus [J]. mBio, 2019, 10(2).

[125] Paterson D and Fodor E. Emerging roles for the influenza A virus nuclear export protein (NEP) [J]. PLoS Pathogens, 2012, 8(12):e1003019.

[126] Patrozou E and Mermel L A. Does influenza transmission occur from asymptomatic infection or prior to symptom onset? [J]. Public Health Reports, 2009, 124(2):193-196.

[127] Paul S, Ghosh S and Kumar S. Tumor glycolysis, an essential sweet tooth of tumor cells [J]. Seminars in Cancer Biology, 2022, 86(Pt 3):1216-1230.

[128] Paules C I and Fauci A S. Influenza Vaccines: Good, but We Can Do Better [J]. Journal of Infectious Diseases, 2019, 219(Suppl_1):S1-s4.

[129] Pavlova N N and Thompson C B. The Emerging Hallmarks of Cancer Metabolism [J]. Cell Metablism, 2016, 23(1):27-47.

[130] Perrin-Cocon L, Kundlacz C, Jacquemin C, et al. Domain 2 of Hepatitis C Virus Protein NS5A Activates Glucokinase and Induces Lipogenesis in Hepatocytes [J]. International Journal of Molecular Sciences, 2022, 23(2).

[131] Pflug A, Lukarska M, Resa-Infante P, et al. Structural insights into RNA synthesis by the influenza virus transcription-replication machine [J]. Virus Research, 2017, 234:103-117.

[132] Pichlmair A, Kandasamy K, Alvisi G, et al. Viral immune modulators perturb the human molecular network by common and unique strategies [J]. Nature, 2012, 487(7408):486-490.

[133] Polcicova K, Badurova L and Tomaskova J. Metabolic reprogramming as a feast for virus replication [J]. Acta Virologica, 2020, 64(2):201-215.

[134] Qiao Y, Wang Z, Han Z, et al. Global exploration of the metabolic requirements of gallid alphaherpesvirus 1 [J]. PLoS Pathogens, 2020, 16(8):e1008815.

[135] Qiu B, Yuan P, Du X, et al. Hypoxia inducible factor-1α is an important regulator of macrophage biology [J]. Heliyon, 2023, 9(6):e17167.

[136] Qiu S, Cai Y, Yao H, et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets [J]. Signal Transduction and Targeted Therapy, 2023, 8(1):132.

[137] Ramière C, Rodriguez J, Enache L S, et al. Activity of hexokinase is increased by its interaction with hepatitis C virus protein NS5A [J]. Journal of Virology, 2014, 88(6):3246-3254.

[138] Ren L, Zhang W, Han P, et al. Influenza A virus (H1N1) triggers a hypoxic response by stabilizing hypoxia-inducible factor-1α via inhibition of proteasome [J]. Virology, 2019, 530:51-58.

[139] Ren L, Zhang W, Zhang J, et al. Influenza A Virus (H1N1) Infection Induces Glycolysis to Facilitate Viral Replication [J]. Virologica Sinica, 2021, 36(6):1532-1542.

[140] Ripoli M, D'Aprile A, Quarato G, et al. Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation [J]. Journal of Virology, 2010, 84(1):647-660.

[141] Ritter J B, Wahl A S, Freund S, et al. Metabolic effects of influenza virus infection in cultured animal cells: Intra- and extracellular metabolite profiling [J]. BMC Systems Biology, 2010, 4:61.

[142] Roberts P C, Lamb R A and Compans R W. The M1 and M2 proteins of influenza A virus are important determinants in filamentous particle formation [J]. Virology, 1998, 240(1):127-137.

[143] Rossman J S, Jing X, Leser G P, et al. Influenza virus m2 ion channel protein is necessary for filamentous virion formation [J]. Journal of Virology, 2010, 84(10):5078-5088.

[144] Saito Y and Price R W. Enhanced regional uptake of 2-deoxy-D-[14C]glucose in focal herpes simplex type 1 encephalitis: autoradiographic study in the rat [J]. Neurology, 1984, 34(3):276-284.

[145] Sanchez E L and Lagunoff M. Viral activation of cellular metabolism [J]. Virology, 2015, 479-480:609-618.

[146] [143] Santos S A D and Andrade D R J. HIF-1alpha and infectious diseases: a new frontier for the development of new therapies [J]. Revista Do Instituto De Medicina Tropical De Sao Paulo, 2017, 59:e92.

[147] Schlesinger R W and Karr H V. Influenza virus and its mucoprotein substrate in the chorioallantoic membrane of the chick embryo. II. Stepwise inactivation of substrate and its relation to the mode of viral multiplication [J]. The Journal of Experimental Medicine, 1956, 103(3):333-349.

[148] Semenza G L. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1 [J]. Annual Review of Cell And Developmental Biology, 1999, 15:551-578.

[149] Semenza G L, Agani F, Booth G, et al. Structural and functional analysis of hypoxia-inducible factor 1 [J]. Kidney International, 1997, 51(2):553-555.

[150] Sempere Borau M and Stertz S. Entry of influenza A virus into host cells - recent progress and remaining challenges [J]. Current Opinion in Virology, 2021, 48:23-29.

[151] Shao W, Li X, Goraya M U, et al. Evolution of Influenza A Virus by Mutation and Re-Assortment [J]. International Journal of Molecular Sciences, 2017, 18(8).

[152] Shapira S D, Gat-Viks I, Shum B O, et al. A physical and regulatory map of host-influenza interactions reveals pathways in H1N1 infection [J]. Cell, 2009, 139(7):1255-1267.

[153] Singh S, Singh P K, Suhail H, et al. AMP-Activated Protein Kinase Restricts Zika Virus Replication in Endothelial Cells by Potentiating Innate Antiviral Responses and Inhibiting Glycolysis [J]. Journal of Immunology, 2020, 204(7):1810-1824.

[154] Smallwood H S, Duan S, Morfouace M, et al. Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention [J]. Cell Reports, 2017, 19(8):1640-1653.

[155] Smith S B, Dampier W, Tozeren A, et al. Identification of common biological pathways and drug targets across multiple respiratory viruses based on human host gene expression analysis [J]. PLoS One, 2012, 7(3):e33174.

[156] Smyk J M, Szydłowska N, Szulc W, et al. Evolution of Influenza Viruses-Drug Resistance, Treatment Options, and Prospects [J]. International Journal of Molecular Sciences, 2022, 23(20).

[157] Song W, Li D, Tao L, et al. Solute carrier transporters: the metabolic gatekeepers of immune cells [J]. Acta Pharmaceutica Sinica B, 2020, 10(1):61-78.

[158] Starnes J W, Parry T L, O'Neal S K, et al. Exercise-Induced Alterations in Skeletal Muscle, Heart, Liver, and Serum Metabolome Identified by Non-Targeted Metabolomics Analysis [J]. Metabolites, 2017, 7(3).

[159] Stukalov A, Girault V, Grass V, et al. Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV [J]. Nature, 2021, 594(7862):246-252.

[160] Su M A, Huang Y T, Chen I T, et al. An invertebrate Warburg effect: a shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway [J]. PLoS Pathogens, 2014, 10(6):e1004196.

[161] Sung W W, Chen P R, Liao M H, et al. Enhanced aerobic glycolysis of nasopharyngeal carcinoma cells by Epstein-Barr virus latent membrane protein 1 [J]. Experimental Cell Research, 2017, 359(1):94-100.

[162] Sung W W, Chu Y C, Chen P R, et al. Positive regulation of HIF-1A expression by EBV oncoprotein LMP1 in nasopharyngeal carcinoma cells [J]. Cancer Letters, 2016, 382(1):21-31.

[163] Taubenberger J K and Kash J C. Influenza virus evolution, host adaptation, and pandemic formation [J]. Cell Host Microbe, 2010, 7(6):440-451.

[164] Te Velthuis A J W, Grimes J M and Fodor E. Structural insights into RNA polymerases of negative-sense RNA viruses [J]. Nature Reviews Microbiology, 2021, 19(5):303-318.

[165] Thai M, Graham N A, Braas D, et al. Adenovirus E4ORF1-induced MYC activation promotes host cell anabolic glucose metabolism and virus replication [J]. Cell Metablism, 2014, 19(4):694-701.

[166] Thaker S K, Ch'ng J and Christofk H R. Viral hijacking of cellular metabolism [J]. BMC Biology, 2019, 17(1):59.

[167] Thaker S K, Chapa T, Garcia G, Jr., et al. Differential Metabolic Reprogramming by Zika Virus Promotes Cell Death in Human versus Mosquito Cells [J]. Cell Metablism, 2019, 29(5):1206-1216.e1204.

[168] Thomas L W and Ashcroft M. Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria [J]. Cellular and Molecular Life Sciences, 2019, 76(9):1759-1777.

[169] Thyrsted J and Holm C K. Virus-induced metabolic reprogramming and innate sensing hereof by the infected host [J]. Current Opinion in Biotechnology, 2021, 68:44-50.

[170] Tian M, Liu W, Li X, et al. HIF-1α promotes SARS-CoV-2 infection and aggravates inflammatory responses to COVID-19 [J]. Signal Transduction and Targeted Therapy, 2021, 6(1):308.

[171] Tricco A C, Chit A, Soobiah C, et al. Comparing influenza vaccine efficacy against mismatched and matched strains: a systematic review and meta-analysis [J]. BMC Medicine, 2013, 11:153.

[172] Vander Heiden M G, Cantley L C and Thompson C B. Understanding the Warburg effect: the metabolic requirements of cell proliferation [J]. Science, 2009, 324(5930):1029-1033.

[173] von Itzstein M. The war against influenza: discovery and development of sialidase inhibitors [J]. Nature Reviews Drug Discovery, 2007, 6(12):967-974.

[174] Wandzik J M, Kouba T and Cusack S. Structure and Function of Influenza Polymerase [J]. Cold Spring Harbor Perspectives in Medicine, 2021, 11(9).

[175] Wang R, Zhu Y, Lin X, et al. Influenza M2 protein regulates MAVS-mediated signaling pathway through interacting with MAVS and increasing ROS production [J]. Autophagy, 2019, 15(7):1163-1181.

[176] Wright E M, Loo D D and Hirayama B A. Biology of human sodium glucose transporters [J]. Physiological Reviews, 2011, 91(2):733-794.

[177] Wu Z, Jia J, Xu X, et al. Human herpesvirus 6A promotes glycolysis in infected T cells by activation of mTOR signaling [J]. PLoS Pathogens, 2020, 16(6):e1008568.

[178] Yau C, Low J Z H, Gan E S, et al. Dysregulated metabolism underpins Zika-virus-infection-associated impairment in fetal development [J]. Cell Reports, 2021, 37(11):110118.

[179] Yogev O, Henderson S, Hayes M J, et al. Herpesviruses shape tumour microenvironment through exosomal transfer of viral microRNAs [J]. PLoS Pathogens, 2017, 13(8):e1006524.

[180] Yogev O, Lagos D, Enver T, et al. Kaposi's sarcoma herpesvirus microRNAs induce metabolic transformation of infected cells [J]. PLoS Pathogens, 2014, 10(9):e1004400.

[181] Yoo S J, Kwon T and Lyoo Y S. Challenges of influenza A viruses in humans and animals and current animal vaccines as an effective control measure [J]. Clinical and Experimental Vaccine Research, 2018, 7(1):1-15.

[182] Yu L, Lu M, Jia D, et al. Modeling the Genetic Regulation of Cancer Metabolism: Interplay between Glycolysis and Oxidative Phosphorylation [J]. Cancer Research, 2017, 77(7):1564-1574.

[183] Yu Y, Clippinger A J and Alwine J C. Viral effects on metabolism: changes in glucose and glutamine utilization during human cytomegalovirus infection [J]. Trends Microbiol, 2011, 19(7):360-367.

[184] Zhang J, Jia L, Lin W, et al. Epstein-Barr Virus-Encoded Latent Membrane Protein 1 Upregulates Glucose Transporter 1 Transcription via the mTORC1/NF-κB Signaling Pathways [J]. Journal of Virology, 2017, 91(6).

[185] Zhang J, Yuan Z, Li X, et al. Activation of the JNK/COX-2/HIF-1α axis promotes M1 macrophage via glycolytic shift in HIV-1 infection [J]. Life Science Alliance, 2023, 6(12).

[186] Zhang W, Wang G, Xu Z G, et al. Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS [J]. Cell, 2019, 178(1):176-189.e115.

[187] Zhao R Z, Jiang S, Zhang L, et al. Mitochondrial electron transport chain, ROS generation and uncoupling (Review) [J]. International Journal of Molecular Medicine, 2019, 44(1):3-15.

[188] Zhou L, He R, Fang P, et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition [J]. Nature Communications, 2021, 12(1):98.

[189] Zhu Z, Fodor E and Keown J R. A structural understanding of influenza virus genome replication [J]. Trends Microbiol, 2023, 31(3):308-319.

[190] Ziello J E, Jovin I S and Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia [J]. Yale Journal of Biology and Medicine, 2007, 80(2):51-60.

中图分类号:

 S85    

开放日期:

 2024-06-06    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式