中文题名: | 甘薯全粉挤压即食面的开发及其相关性质研究 |
姓名: | |
学号: | 2022108035 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 083203 |
学科名称: | 工学 - 食品科学与工程(可授工学、农学学位) - 农产品加工及贮藏工程 |
学生类型: | 硕士 |
学位: | 工学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 农产品加工与贮藏 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-04-03 |
答辩日期: | 2025-05-21 |
外文题名: | Development of Extruded Instant Noodles from Whole Sweet Potato Flour and Their Related Properties |
中文关键词: | |
外文关键词: | Whole sweet potato flour ; Extruded instant noodles ; Flavor ; Antioxidant properties ; In vitro digestion |
中文摘要: |
甘薯全粉富含膳食纤维、类胡萝卜素及多酚类物质,被视为改善传统面制品营养价值的理想原料。传统小麦面条由面筋蛋白形成网络结构,但甘薯全粉因缺乏面筋,添加量超过15%时易导致混汤、断条等问题。现有的研究多聚焦于低添加比例(<50%)的甘薯全粉面制品,对高比例(≥51%)下面团流变特性及挤压工艺的调控机制仍不明确。近年研究表明,挤压技术可通过淀粉糊化形成凝胶网络替代面筋,从而提升非面筋原料的添加潜力。然而,高比例甘薯全粉挤压后面条的微观结构变化、体外消化特性与功能活性变化规律并不明确。本研究以精准热流处理的甘薯全粉为原料,通过调控其替代比例(25%、51%、75%),系统探究其对混合面团特性、挤压面条品质及功能活性的影响,以开发出营养更全面、品质良好的甘薯全粉挤压即食面。本文主要研究内容和结果如下: 1、甘薯全粉对面团品质的影响研究 对经精准热流处理的甘薯全粉与未经热处理的甘薯淀粉的性质进行对比测定。结果表明甘薯全粉糊化温度为82.15 ℃,比甘薯淀粉高5.05 ℃;崩解值和回升值为211 cp和279 cp,仅为甘薯淀粉的7.84%和43.46% ,糊化结果表明,甘薯全粉的热稳定性和抗老化特性优于甘薯淀粉。甘薯全粉中的淀粉晶体属于A型晶体,相对结晶度和短程有序结构与甘薯淀粉比分别降低了34.28%和20.31%。对原料甘薯全粉与小麦粉中的物质含量进行测定,得出甘薯全粉中的直链淀粉含量为20.57%,比小麦粉低4.77%,总酚、总黄酮、膳食纤维含量分别为23.97 mg GAE/g、2.79 mg RE/g和8.85 g/100g,显著高于小麦粉(p<0.05)。 甘薯全粉对混合粉和面团性质的影响研究表明,甘薯全粉添加量从25%增加到75%,混合粉的形成时间与小麦粉相比缩短32.5-62.0%,稳定时间缩短38.5-91.3%;甘薯全粉能够增强面筋网络的热稳定性(α值从0.073 Nm.min−1降低到0.034 Nm.min−1),降低面团耐受机械搅拌的能力(C1−C2值从0.65 Nm增加到0.91 Nm),提高面团的抗老化性(C5−C4的值显著降低(p<0.05))面团的弹性模量和损耗模量与甘薯全粉的添加比例呈正相关,而正切值和最大蠕变柔量则呈负相关。激光共聚焦显微镜(CLSM)观察结果表明,甘薯全粉的添加会使面团中的蛋白出现聚集现象。 2、甘薯全粉对挤压即食面品质特性及微观结构的影响 在大生产的基础上,将甘薯全粉分别以25%、51%和75%的质量比例与小麦粉进行混合,制得甘薯全粉挤压即食面,对其食用品质进行测定,同时通过X射线衍射(XRD)、傅里叶红外光谱(FTIR)、差式扫描量热(DSC)和扫描电镜(SEM)测试来探寻甘薯全粉添加量对挤压面条品质的影响。 SEM结果显示甘薯挤压面条横截面内呈现出明显的孔洞,导致面条蒸煮损失率从1.9%增加到7.3%,复水时间缩短,其中51%添加组复水时间最短(210 s),较对照组(315 s)显著降低33%。感官评价结果表明甘薯全粉赋予了挤压面条独特的甘薯香气和甘薯甜味,甘薯全粉添加量为75%的挤压面条感官得分达到86分。通过 XRD 和 FTIR 技术检测发现,挤压面条的相对结晶度从2.33%增加到11.05%,短程有序结构更为完善,这与 DSC 测试中展现出的高热稳定性相互印证,表明甘薯全粉的加入提升了面条的结构稳定性。在不同的添加比例中,甘薯全粉添加比例为25%和75% 的挤压面条在感官评分和质构特性方面表现突出。 3、甘薯全粉对挤压即食面的体外消化、抗氧化性及风味特性影响 系统评价了甘薯全粉添加量(0-75%)对挤压面条外消化特性、风味、活性物质含量及抗氧化特性的影响。结果表明,甘薯全粉显著提高了面条中抗性淀粉含量,其中75%添加量面条(75%ESPN)表现出最佳的餐后血糖调控潜力。电子舌分析显示鲜味和咸味强度与甘薯全粉添加量呈正相关(p<0.05)。风味分析表明甘薯全粉主要贡献果香和烤制香气特征。随着添加量增加(25-75%),面条中总酚、总黄酮含量和抗氧化能力显著升高(p<0.05)。75%ESPN的总酚和总黄酮含量达到15.91 mg GAE/g和1.75 mg RE/g,挤压加工未造成活性成分损失。75%ESPN的铁离子还原能力(FRAP)及ABTS⁺、DPPH自由基清除率较对照组分别提升55.6%、54.8%和63.0%,证实其优异的抗氧化特性。 基于综合评估淀粉水解率、风味特征及功能活性,选取表现最优的75%甘薯全粉面条(75%ESPN)进行深入分析。以传统小麦面条为对照,通过体外模拟消化实验发现:消化终点时75%ESPN的总酚(3.39 mg GAE/g)和总黄酮(1.13 mg RE/g)含量较消化前分别提升4.46倍和3.35倍(p<0.05),其FRAP值、ABTS⁺及DPPH清除率达到0.592 μmol/g、39.47%和18.06%,均显著高于消化前(p<0.05),且75%ESPN的抗氧化能力在各个阶段均高于对照组,证实其活性成分具有优异的胃肠释放稳定性。
|
外文摘要: |
Whole sweet potato flour is rich in dietary fiber, carotenoids, and polyphenols, making it an ideal raw material for enhancing the nutritional value of traditional noodle products. Traditional wheat noodles possess a network structure formed by gluten proteins; however, sweet potato semolina lacks gluten and can encounter issues such as soup mixing and noodle breakage when added in amounts exceeding 15%. Existing studies have primarily focused on sweet potato semolina pasta products with low additive ratios (less than 50%), leaving the mechanisms for regulating the rheological properties of dough and the extrusion process at higher additive ratios (51% or more) still unclear. Recent research indicates that extrusion technology can improve the incorporation of non-gluten ingredients by replacing gluten with starch dextrinization to create a gel network. However, the microstructural evolution, in vitro digestive properties, and patterns of functional activity retention in noodles made with a high percentage of whole sweet potato flour remain poorly understood. In this study, we utilized precisely thermally treated whole sweet potato flour as the raw material and systematically investigated its effects on mixed dough characteristics, extruded noodle quality, and functional activity by varying substitution ratios (25%, 51%, and 75%). The goal was to develop a nutritionally comprehensive and high-quality sweet potato whole flour extruded instant noodle. The main research content and findings of this paper are as follows: Study on the effects of whole sweet potato flour on dough quality The properties of sweet potato whole flour treated with precise heat flow were evaluated in comparison to those of sweet potato starch that did not undergo heat treatment. The results indicated that the pasting temperature of sweet potato whole flour was 82.15 °C, which was 5.05 °C higher than that of sweet potato starch. The disintegration and regain values were 211 cp and 279 cp, respectively, representing only 7.84% and 43.46% of the corresponding values for sweet potato starch. These pasting results suggest that the thermal stability and anti-aging properties of sweet potato whole flour are superior to those of sweet potato starch. The starch crystals in sweet potato whole flour were identified as A-type crystals, with relative crystallinity and short-range ordered structure being 34.28% and 20.31% lower than those of sweet potato starch, respectively. The content of straight-chain starch in sweet potato whole flour was 20.57%, which was 4.77% lower than that found in wheat flour. Additionally, the contents of total phenols, total flavonoids, and dietary fiber were 23.97 mg GAE/g, 2.79 mg RE/g, and 8.85 g/100g, respectively, all of which were significantly higher than those in wheat flour (p < 0.05). The effect of sweet potato whole meal on mixing and dough properties demonstrated that increasing the proportion of sweet potato whole meal from 25% to 75% reduced the formation time of the mix by 32.5% to 62.0% and the stabilization time by 38.5% to 91.3% compared to that of wheat flour. Sweet potato whole meal enhanced the thermal stability of the gluten network, as indicated by a decrease in the α-value from 0.073 Nm.min⁻¹ to 0.034 Nm.min⁻¹. Additionally, it reduced the dough's ability to withstand mechanical mixing, with C1-C2 values increasing from 0.65 Nm to 0.91 Nm, and improved the aging resistance of the dough, as evidenced by a significant reduction in C5-C4 values (p < 0.05). The elasticity modulus and loss modulus of the dough were positively correlated with the ratio of sweet potato whole meal added, while the tangent value and maximum creep flexibility were negatively correlated. Results from confocal laser microscopy (CLSM) indicated that the addition of whole sweet potato flour led to the aggregation of proteins in the dough. 2. Effect of sweet potato whole flour on quality characteristics and microstructure of extruded instant noodles On the basis of large-scale production, sweet potato whole flour was mixed with wheat flour in mass ratios of 25%, 51%, and 75% to produce sweet potato whole flour extruded instant noodles. The edible quality of these noodles was assessed, and various tests—including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM)—were conducted to investigate the impact of sweet potato whole flour additions on the quality of the extruded noodles. The scanning electron microscopy (SEM) results indicated that the extruded sweet potato noodles exhibited noticeable holes in their cross-section. This structural characteristic contributed to an increase in the cooking loss rate of the noodles, rising from 1.9% to 7.3%, and a reduction in rehydration time. The group with a 51% sweet potato addition demonstrated the shortest rehydration time of 210 s, which was significantly reduced by 33% compared to the control group, which had a rehydration time of 315 s. The sensory evaluation results indicated that the addition of sweet potato whole flour imparted a distinctive sweet potato aroma and flavor to the extruded noodles, achieving a sensory score of 86 for the noodles containing 75% sweet potato whole flour. The relative crystallinity of the extruded noodles increased from 2.33% to 11.05%, as measured by XRD and FTIR. Additionally, the short-range ordered structure was found to be more complete, which was further supported by the high thermal stability observed in the DSC test. This suggests that incorporating whole sweet potato flour enhances the structural stability of the noodles. Among the various additive ratios, the extruded noodles containing 25% and 75% sweet potato semolina excelled in both sensory scores and textural properties. Based on the results, the 75% ESPN, which exhibited the lowest starch hydrolysis rate, the best flavor, and the highest content of active substances along with good antioxidant activity, was selected for further study. Using wheat extruded noodles as the control group, we further investigated the release of active substances and changes in antioxidant activity of the 75% ESPN during in vitro simulated digestion. The in vitro simulated digestion experiments demonstrated that the total polyphenol and flavonoid contents, as well as the antioxidant capacity of the 75% ESPN, were significantly higher after digestion compared to before. Additionally, the antioxidant capacity of the 75% ESPN was greater than that of the control group at all stages of the experiment. 3. Effects of whole sweet potato flour on in vitro digestion, antioxidant properties and flavor characteristics of extruded instant noodles The effects of sweet potato whole flour additions (0-75%) on the extradigestive properties, flavor, active substance content, and antioxidant properties of extruded noodles were systematically evaluated. The results indicated that sweet potato whole flour significantly increased the resistant starch content in the noodles, with the noodles containing 75% sweet potato whole flour (75% ESPN) demonstrating the best potential for postprandial glycemic modulation. E-tongue analysis revealed that the intensities of fresh and savory flavors were positively correlated with the addition of sweet potato whole flour (p < 0.05). Flavor analysis indicated that sweet potato whole flour primarily contributed to fruity and roasted aroma profiles. The total phenolic and flavonoid contents, as well as the antioxidant capacity of the noodles, were significantly higher (p < 0.05) with increasing additions (25-75%). The total phenolic and flavonoid contents of the 75% ESPN reached 15.91 mg GAE/g and 1.75 mg RE/g, respectively, and the extrusion process did not result in the loss of active ingredients. The ferrous reduction ability of iron ions (FRAP) and ABTS, as well as DPPH radical scavenging, were enhanced by 55.6%, 54.8%, and 63.0%, respectively, compared to the control group, confirming the excellent antioxidant properties of the 75% ESPN. Based on a comprehensive assessment of the starch hydrolysis rate, flavor profile, and functional activity, the highest-performing 75% sweet potato whole flour noodles (75% ESPN) were selected for in-depth analysis. Using traditional wheat noodles as a control, in vitro simulated digestion experiments revealed that the total phenol content (3.39 mg GAE/g) and total flavonoid content (1.13 mg RE/g) of 75% ESPN at the endpoint of digestion were elevated by 4.46-fold and 3.35-fold, respectively, compared to pre-digestion levels (p < 0.05). Additionally, its FRAP value, ABTS⁺, and DPPH scavenging rates reached 0.592 μmol/g, 39.47%, and 18.06%, respectively, all of which were significantly higher than those observed before digestion (p < 0.05). The antioxidant capacity of 75% ESPN surpassed that of the control group at all stages, confirming the excellent gastrointestinal release stability of its active ingredients. |
参考文献: |
[1] 敖志超, 马玉琦, 张立然, 等. 不同晶体类型药食两用植物淀粉粒结构及体外消化研究[J]. 食品与发酵工业, 2022, 48(15): 200-206.. [2] 曹新蕾. 全麦粉对油炸方便面品质的影响[D]. 无锡: 江南大学, 2017. [3] 曾军, 石国荣. 天然产物抗氧化活性的测定方法和原理[J]. 安徽农学通报, 2008, 14(22): 35-36. [4] 朝鲁. 挤压型无麸质马铃薯全粉面条的研发[D]. 呼和浩特: 内蒙古农业大学, 2023. [5] 陈朝军, 刘嘉, 刘永翔. 甘薯粉汤圆质构特性和感官评价相关性分析[J]. 食品研究与开发, 2019, 40(24): 33-37. [6] 陈洁, 吕军仓, 朱之光, 等. 压延对面团纵横向拉伸应力特性的影响[J]. 中国粮油学报, 2006(3): 44-47. [7] 陈敬鑫, 陈威风. 方便面感官评价研究进展[J]. 粮食与油脂, 2011(4): 5-8. [8] 陈蓬凤. 甘薯中去氢表雄酮的提取及功能特性研究[D]. 湘潭: 湘潭大学, 2021. [9] 陈若瑄. 藜麦粉的理化特性及其挤压型面条的制备[D]. 无锡: 江南大学, 2019. [10] 陈树俊, 崔云. 甘薯渣多糖提取、分离纯化及抗氧化活性研究[J]. 中国粮油学报, 2020, 35(10): 56-62. [11] 崔静静, 解佳佩, 孙梦影, 等. 甘薯全粉冲调式营养糊的配方研究[J]. 现代食品, 2021(1): 66-69. [12] 丁瑞琴. 甘薯粉面团流变学性质及面条工艺的研究[D]. 福州: 福建农林大学, 2010. [13] 房战祥. 青麦仁面条体外消化特性及抗氧化活性研究[D]. 新乡: 河南科技学院, 2023. [14] 高成成, 张天弩, 田未希, 等. 全荞麦面条在挤压、烘干及蒸煮过程中挥发性风味物质变化规律[J]. 中国粮油学报, 2024: 1-15. [15] 高国祥, 孙君庚, 阴志刚. 挂面加工品质变化研究进展[J]. 粮食与食品工业, 2019(5): 19-24. [16] 高丽威, 李向荣. 微波萃取法提取紫心甘薯总黄酮及其抗氧化活性研究[J]. 浙江大学学报(理学版), 2009, 36(5): 571-574. [17] 谷玉娟. 熟化对裸燕麦加工品质特性的影响及作用机理研究[D]. 郑州: 河南工业大学, 2023. [18] 郭佳. 挂面加工过程品质和风味变化规律研究[D]. 郑州: 河南工业大学, 2024. [19] 韩冰霜. 紫甘薯全粉对面团流变特性与曲奇饼干品质的影响[J]. 现代面粉工业, 2020, 34(6): 51-52. [20] 郝瑞霞. 超微粉碎燕麦麸皮对方便面品质的影响研究[D]. 呼和浩特: 内蒙古农业大学, 2023. [21] 何春玫, 李润峰, 覃水琳. 响应面法优化超声辅助提取甘薯粗蛋白工艺研究[J]. 广西农学报, 2020, 35(2): 32-36, 42. [22] 何胜生, 雷文华, 廖菊英. 甘薯全粉的研究现状及加工前景[J]. 农产品加工(学刊), 2010(11): 90-92. [23] 胡康棣, 彭湘君, 姚改芳, 等. 不同耐贮性甘薯的抗氧化特性差异[J]. 江苏农业科学, 2021, 49(16): 162-168. [24] 胡玉华, 郭祯祥, 王华东, 等. 挤压膨化技术在谷物加工中的应用[J]. 粮食与饲料工业, 2014(12): 37-39. [25] 黄津. 方便面体外模拟消化及其产物对巨噬细胞氧化平衡状态的影响[D]. 杭州: 浙江工商大学, 2022. [26] 黄其程. 藜麦无麸质面条的挤压法制备及其消化特性研究[D]. 无锡: 江南大学, 2022. [27] 简华斌. 马铃薯螺杆挤压制泥设备优化与试验[D]. 中国农业机械化科学研究院, 2024. [28] 况玉玉, 杨莎, 张念念, 等. 紫菜粉对面条品质特性及微观结构的影响[J]. 食品工业科技, 2022, 43(22): 111-121. [29] 雷佳, 张静. 甘薯玉米风味粗粮饼干的研制[J]. 农产品加工, 2024(16): 16-18. [30] 李昌文. 红薯及红薯叶综合利用及深加工技术[J]. 农业工程技术(农产品加工业), 2008(2): 18-20. [31] 李春晓. 发芽糙米米粉研发与消化特性研究[D]. 武汉: 华中农业大学, 2023. [32] 李范洙, 金铁, 张先, 等. 物料含水量和机筒温度对双螺杆挤压人参制品褐变效果的影响[J]. 食品科学, 2010, 31(20): 170-172. [33] 李凤林, 钱召影, 刘静雪, 等. 基于苦荞的低GI高膳食纤维面条挤压工艺研究[J]. 中国食品添加剂, 2024, 35(11): 162-168. [34] 李倩, 刘丽娜, 杜方岭, 等. 低蛋白面条挤压熟化加工技术研究[J]. 食品研究与开发, 2017, 38(8): 75-81. [35] 李青嵘, 罗嘉玲, 程实, 等. 甘薯淀粉加工废水中生化成分回收的新方法研究[J]. 华南师范大学学报(自然科学版), 2018, 50(2): 57-64. [36] 李艺博. 不同甘薯品种淀粉的理化特性研究[D]. 扬州: 扬州大学, 2022. [37] 林彩玲. 不同N肥水平对甘薯营养与食味品质的影响[D]. 福州: 福建农林大学, 2019. [38] 林艳桃. 国内外方便面行业发展现状及趋势[J]. 粮食科技与经济, 2014, 39(2): 66-68. [39] 刘恒旭. 复合菌处理甘薯淀粉废水工艺研究[D]. 烟台: 烟台大学, 2020. [40] 刘诗琪, 闫荣. 甘薯熟制全粉面包的研制[J]. 食品安全导刊, 2022(20): 141-143. [41] 刘先娥. 抗性淀粉-水溶性膳食纤维复配体系理化和体外消化特性及代餐粉研发[D]. 南昌: 南昌大学, 2020. [42] 路飞, 王启超, 周纹羽. 无糖高膳食纤维麦胚蛋糕的研制[J]. 沈阳师范大学学报(自然科学版), 2018, 36(3): 270-274. [43] 马名扬, 关二旗, 卞科, 等. 甘薯全粉对面团性质及馒头品质的影响[J]. 河南工业大学学报(自然科学版), 2016, 37(3): 31-36. [44] 马晓丽, 张源, 黄小秀, 等. 不同加工方式对绿茶面条品质特性及多酚消化稳定性的影响[J]. 食品工业科技, 2024: 1-14. [45] 苗峻伟. 方便面的微波冷冻干燥技术研究[D]. 洛阳: 河南科技大学, 2023. [46] 亓伟华. 多谷物营养方便面加工技术研究[D]. 长春: 吉林农业大学, 2017. [47] 邱松林, 阎光宇, 张媛, 等. 红薯渣膳食纤维面包加工工艺优化研究[J]. 粮食与油脂, 2020, 33(12): 117-120. [48] 任国宝, 任晨刚, 郇美丽, 等. 膳食纤维对小麦粉品质的影响[J]. 中国粮油学报, 2020, 35(2): 6-11, 55. [49] 师超, 林江涛, 卞科. 黄肉甘薯糖蛋白的抗氧化作用研究[J]. 安徽农学通报, 2013, 19(18): 18-19, 35. [50] 孙倩倩, 贺媛媛, 巨明月, 等. 全麦面条不同制作阶段挥发性风味物质比较分析[J]. 中国粮油学报, 2021, 36(11): 8-13. [51] 谭畅. 紫薯多酚的提取、纯化、组成分析和体外模拟消化的研究[D]. 沈阳: 沈阳农业大学, 2017. [52] 唐兴兴, 黄升谋. 红薯膳食纤维提取工艺优化试验[J]. 绿色科技, 2017(22): 154-156, 167. [53] 田阳. 挤压膨化牛肉休闲食品营养消化及理化特性变化研究[D]. 哈尔滨: 哈尔滨商业大学, 2024. [54] 王妍, 郑猛虎, 崔欣雨, 等. 微生物固态发酵工艺对红薯淀粉渣真蛋白含量的影响[J]. 饲料工业, 2022, 43(9): 35-40. [55] 王永徐. 甘薯茎叶主要抗氧化功能成分的提取及其品种间差异研究[D]. 杭州: 浙江农林大学, 2019. [56] 王钰文. 加工过程中结构特性变化对速食面叶品质的影响[D]. 郑州: 河南工业大学, 2024. [57] 韦雪飞, 陈运中, 李明起, 等. 甘薯全粉的营养成分及其挤压食品特性分析研究[J]. 武汉工业学院学报, 2010, 29(1): 11-13. [58] 翁雪梅, 李思惠. 化学危害因素引起的疾病与自由基关系研究进展[J]. 职业卫生与应急救援, 2009, 27(2): 77-79. [59] 吴广辉, 毕韬韬. 红薯营养价值及综合开发利用研究进展[J]. 食品研究与开发, 2015, 36(20): 189-192. [60] 吴睿, 穆俐俐, 张丹, 等. 超声波辅助提取薯皮中去氢表雄酮的工艺研究[J]. 化学研究与应用, 2021, 33(8): 1577-1581. [61] 闫美姣. 高含量杂粮面条研制与开发[D]. 太原: 山西大学, 2019. [62] 杨世雄, 张玲, 张雪梅, 等. 甘薯全粉的制备及特性研究进展[J]. 农产品加工, 2023(23): 79-83. [63] 杨永涛. 罗布麻总黄酮的提取、分离纯化及其抗氧化性能研究[D]. 广州: 华南理工大学, 2018. [64] 叶子谦, 王沛, 董华, 等. 微波和超声处理对麦麸研磨特性及全麦面团品质的影响[J]. 食品工业科技, 2021, 42(20): 106-111. [65] 袁灿, 何莲, 胡金祥, 等. 基于电子舌和电子鼻结合氨基酸分析鱼香肉丝调料风味的差异[J]. 食品工业科技, 2022, 43(9): 48-55. [66] 战汪涛. 黑米挤压膨化工艺及膨化黑米粉应用研究[D]. 泰安: 山东农业大学, 2011. [67] 张兵. 小扁豆植物化学物组成及其抗氧化、抗炎活性研究[D]. 南昌: 南昌大学, 2015. [68] 张国治, 杨徐宁, 卫阿枝, 等. 青麦仁面条品质分析[J]. 河南工业大学学报(自然科学版), 2019, 40(1): 62-67. [69] 张令文, 琚星, 李欣欣, 等. 8个品种甘薯淀粉的理化性质及其相关性分析[J]. 食品工业科技, 2021, 42(4): 26-32. [70] 张明. 甘薯淀粉的制取技术[J]. 安徽农业, 2004(4): 12. [71] 张淑仪, 许祥, 张林华, 等. 高直链玉米淀粉添加对挤压荞麦面条结构、蒸煮品质及消化特性的影响[J]. 食品科学, 2023, 44(6): 116-124. [72] 张婷婷, 赵宾, 杨丽明, 等. 基于电子鼻技术的小麦种子活力鉴别[J]. 中国农业大学学报, 2018, 23(9): 123-130. [73] 张伟峰, 黄泽华, 王玉坤, 等. 复合菌发酵对非油炸方便面品质的影响[J]. 食品科学, 2024, 45(5): 210-216. [74] 张文杰. 藜麦全粉与淀粉的理化性质与结构研究及应用[D]. 郑州轻工业学院, 2016. [75] 赵红倩. 紫色马铃薯面条制备关键技术研究及品质评价[D]. 保定: 河北农业大学, 2025. [76] 赵时珊, 蔡芳, 隋勇, 等. 不同品种甘薯全粉品质特性比较[J]. 现代食品科技, 2022, 38(8): 218-228. [77] 郑健. 红薯的营养价值与保健功能[J]. 科技视界, 2018(5): 170, 158. [78] 周梦露, 钱晓洁, 孙冰华, 等. 蛋白质及其水解物对谷物淀粉糊化、回生及消化性的影响研究进展[J]. 中国粮油学报, 2022, 37(2): 180-187. [79] 中国商品协会. 薯类主食产品: T/CS 001-2023 [S]. 北京: 中国商品协会, 2023. [80] 中国营养协会. 全谷物及全谷物食品判定及标识通则: T/CNSS 008-2021 [S]. 北京: 中国营养学会, 2021. [81] 中华人民共和国国家市场监督管理总局. 方便面:GB 40772-2021 [S].北京:中国标准出版社, 2021. [82] 朱红, 孙健, 钮福祥, 等. 基于电子舌技术的不同甘薯雪花粉滋味品质评价[J]. 食品安全质量检测学报, 2020, 11(24): 9201-9206. [83] 朱运平, 刘野, 李秀婷, 等. 方便面面体主成分对调料包中风味成分释放规律的影响[J]. 中国食品学报, 2018, 18(4): 261-269. [84] Abdalla M S H S. 甘薯全粉对无麸质面团流变学特性及鲜面条品质特性影响的研究[D]. 中国农业科学院, 2024. [85] Basman A, Yalcin S. Quick-boiling noodle production by using infrared drying[J]. Journal of Food Engineering, 2011, 106(3): 245-252. [86] Beauchamp G K. Basic Taste: A perceptual concept[J]. Journal of Agricultural and Food Chemistry, 2019, 67(50): 13860-13869. [87] Boonkor P, Sagis L M C, Lumdubwong N. Pasting and rheological properties of starch paste/gels in a sugar-acid system[J]. Foods, 2022, 11(24): 4060. [88] Brodkorb A, Egger L, Alminger M, et al. INFOGEST static in vitro simulation of gastrointestinal food digestion[J]. Nature Protocols, 2019, 14(4): 991-1014. [89] Capron I, Robert P, Colonna P, et al. Starch in rubbery and glassy states by FTIR spectroscopy[J]. Carbohydrate Polymers, 2007, 68(2): 249-259. [90] Cham S, Suwannaporn P. Effect of hydrothermal treatment of rice flour on various rice noodles quality[J]. Journal of Cereal Science, 2010, 51(3): 284-291. [91] Cheetham N W H, Tao L P. Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study[J]. Carbohydrate Polymers, 1998, 36(4): 277-284. [92] Chen J, Cai H, Yang S, et al. The formation of starch-lipid complexes in instant rice noodles incorporated with different fatty acids: Effect on the structure, in vitro enzymatic digestibility and retrogradation properties during storage[J]. Food Research International, 2022, 162: 111933. [93] Chen L, Ma R, Zhang Z, et al. Impact of frying conditions on hierarchical structures and oil absorption of normal maize starch[J]. Food Hydrocolloids, 2019, 97: 105231. [94] Chikpah S K, Korese J K, Hensel O, et al. Rheo logical properties of dough and bread quality characteristics as influenced by the proportion of wheat flour substitution with orange-fleshed sweet potato flour and baking conditions[J]. LWT, 2021, 147: 111515. [95] Choy A L, May B K, Small D M. The effects of acetylated potato starch and sodium carboxymethyl cellulose on the quality of instant fried noodles[J]. Food Hydrocolloids, 2012, 26(1): 2-8. [96] Cumhur A M, Tiga B H, Kumcuoglu S, et al. Development of extruded noodles incorporated with dried vegetables and the evaluation of quality characteristics[J]. Anais da Academia Brasileira de Ciências, 2022, 94(suppl 3): e20211401. [97] Dar M Z, Deepika K, Jan K, et al. Modification of structure and physicochemical properties of buckwheat and oat starch by γ-irradiation[J]. International Journal of Biological Macromolecules, 2018, 108: 1348-1356. [98] Dong W, Hu R, Long Y, et al. Comparative evaluation of the volatile profiles and taste properties of roasted coffee beans as affected by drying method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS[J]. Food Chemistry, 2019, 272: 723-731. [99] Fonseca-Florido H A, Gómez-Aldapa C A, López-Echevarría G, et al. Effect of granular disorganization and the water content on the rheological properties of amaranth and achira starch blends[J]. LWT, 2018, 87: 280-286. [100] Fu M, Sun X, Wu D, et al. Effect of partial substitution of buckwheat on cooking characteristics, nutritional composition, and in vitro starch digestibility of extruded gluten-free rice noodles[J]. LWT, 2020, 126: 109332. [101] Gulia N, Dhaka V, Khatkar B S. Instant noodles: processing, quality, and nutritional aspects[J]. Critical Reviews in Food Science and Nutrition, 2014, 54(10): 1386-1399. [102] Han B, Jiang P, Jiang L, et al. Three phytosterols from sweet potato inhibit MCF7-xenograft-tumor growth through modulating gut microbiota homeostasis and SCFAs secretion[J]. Food Research International, 2021, 141: 110147. [103] Herawati E R N, Santosa U, Sentana S, et al. Protective effects of anthocyanin extract from purple sweet potato (Ipomoea batatas L.) on blood mda levels, liver and renal activity, and blood pressure of hyperglycemic rats[J]. Preventive Nutrition and Food Science, 2020, 25(4): 375-379. [104] Hoover R, Hadziyev D. Characterization of potato starch and its monoglyceride complexes[J]. Starch - Stärke, 1981, 33(9): 290-300. [105] Hu H, Zhou X, Zhang Y, et al. Influences of particle size and addition level on the rheological properties and water mobility of purple sweet potato dough[J]. Foods, 2023, 12(2): 398. [106] Iacovino S, Trivisonno M C, Messia M C, et al. Combination of empirical and fundamental rheology for the characterization of dough from wheat flours with different extraction rate[J]. Food Hydrocolloids, 2024, 148: 109446. [107] Javaid A B, Xiong H, Xiong Z, et al. Effects of xanthan gum and sodium dodecyl sulfate on physico-chemical, rheological and microstructure properties of non-fried potato instant noodles[J]. Food Structure, 2021, 28: 100172. [108] Ji S, Li Z, Tang N, et al. Effects of yeast fermentation on the quality characteristics and in vitro starch digestibility of fried-free instant noodles with rapid rehydration[J]. LWT, 2024, 191: 115633. [109] Kaya E, Yılmaz Tuncel N, Tuncel N B. Utilization of lentil, pea, and faba bean hulls in Turkish noodle production[J]. Journal of Food Science and Technology, 2018, 55(5): 1734-1745. [110] Koksel H, Kahraman K, Sanal T, et al. Potential utilization of mixolab for quality evaluation of bread wheat genotypes[J]. Cereal Chemistry, 2009, 86(5): 522-526. [111] Kolarič L, Minarovičová L, Lauková M, et al. Pasta noodles enriched with sweet potato starch: Impact on quality parameters and resistant starch content[J]. Journal of Texture Studies, 2020, 51(3): 464-474. [112] Lai Y C, Wang S Y, Gao H Y, et al. Physicochemical properties of starches and expression and activity of starch biosynthesis-related genes in sweet potatoes[J]. Food Chemistry, 2016, 199: 556-564. [113] Lambrecht M A, Rombouts I, Nivelle M A, et al. The impact of protein characteristics on the protein network in and properties of fresh and cooked wheat-based noodles[J]. Journal of Cereal Science, 2017, 75: 234-242. [114] Lauková M, Minarovičová L, Karovičová J, et al. Quality evaluation of sweet potato powder-enriched cereal products[J]. Food Science and Technology International, 2019, 25(6): 523-532. [115] Lazaridou A, Marinopoulou A, Biliaderis C G. Impact of flour particle size and hydrothermal treatment on dough rheology and quality of barley rusks[J]. Food Hydrocolloids, 2019, 87: 561-569. [116] Lehmann U, Robin F. Slowly digestible starch - its structure and health implications: a review[J]. Trends in Food Science & Technology, 2007, 18(7): 346-355. [117] Li C, Hu Y, Huang T, et al. A combined action of amylose and amylopectin fine molecular structures in determining the starch pasting and retrogradation property[J]. International Journal of Biological Macromolecules, 2020, 164: 2717-2725. [118] Li M, Yue Q, Liu C, et al. Comparative study of rheology and steamed bread quality of wheat dough and gluten: Starch doughs[J]. Journal of Food Processing and Preservation, 2021, 45(2): e15160. [119] Li M, Zhu K X, Sun Q J, et al. Quality characteristics, structural changes, and storage stability of semi-dried noodles induced by moderate dehydration[J]. Food Chemistry, 2016, 194: 797-804. [120] Li N, Zhang G, Zhang D. Phenolic compounds and antioxidant activity of rice-tartary buckwheat composite as affected by in vitro digestion[J]. Journal of Chemistry, 2022, 2022: 1-10. [121] Li W, Li C, Gu Z, et al. Retrogradation behavior of corn starch treated with 1,4-α-glucan branching enzyme[J]. Food Chemistry, 2016, 203: 308-313. [122] Li Y, Liu X, Zhou L, et al. Effects of peanut oligopeptides on the pasting properties of potato starch and digestive characteristics of dry, flat potato starch noodles[J]. International Journal of Biological Macromolecules, 2023, 253: 126992. [123] Lin Q, Ren A, Liu R, et al. Flavor properties of Chinese noodles processed by dielectric drying[J]. Frontiers in Nutrition, 2022, 9: 1007997. [124] Liu K, Zhang B, Chen L, et al. Hierarchical structure and physicochemical properties of highland barley starch following heat moisture treatment[J]. Food Chemistry, 2019, 271: 102-108. [125] Liyanapathirana C, Shahidi F. Antioxidant activity of wheat extracts as affected by in vitro digestion[J]. BioFactors, 2004, 21(1-4): 325-328. [126] Luo D, Mu T, Sun H. Sweet potato (Ipomoea batatas L.) leaf polyphenols ameliorate hyperglycemia in type 2 diabetes mellitus mice[J]. Food & Function, 2021, 12(9): 4117-4131. [127] Ma S, Zhu P, Wang M. Effects of konjac glucomannan on pasting and rheological properties of corn starch[J]. Food Hydrocolloids, 2019, 89: 234-240. [128] Ma Y, Hong T ting, Xu D, et al. Inhibition of PPO-related browning in fresh noodles: A combination of chemical and heat treatment[J]. Food Chemistry, 2023, 404: 134549. [129] Mais A, Brennan C S. Characterisation of flour, starch and fibre obtained from sweet potato (kumara) tubers, and their utilisation in biscuit production[J]. International Journal of Food Science & Technology, 2008, 43(2): 373-379. [130] Mariotti M, Pagani M A, Lucisano M. The role of buckwheat and HPMC on the breadmaking properties of some commercial gluten-free bread mixtures[J]. Food Hydrocolloids, 2013, 30(1): 393-400. [131] Meerts M, Cardinaels R, Oosterlinck F, et al. The interplay between the main flour constituents in the rheological behaviour of wheat flour dough[J]. Food and Bioprocess Technology, 2017, 10(2): 249-265. [132] Mohamed A A, Rayas-Duarte P. The effect of mixing and wheat protein/gluten on the gelatinization of wheat starch[J]. Food Chemistry, 2003, 81(4): 533-545. [133] Nabeshima E H, Grossmann M V E. Functional properties of pregelatinized and cross-linked cassava starch obtained by extrusion with sodium trimetaphosphate[J]. Carbohydrate Polymers, 2001, 45(4): 347-353. [134] Narisawa T, Nakajima H, Umino M, et al. Flavor formation of noodles using wheat cultivars from saitama and application for the development of high value-added products[J]. Nippon Shokuhin Kagaku Kogaku Kaishi, 2020, 67(9): 315-323. [135] Narwal S, Kumar D, Sheoran S, et al. Hulless barley as a promising source to improve the nutritional quality of wheat products[J]. Journal of Food Science and Technology, 2017, 54(9): 2638-2644. [136] Osundahunsi O F, Fagbemi T N, Kesselman E, et al. Comparison of the physicochemical properties and pasting characteristics of flour and starch from red and white sweet potato cultivars[J]. Journal of Agricultural and Food Chemistry, 2003, 51(8): 2232-2236. [137] Patil S S, Kaur C. Current trends in extrusion: Development of functional foods and novel ingredients[J]. Food Science and Technology Research, 2018, 24(1): 23-34. [138] Qin Y, Naumovski N, Ranadheera C S, et al. Nutrition-related health outcomes of sweet potato (Ipomoea batatas) consumption: A systematic review[J]. Food Bioscience, 2022, 50: 102208. [139] Ran J, Liang X, Du H, et al. Optimization of DHEA extraction from sweet potato pomace by ultrasonic-microwave synergistic employing response surface methodology[J]. Journal of AOAC International, 2019, 102(2): 680-682. [140] Sacón-Vera E F, Bernal-Bailón I I, Dueñas-Rivadeneira A A, et al. Rheology of potato flour mixes and wheat to make bread[J]. Tecnología Química, 2016: 384-394. [141] Salama M, Mu T, Sun H. Influence of sweet potato flour on the microstructure and nutritional quality of gluten-free fresh noodles[J]. International Journal of Food Science and Technology 2021, 56(8): 3938-3947. [142] Sauer U, Talaulikar V, Davies M C. Efficacy of intravaginal dehydroepiandrosterone (DHEA) for symptomatic women in the peri- or postmenopausal phase[J]. Maturitas, 2018, 116: 79-82. [143] Shi Z, Liu L, Zhang K, et al. Effect of sheeting thickness on the processing quality of wheat-oat blended flour noodles[J]. Journal of Cereal Science, 2021, 99: 103223. [144] Sun Q, Zhang W, Huang Q, et al. Evaluation of physicochemical properties and in vitro starch digestion of noodles enriched with thermally assisted potassium carbonate treated sweet potato residue[J]. LWT, 2023, 182: 114837. [145] Sun X, Pei F, Fang Y. The effects of hydrocolloids on the thermomechanical, viscoelastic and microstructural properties of whole wheat flour dough[J]. Food Chemistry, 2022, 370: 130976. [146] Sun X, Yu C, Fu M, et al. Extruded whole buckwheat noodles: effects of processing variables on the degree of starch gelatinization, changes of nutritional components, cooking characteristics and in vitro starch digestibility[J]. Food & Function, 2019, 10(10): 6362-6373. [147] Sun Y, Pan Z, Yang C, et al. Comparative assessment of phenolic profiles, cellular antioxidant and antiproliferative activities in ten varieties of sweet potato (Ipomoea Batatas) storage roots[J]. Molecules, 2019, 24(24): 4476. [148] Sunarti S, Santoso U, Pramana A A C, et al. High fiber and beta carotene from sweet potatoes and pumpkin improve insulin resistance by inhibition of sterol regulatory binding protein 1c in liver of hypertriglyceridemic rats[J]. Open Access Macedonian Journal of Medical Sciences, 2020, 8(A): 898-903. [149] Teow C C, Truong V D, McFeeters R F, et al. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours[J]. Food Chemistry, 2007, 103(3): 829-838. [150] Ti H, Zhang R, Zhang M, et al. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages[J]. Food Chemistry, 2014, 161: 337-344. [151] Tian C, Wang M, Liu S, et al. A new glycoprotein SPG-8700 isolated from sweet potato with potential anti-cancer activity against colon cancer[J]. Natural Product Research, 2019, 33(16): 2322-2328. [152] Tuorila H, Monteleone E. Sensory food science in the changing society: Opportunities, needs, and challenges[J]. Trends in Food Science & Technology, 2009, 20(2): 54-62. [153] Van Hung P, Duyen T T M, Van Thanh H, et al. Starch digestibility and quality of cookies made from acid and heat-moisture treated sweet potato starch and wheat flour composites[J]. Journal of Food Measurement and Characterization, 2021, 15(4): 3045-3051. [154] Van Soest J J G, Tournois H, De Wit D, et al. Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy[J]. Carbohydrate Research, 1995, 279: 201-214. [155] Villanueva M, De lamo B, Harasym J, et al. Microwave radiation and protein addition modulate hydration, pasting and gel rheological characteristics of rice and potato starches[J]. Carbohydrate Polymers,, 2018, 201: 374-381. [156] Wang B, Gao W, Kang X, et al. Structural changes in corn starch granules treated at different temperatures[J]. Food Hydrocolloids, 2021, 118: 106760. [157] Wen L, Yang L, Chen C, et al. Applications of multi-omics techniques to unravel the fermentation process and the flavor formation mechanism in fermented foods[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(23): 8367-8383. [158] Wu Q, Qu H, Jia J, et al. Characterization, antioxidant and antitumor activities of polysaccharides from purple sweet potato[J]. Carbohydrate Polymers, 2015, 132: 31-40. [159] Xu F, Liu W, Zhang L, et al. Prediction of the rheological properties of wheat dough by starch‐gluten model dough systems: effect of gluten fraction and starch variety[J]. International Journal of Food Science & Technology, 2022, 57(4): 2126-2137. [160] Yang S, Dhital S, Shan C S, et al. Ordered structural changes of retrograded starch gel over long-term storage in wet starch noodles[J]. Carbohydrate Polymers, 2021, 270: 118367. [161] Yang S, Dhital S, Zhang M N, et al. Structural, gelatinization, and rheological properties of heat-moisture treated potato starch with added salt and its application in potato starch noodles[J]. Food Hydrocolloids, 2022a, 131: 107802. [162] Yang S, Jin L, Xu X H, et al. Long-term storage and temperature induced quality changes of industrial-scale wet starch noodles[J]. LWT, 2022b, 153: 112504. [163] Yang T, Ma S, Liu J, et al. Influences of four processing methods on main nutritional components of foxtail millet: A review[J]. Grain & Oil Science and Technology, 2022, 5(3): 156-165. [164] Yao M, Li M, Dhital S, et al. Texture and digestion of noodles with varied gluten contents and cooking time: The view from protein matrix and inner structure[J]. Food Chemistry, 2020, 315: 126230. [165] Zhang D, Mu T, Sun H. Comparative study of the effect of starches from five different sources on the rheological properties of gluten-free model doughs[J]. Carbohydrate Polymers, 2017, 176: 345-355. [166] Zhang L L, Guan E Q, Yang Y L, et al. Impact of wheat globulin addition on dough rheological properties and quality of cooked noodles[J]. Food Chemistry, 2021, 362: 130170. [167] Zhang M, Chen Z. Changes in cooking characteristics, structural properties and bioactive components of wheat flour noodles partially substituted with whole-grain hulled tartary buckwheat flour[J]. Foods, 2024, 13(3): 395. [168] Zhang S B, Lu Q Y, Yang H, et al. Effects of protein content, glutenin-to-gliadin ratio, amylose content, and starch damage on textural properties of chinese fresh white noodles[J]. Cereal Chemistry, 2011, 88(3): 296-301. [169] Zhao X, Wei Y, Wang Z, et al. Reaction kinetics in food extrusion: Methods and results[J]. Critical Reviews in Food Science and Nutrition, 2011, 51(9): 835-854. [170] Zhong Y, Qu J, Li Z, et al. Rice starch multi-level structure and functional relationships[J]. Carbohydrate Polymers, 2022, 275: 118777. [171] Zhou M, Xiong Z, Cai J, et al. Convective air drying characteristics and qualities of non-fried instant noodles[J]. International Journal of Food Engineering, 2015, 11(6): 851-860. [172] Zhu F. Interactions between starch and phenolic compound[J]. Trends in Food Science & Technology, 2015, 43(2): 129-143 |
中图分类号: | TS2 |
开放日期: | 2025-06-12 |