中文题名: | 羊粪生物有机肥研制及其对辣椒生长的影响 |
姓名: | |
学号: | 2018803190 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095103 |
学科名称: | 农学 - 农业推广 - 农业资源利用 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 农业资源利用与新型肥料 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2020-06-10 |
答辩日期: | 2020-06-03 |
外文题名: | Development of Organic Manure from Sheep Manure and Its Influence On The Growth of Pepper |
中文关键词: | |
外文关键词: | sheep manure ; SQR9 ; Trichoderma harzianum ; bio-organic ; fertilizer ; pepper ; production |
中文摘要: |
我国养羊业在发展的过程中,面临着羊粪的处理难题;另一方面,在农业生产中,为了追求高产,过度施肥往往会导致土壤酸化、水体富营养化、土壤有机质下降和土壤微生态失衡等一系列问题。解淀粉芽孢杆菌SQR9和哈茨木霉NJAU4742具有促进植物生长、提高作物产量和抑制土传病害的能力,在农业上具有广泛的应用。本研究通过在羊粪有机肥中添加解淀粉芽孢杆菌SQR9和哈茨木霉NJAU4742,研制新型羊粪生物有机肥,同时在东台和亭湖两处试验地评估新型生物有机肥料对辣椒的生物效应,以期在为生产低成本、高品质生物有机肥提供理论和实际支撑的同时,推进畜禽粪便的资源化利用和农业上生物有机肥部分替代化肥。获得了以下结果: 1、获得两种不同的羊粪生物有机肥,功能菌接种数量分别为:产品1: 解淀粉芽孢杆菌SQR9(接种后数量为2×108 CFU/g)+哈茨木霉NJAU4742接种量(接种后数量为2×107 CFU/g),产品2:解淀粉芽孢杆菌SQR9(接种后数量为2×108 CFU/g)。两个产品在货架期内有效活菌数均≥2×107 CFU/g,符合生物有机肥行业标准(NY 884-2012)。 2、试验点I(东台)和试验点II(亭湖)的田间试验结果表明,施用产品1羊粪生物有机肥能显著(P<0.05)促进辣椒的生长,提高辣椒产品,与未施肥(CK)、单施化肥(CF)和施用羊粪有机肥(AOF)相比,羊粪生物有机肥(BOF)处理亩产量分别增加403.9~506.9 kg,136.4~190.1 kg,130.4~172.1 kg,增产率达5.1%~22.9%;与CK和CF处理相比,BOF处理株高分别提高12.1%和11.6%,茎粗分别提高11.2%和8.8%。 3.施用羊粪生物有机肥可提高辣椒的品质。在试验点I:“馕播王”生物有机肥处理(NO.I)的蛋白含量显著高于CK和CF处理,AOF、BOF和NO.I处理的维生素C含量显著高于CK和CF处理,CK、BOF和NO.I的硝酸盐含量显著低于其他处理。试验点II:各处理的蛋白含量和维生素C含量无显著差异,AOF、BOF和NO.I处理在可溶性糖含量上显著高于其它处理,而CF处理硝酸盐含量显著高于其他处理。 4、施用羊粪生物有机肥能增加土壤中可培养细菌、放线菌和真菌数量,降低尖孢镰刀菌数量,增加土壤碱解氮、速效磷和速效钾含量,从而改善辣椒生长期间土壤微生物区系和提高土壤速效养分含量。 综上所述,以腐熟羊粪堆肥、酸解全价氨基酸、解淀粉芽孢杆菌SQR9和哈茨木霉NJAU4742为原料,制得羊粪生物有机肥符合生物有机肥行业标准(NY 884-2012)且施用羊粪生物有机肥能够显著提高辣椒产量,增加辣椒株高和茎粗,改善辣椒品质,优化土壤微生物,增加辣椒生长期间土壤速效养分含量。 |
外文摘要: |
In the process of development of sheep breeding industry in China, it is faced with the difficult problem of dealing with livestock manure. In pursuit of high yield in agriculture, excessive application of chemical fertilizers often leads to a series of environmental problems, such as soil compaction, eutrophication of water, soil organic matter decline, etc. Bacillus amyloliquefaciens SQR9 and Trichoderma harzianum 4742 have the ability to promote plant growth, increase crop yield and inhibit soil-borne diseases, so they are widely used in agriculture. This research through the solution of starch is added in the dung Bacillus amyloliquefaciens SQR9 and Trichoderma harzianum 4742, developed new sheep droppings compound biological organic fertilizer, at the same time two testbed to evaluate new biological organic fertilizer to the biological effect of chili, biological organic fertilizer with high quality and lower cost for production to improve the theoretical and practical support and promote the utilization of poultry and animal feces and agricultural portion of biological organic fertilizer instead of chemical fertilizer products. We can draw conclusions as follows: 1. Two different kinds of organic manure were obtained, and the inoculation quantity of functional bacteria were as follows: product 1: SQR9 of Bacillus amylolyticus (2×108 CFU/g) + Trichoderma Hartz NJAU4742 (2×107 CFU/g), and product 2: SQR9 of Bacillus amylolyticus (2×108 CFU/g).The effective viable bacteria number of both products in the shelf life is ≥2×107 CFU/g, which conforms to the industry standard of biological organic fertilizer (NY 884-2012). 2. Experimental field I (Dongtai) and II (Tinghu)’s results show that the application of dung biological organic fertilizer could significantly (P < 0.05), promote the growth of pepper, and improve the chili products, and no fertilizer (CK), only chemical fertilizer (CF), and organic manure of sheep (AOF) compared to sheep manure biological organic fertilizer (BOF) process yield were increased by 403.9~506.9 kg, 136.4~190.1 kg, 130.4~172.1 kg, increase rate of 5.1%~22.9%; Compared with CK and CF treatment, plant height of BOF treatment increased by 12.1% and 11.6%, and stem diameter increased by 11.2% and 8.8%, respectively. 3. The application of sheep manure bio-organic fertilizer can improve the quality of pepper. In experimental field I, the protein content of No. I bio-organic fertilizer treatment (No. I)was significantly higher than that of CK and CF treatment, the Vc content of AOF, BOF and No. I treatment was significantly higher than that of other treatments, and the nitrate content of CK, BOF and No. I treatment was significantly lower than that of other treatments. In experimental field I: there was no significant difference in protein content and Vc content in each treatment. The soluble sugar content of AOF, BOF and NO. I treatment was significantly higher than that of other treatments, while the nitrate content of CF treatment was significantly higher than that of other treatments. 4. Application of bio-organic fertilizer can improve soil microbial flora and increase the content of available nutrients in soil during the growth of pepper, increase the number of culturable bacteria, actinomycetes and fungi in soil, reduce the number of fusarium oxysporum, and increase the content of alkali-hydrolyzed nitrogen, available phosphorus and available potassium in soil. Above all, sheep dung to finished compost, acidolysis full amino acid, SQR9 and Trichoderma harzianum NJAU4742 as raw material, sheep manure biological organic fertilizer was made by the biological organic fertilizer industry standards (NY/T 884-2012) and the application of sheep manure biol-organic fertilizer can significantly improve the hot pepper production, increase the pepper plant height and stem diameter, improving the quality of hot pepper, optimize the soil microflora, add chili soil available nutrient content during growth period. |
参考文献: |
[1]Arjona-Girona I, Vinale F, Ruano-Rosa D, et al. Effect of metabolites from different Trichoderma strains on the growth of Rosellinia necatrix, the causal agent of avocado white root rot[J]. European Journal of Plant Pathology, 2014, 140: 385-387. [2]Chen L H, Yang X M, Raza W, et al. Trichoderma hariamum NJAU 4742 rapidly degrades Allelochemicals in rhizospheres of continuously cropped cucumbers [J]. Applied Microbiology and Biotechnology, 2011, 89: 1653-1663. [3]Gafar A F, Yassin M.I D, Samia O Y. Effect of different fertilizers (Bio, Organic and Inorganic Fertilizers) on some yield componants of rice (Oryza Sativa L.)[J]. Universal Journal of Agricultural Research Vol. 2014, 2(2): 67–70. [4]Khare F, Arora N K. Effect of indole-3-acetic acid (IAA) produced by in suppression of charaoal rot Pseudomon as aeruginosa disease of chickpea[J]. Current Microbiology. 2016, 61(1): 64-68. [5]Lee K K, Mok I K, Yoon M H, et al. Mechanisms of Phosphate Solubilization by PSB (Phosphate-solubilizing Bacteria) in Soil[J]. korean journal of soil science & fertilizer, 2012, 45:169. [6]Meihua Qiu, Ruifu Zhang, Chao Xue, et al. Application of bio-organic fertilizer can control Fusarium wilt of cucumber plants by regulating microbial community of rhizosphere soil[J]. Biology and Fertility of Soils, 2012, 48(7):807-816. [6]Mosa E G, Paszt L S, Frac M, et al. The Role of Biofertilization in Improving Apple Productivity―A Review[J]. Advances in Microbiology, 2015, 5(1): 21-27. [7]Shen Z, Zhong S, Wang Y, et al. Induced soil microbial suppression of banana fusarium wilt disease using compost and biofertilizers to improve yield and quality[J]. European Journal of Soil Biology, 2013, 57:1-8. [8]Shen ZZ, Zhong ST, Wang YG, et al. (2013) Induced soil microbial suppression of banana Fusarium wilt disease using compost and biofertilizers to improve yield and quality [J]. Eur J Soil Biol, 2013, 57(4): 1-8. [9]Shen Z. Z, Zhong S. T., Wang Y. G., et al. Induced soil microbial suppression of banana Fusarium wilt disease using compost and bio-fertilizers to improve yield and quality[J]. Soil Biol, 2013, 57: 1–8. [10]Torgny N?sholm, Ekblad A, Nordin A, et al. Boreal forest plants take up organic nitrogen[J]. Nature, 1998, 392(6679): 914-916. [11]Wang L, Yang F, E Y, et al. Long-Term Application of Bio-organic Fertilizers Improved Soil Biochemical Properties and Microbial Communities of an Apple Orchard Soil[J]. Plant and Soil. 2016, 7: 1893. [12]Weiqing Bao, Yang Yang, Tongcheng Fu, et al. Estimation of livestock excrement and its biogas production potential in China[J]. Journal of Cleaner Production, 2019, 7:229. [13]Xiong X , Yanxia L, Wei L, et al. Copper content in animal manures and potential risk of soil copper pollution with animal manure use in agriculture[J]. Resources, Conservation and Recycling, 2010, 54(11): 985-990. [14]Xu Zhihui, Shao Jiahui, Li Bing, et al. Contribution of bacillomycin D in Bacillus amyloliquefaciens SQR9 to antifungal activity and biofilm formation[J]. Applied and environmental microbiology, 2013, 79(3): 808-815. [15]Zhao J, Ni T, Li Y, et al. Responses of Bacterial Communities in Arable Soils in a Rice-Wheat Cropping System to Different Fertilizer Regimes and Sampling Times[J]. PLOS ONE, 2014, 9:84-85. [16]白国新. 利用酸解氨基酸研制含解淀粉芽孢杆菌SQR9的生物有机肥及其促生效应研究[D]. 南京: 南京农业大学, 2017. [17]曹亮亮. 利用废弃羽毛研制生物有机肥及其生物效应研究[D]. 南京: 南京农业大学, 2014. [18]曹云. SQR9微生物有机肥防治黄瓜土传枯萎病的效应与机制研究[D]. 南京: 南京农业大学, 2011. [19]陈立华. 哈兹木霉及其微生物有机肥对黄瓜土传枯萎病的生物防治及其机理[D]. 南京:南京农业大学, 2011. [20]陈淋. 解淀粉芽孢杆菌SQR9增强植物耐盐能力的机制研究[D]. 南京: 南京农业大学, 2016. [21]陈琳, 谷洁, 胡婷, 等.生物有机肥对板栗土壤微生物群落代谢活性的影响[J]. 应用生态学报, 2013,24(06): 1627-1632. [22]程万莉. 有机肥替代部分化肥对马铃薯根际微生群落功能多样性的影响[D]. 兰州: 甘肃农业大学, 2015. [23]丁传雨, 乔焕英, 沈其荣, 等. 生物有机肥对茄子青枯病的防治及其机理探讨[J]. 中国农业科学, 2012, 45(02): 239-245. [24]方亚曼. 复合微生物菌剂的研制及其在堆肥上的应用研究[D]. 上海: 上海师范大学, 2011. [25]付小猛, 毛加梅, 沈正松, 等.中国生物有机肥的发展现状与趋势[J]. 湖北农业科学, 2017, 56(03): 401-404. [26]巩子毓, 高旭, 黄炎, 等. 连续施用生物有机肥提高设施黄瓜产量和品质的研究[J]. 南京农业大学学报, 2016,39(05): 777-783. [27]郭现坤, 柴阿丽, 石延霞, 等.菌糠木霉混配基质对黄瓜的促生作用及对根腐病的防治效果[J]. 中国蔬菜, 2018(08): 32-37. [28]韩馥容. 利用氨基酸废液生产绿色木霉TV41固体菌剂的条件优化及其应用[D]. 南京: 南京农业大学, 2017. [29]姜茜, 王瑞波, 孙炜琳. 我国畜禽粪便资源化利用潜力分析及对策研究——基于商品有机肥利用角度[J]. 华中农业大学学报(社会科学版), 2018(04): 30-37+166-167. [30]康国栋. 有机物部分替代化肥对旱地红壤和紫色土有机质活性组分的影响[D]. 南京: 南京农业大学, 2017. [31]雷修齐. 生物有机肥的研究进展分析[J]. 农技服务, 2015, 32(12): 142. [32]李瑞霞.贵州木霉NJAU4742对矿质元素的活化及对番茄的促生效果研究[D]. 南京: 南京农业大学,2016. [33]李瑞霞, 陈巍, 蔡枫, 等. 贵州木霉NJAU4742生物有机肥对番茄种植的影响[J]. 南京农业大学学报, 2017, 40(03): 464-472. [34]李天枢. 畜粪堆肥高效复合微生物菌剂的研制与应用[D]. 西安: 西北农林科技大学,2013. [35]梁晓琳, 孙莉, 张娟, 等. 利用Bacillus amyloliquefaciens SQR9研制复合微生物肥料[J]. 土壤, 2015, 47(3): 558-563 [36]柳芳. 生防菌Bacillus subtilis SQR9液体及固体发酵条件优化[D]. 南京: 南京农业大学, 2012. [37]刘小玉. 根际促生菌株的筛选及其复合微生物肥料的研制与肥效研究[D]. 南京: 南京农业大学, 2015. [38]刘增兵, 束爱萍, 刘光荣, 等. 有机肥替代化肥对双季稻产量和土壤养分的影响[J]. 江西农业学报, 2018, 30(11): 35-39. [39]吕丽媛, 伍玉鹏, 孙振钧, 等. 有机肥对盐碱土蓖麻苗生长的调控作用[J]. 中国农业大学学报, 2013, 18(03): 73-80. [40]马铁铮, 马友华, 付欢欢, 等. 生物有机肥和生物炭对Cd和Pb污染稻田土壤修复的研究[J].农业资源与环境学报, 2015, 32(01): 14-19. [41]马艳青. 我国辣椒产业形势分析[J]. 辣椒杂志, 2011, 9(01): 1-5. [42]彭琼, 童建华, 柏连阳, 等. 干旱胁迫对辣椒果实中辣椒素?二氢辣椒素及VC含量的影响[J].中国蔬菜, 2015(12): 44-47. [43]曲淑岩. 利用复合微生物菌剂发酵牛粪生产生物有机肥[D]. 长春: 长春工业大学, 2012. [44]任轶, 李瑞霞, 艾昊, 等. 减施肥条件下木霉SQR-T037微生物肥对黄瓜产量?品质及养分利用效率的影响[J]. 江苏农业科学, 2014, 42(02): 143-146. [45]孙元烽. 羊粪有机肥的研制[D]. 贵阳: 贵州大学, 2019. [46]邵铖. 添加解淀粉芽孢杆菌SQR9的含氨基酸水溶肥研制及促生效应研究[D]. 南京: 南京农业大学, 2016. [47]邵佳慧. 解淀粉芽孢杆菌SQR9吲哚乙酸合成途径及促生效应的研究[D]. 南京: 南京农业大学, 2014. [48]沈文波, 胡凤义. 长期使用生物有机肥对土壤理化和生物性状的影响[J]. 山西农经, 2018(24): 67+90. [49]汪冬梅. 畜禽粪便资源及其利用[J]. 中国牛业科学, 2018, 44(05): 51-54. [50]王立浩, 马艳青, 张宝玺. 我国辣椒品种市场需求与育种趋势[J]. 中国蔬菜, 2019(08): 1-4. [51]王腾飞, 张超兰, 龙光霞, 等. 有机肥?硫磺和木质素铁对碱性土壤上桑树生长和铁素营养的影响[J]. 南方农业学报,2011,42(05):515-517. [52]王涛, 辛世杰, 乔卫花, 等. 几种微生物菌肥对连作黄瓜生长及土壤理化性状的影响[J]. 中国蔬菜, 2011(18): 52-57. [53]武淑霞, 刘宏斌, 黄宏坤, 等. 我国畜禽养殖粪污产生量及其资源化分析[J]. 中国工程科学, 2018, 20(05): 103-111. [54]王小龙, 刘凤之, 史祥宾,等. 不同有机肥对葡萄根系生长和土壤养分状况的影响[J]. 华北农学报, 2019, 34(05): 177-184. [55]伍从成, 姜海波, 赵静文, 等. 连续5年施用生物有机肥对梨树根系形态及分布的影响[J]. 南京农业大学学报, 2017, 40(03): 473-480. [56]徐志辉. 解淀粉芽孢杆菌SQR9生物膜形成和根际定殖分子机理研究[D]. 南京: 南京农业大学, 2014. [57]张风革. 哈茨木霉诱变菌株T-E5及其生物有机肥对黄瓜生长的影响及机理研究[D]. 南京: 南京农业大学, 2015. [58]张金妹, 田世尧, 李扇妹, 等. 生物有机肥对土壤理化?生物性状和香蕉生长的影响[J]. 中国农学通报, 2012, 28(25): 265-271. [60]张鲁杰. 羊粪发酵生产有机肥料技术[J]. 山东畜牧兽医, 2018, 39(01): 87. [61]张曼曼. 多功能木霉的筛选?鉴定及农杆菌介导康氏木霉转化的研究[D]. 南京: 南京农业大学, 2012. [62]张苗. 含Bacillus amyloliquefaciens SQR9的育苗基质和生物有机肥的研制及其应用[D]. 南京: 南京农业大学, 2014. [63]张如. 利用秸秆和糖厂滤泥固体发酵研制木霉生物有机肥[D]. 南京: 南京农业大学, 2016. [64]张洋. 不同施肥条件下黄瓜连作土壤微生物多样性分析[D]. 扬州: 扬州大学, 2016. [65]赵政, 陈巍, 王欢, 等. 木霉微生物肥与减量化肥配施对番茄产量?品质及土壤肥力的影响[J]. 土壤学报, 2018,55(05): 1243-1253. [67]钟书堂, 沈宗专, 孙逸飞, 等. 生物有机肥对连作蕉园香蕉生产和土壤可培养微生物区系的影响[J]. 应用生态学报, 2015, 26(02): 481-489. |
中图分类号: | S14 |
开放日期: | 2020-06-15 |