中文题名: | 油-棉两熟周年秸秆还田对不同肥力棉田氮、磷有效性及丛枝菌根真菌群落的影响 |
姓名: | |
学号: | 2022101046 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090101 |
学科名称: | 农学 - 作物学 - 作物栽培学与耕作学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 农田生态 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-06-11 |
答辩日期: | 2025-06-03 |
外文题名: | Effects of Annual Straw Retention from Rapeseed-Cotton Double Cropping System on Nitrogen and Phosphorus Availability and Arbuscular Mycorrhizal Fungal Community in Cotton Field with Different Fertility |
中文关键词: | |
外文关键词: | Straw retention ; Cotton yield ; Utilization of nitrogen and phosphorus ; Soil fertility ; Arbuscular mycorrhizal fungi |
中文摘要: |
油菜-棉花两熟种植制度是我国长江流域重要的集约化种植模式,通过合理复种可以提高土地利用率和经济效益。油-棉两熟制中棉花产量的提高主要依靠氮肥和磷肥等生产要素高投入实现,过量的化肥投入不仅浪费资源,还会污染环境。在农田生态系统中,丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)在土壤与作物之间的氮、磷养分循环中发挥重要作用。油菜秸秆作为一种重要的再生资源,还田后能提高土壤有机质含量,促进土壤养分循环。虽然秸秆还田对AMF群落和作物产量的影响已有广泛报道,但是关于秸秆还田对不同肥力棉田土壤AMF群落结构及其解氮、解磷功能、作物生产力的促进机制尚不完全清楚。因此,本研究于2023-2024年在江苏大丰(120º28'E,33º12'N)稻麦原种场开展大田试验。试验为两因素裂区设计,主区设置为低、中、中高、高(分为前期生物炭、豆饼还田两种类型,分别用高肥力-生物炭、高肥力-豆饼表示)4种肥力棉田;副区为油菜秸秆还田和不还田。通过研究油菜秸秆还田对不同肥力棉田棉花产量形成、氮肥和磷肥利用率、土壤氮、磷相关酶活性、养分含量变化及AMF群落的影响,揭示AMF群落演变特征及其对土壤微生态环境的适应机制,为作物秸秆培肥促进农田生态系统的可持续发展提供理论依据和实践指导。主要的研究结果如下: 1. 秸秆还田对不同肥力棉田棉花产量及养分利用的影响 秸秆还田通过增加棉花铃数、铃重及各器官养分利用效率进而提高籽棉产量。与秸秆不还田相比,秸秆还田下低、中、中高肥力、高肥力-生物炭、高肥力-豆饼棉田的籽棉产量增加在2023-204年分别为23.4%-28.3%、27.8%-28.7%、17.6%-19.0%、4.9%-14.6%和5.1%-14.9%。与秸秆不还田相比,秸秆还田显著促进棉花各器官氮、磷吸收,且低肥力棉田的棉花氮、磷吸收提升幅度最大,而高肥力棉田的增幅较小。在氮、磷肥利用效率方面,秸秆还田对中肥力棉田棉花的氮、磷肥利用效率提升效果最显著,而高肥力-豆饼棉田的增幅最小。因此,秸秆还田通过优化棉株氮、磷吸收,提高肥料利用效率,从而提高棉花产量,但其作用效应受棉田土壤肥力影响。 2. 秸秆还田对不同肥力棉田土壤氮、磷转化过程的影响 秸秆还田通过提高氮、磷相关酶活性来促进土壤氮、磷转化过程。在不同肥力棉田,秸秆还田对土壤全氮、铵态氮和硝态氮含量的提升效应有显著差异。全氮含量在低肥力棉田两年增幅达9.4%-12.2%,显著高于高肥力棉田。同时秸秆还田显著提高土壤全磷和有效磷含量。有效磷含量在低肥力棉田增幅最高,高肥力-生物炭棉田增幅最低。与秸秆不还田比,秸秆还田对土壤关键氮、磷相关酶活性均有促进作用。此外,全氮、全磷与有机碳、速效养分及酶活性呈显著正相关,而pH值和电导率则与速效氮、有效磷显著负相关。因此,秸秆还田可以通过提高氮、磷相关酶活性,从而增强土壤氮、磷转化效率,其效应在低肥力棉田中尤为显著。 3. 秸秆还田对不同肥力棉田丛枝菌根真菌的影响 秸秆还田显著提高AMF侵染率、菌丝密度及孢子密度,并提高球囊蛋白含量。秸秆还田显著增加近明球囊霉属(Claroideoglomus)相对丰度,但抑制球囊霉属(Glomus)相对丰度,并提升AMF的α多样性。与秸秆不还田相比,秸秆还田显著增加了不同肥力棉田的Shannon指数和Chao 1指数。秸秆还田显著降低了低、中肥力和高肥力-豆饼棉田的Simpson指数,显著提高了中高肥力棉田的Simpson指数,对高肥力-生物炭棉田无显著影响。冗余分析表明,土壤pH值、电导率及碱性磷酸酶活性是驱动AMF多样性变化的主要因素。同时AMF多样性、菌丝密度与棉花氮肥、磷肥利用率呈显著正相关,偏最小二乘路径模型证实AMF通过激活氮、磷相关酶活性间接提高速效养分含量,最终提高棉花产量。 综上所述,秸秆还田能显著改善不同肥力棉田土壤理化性质和提高土壤氮、磷转化相关酶活性,提高土壤供氮、供磷能力和氮、磷利用率来促进棉花氮、磷吸收及干物质积累。秸秆还田通过优化AMF群落结构和多样性,强化土壤-微生物-作物互作关系,其效应在低肥力中尤为显著,为秸秆还田策略的制定提供了微生物学依据。 |
外文摘要: |
Rapeseed-cotton double cropping system is an important intensive planting mode in the Yangtze River Basin in China. Rational double cropping can improve land use efficiency and economic benefits. The increase of cotton yield in the rapeseed-cotton double cropping system mainly depends on the high input of production factors such as nitrogen and phosphorus fertilizers. However, excessive fertilizer input rate not only wastes nutrient resources, but also increases environmental pollution. In the agroecosystem, arbuscular mycorrhizal fungi (AMF) play an important role in the nitrogen and phosphorus nutrient cycle in soil-crop system. Rapeseed straw, as an important renewable resource, can improve the content of soil organic matter and promote soil nutrient cycling after returning to the field. Although the effects of straw retention on AMF community and crop yield have been widely reported, the developing mechanism of straw retention on soil AMF community structure, nitrogen and phosphorus solubilizing function and crop productivity in cotton field with different fertility is not completely clear. Therefore, this study was conducted at Dafeng Basic Seed Farm (120º28'E, 33º12'N) in Jiangsu Province. The experiment was designed as a two-factor split plot design. The main plots were set as low, medium, medium-high and high (divided into two types formed by the previous continuous biochar and soybean cake retention, which were expressed by high fertility biochar and high fertility soybean cake respectively); The sub plots were rapeseed straw retention and rapeseed straw removal. To provide theoretical basis and practical guidance for crop straw fertilization to promote the sustainable development of agroecosystem, we investigated the effects of rapeseed straw retention on cotton yield formation, nitrogen and phosphorus use efficiency, soil nitrogen and phosphorus associated enzyme activities, nutrient content changes, and AMF community in different fertility cotton field. And the dynamic characteristics of AMF community and its adaptation mechanism to soil micro-ecological environment were revealed. The main results are as follows: 1. Effects of straw retention on cotton yield and nutrient utilization in cotton field with different fertility In different fertility cotton field, the effects of straw retention on cotton yield and nitrogen and phosphorus use efficiency were significantly different. Straw retention can improve seedcotton yield by increasing boll number and boll weight. Compared with straw removal, the increase of seedcotton yield under straw retention was 23.4%-28.3%, 27.8%-28.7%, 17.6%-19.0%, 4.9%-14.6% and 5.1%-14.9% in 2023 and 2024 in the low, medium, medium-high fertility, high fertility biochar, and high fertility soybean cake cotton field, respectively. Straw retention significantly promoted the uptake of nitrogen and phosphorus in different organs of cotton, and the uptake of nitrogen and phosphorus in low fertility increased the most, while the increase in high fertility was the lowest. In terms of nitrogen use efficiency, the effect of straw retention on improving the nitrogen use efficiency of cotton was the best in medium fertility and the lowest in high fertility soybean cake cotton field. The improvement of phosphorus fertilizer use efficiency also showed a similar trend. Therefore, straw retention can increase cotton yield by optimizing the absorption of nitrogen and phosphorus and improving the efficiency of fertilizer utilization. However, the effect intensity is regulated by the gradient of soil fertility in the cotton field. 2. Effects of straw retention on transformation of soil nitrogen and phosphorus in cotton field with different fertility Straw retention can enhance the transformation of soil nitrogen and phosphorus by promoting the activities of nitrogen and phosphorus associated enzymes. In cotton field with different fertility, straw retention had significant effects on soil total nitrogen, ammonium nitrogen and nitrate nitrogen. The total nitrogen content in low fertility increased by 9.4%-12.2%, significantly higher than that in high fertility. At the same time, straw retention significantly increased the content of soil total phosphorus and available phosphorus. The increase of available phosphorus content was the highest in low fertility and the lowest in high fertility biochar cotton field. Compared with straw removal, straw retention could promote the activities of soil nitrogen and phosphorus associated enzymes. In addition, total nitrogen and total phosphorus were significantly positively correlated with soil organic carbon, available nutrient and enzyme activity, while pH value and electrical conductivity were significantly negatively correlated with available nitrogen and available phosphorus. Therefore, straw retention can enhance the transformation efficiency of soil nitrogen and phosphorus by improving the activities of nitrogen and phosphorus associated enzymes, especially in low fertility cotton field. 3. Effects of straw retention on arbuscular mycorrhizal fungi in cotton field with different fertility Straw retention significantly increased AMF infection rate, mycelial density, spore density, and glomalin-related soil protein content. Straw retention significantly increased the relative abundance of claroideoglomus, but inhibited the relative abundance of glomus, and increased the α diversity of AMF. Compared with straw removal, straw retention significantly increased the Shannon index and Chao 1 index in different fertility cotton field. Straw retention significantly reduced the Simpson index of low, medium fertility and high-fertility soybean cake cotton field, significantly increased the Simpson index of medium-high fertility cotton field, but had no significant effect on high-fertility biochar cotton field. Redundancy analysis showed that soil pH value, electrical conductivity and alkaline phosphatase activity were the main factors driving the diversity of AMF. At the same time, AMF diversity and mycelial density were significantly positively correlated with the use efficiency of nitrogen and phosphorus fertilizer in cotton. Partial least squares path model confirmed that AMF indirectly increased the content of available nutrient by activating the activities of nitrogen and phosphorus associated enzymes, and ultimately increased cotton yield. In conclusion, straw retention can significantly improve the soil physical and chemical properties of cotton field with different fertility, stimulate the activities of enzymes associated with soil nitrogen and phosphorus transformation, enhance the soil nitrogen and phosphorus supply capacity, and promote nitrogen and phosphorus use efficiency to support cotton nitrogen and phosphorus uptake and biomass accumulation. Straw retention can optimize the community structure and diversity of AMF and strengthen the soil-microbe-crop interaction relationship, especially in low fertility cotton field, providing a microbiological basis for developing straw returning strategies. |
参考文献: |
[1] 鲍士旦. 土壤农业化学分析方法[M]. 中国农业科技出版社, 2000. [2] 董茂星. 长期施肥对农田土壤微生物多样性及群落结构的影响[D]. 兰州大学, 2008. [3] 冯欢, 蒙盼盼, 豆青, 张收霞, 王海华, 王春燕. 菌根真菌与植物共生营养交换机制研究进展[J]. 应用生态学报, 2019, 30(10): 3596-3604. [4] 刘润进, 陈应龙. 菌根学[M]. 科学出版社, 2007. [5] 鲁如坤. 土壤农业化学分析方法[M]. 中国农业科技出版社, 2000. [6] 马琨, 宋丽丽, 王明国, 马占旗, 安嫄嫄. 玉米秸秆还田对土壤丛枝菌根真菌群落的影响[J]. 应用生态学报, 2019, 30(8): 2749-2756. [7] 杨文莹, 孙露莹, 宋凤斌, 杨小琴, 张梦杰, 李书鑫, 朱先灿. 陆地农业生态系统丛枝菌根真菌物种多样性研究进展[J]. 应用生态学报, 2019, 30(11): 3971-3979. [8] 悦飞雪, 李继伟, 王艳芳, 石兆勇, 刘领. 生物炭和AM真菌提高矿区土壤养分有效性的机理[J]. 植物营养与肥料学报, 2019, 25(8): 1325-1334. [9] 钟旺. Bt玉米的种植及秸秆还田对丛枝菌根真菌群落结构的影响[D]. 华南农业大学, 2017. [10] 朱兴菲, 刘小芳, 赵勇钢, 刘新春, 高冉, 栗文玉. 晋西黄土区典型人工植被对土壤球囊霉素和团聚体稳定性的影响[J]. 水土保持通报, 2018, 38(6): 80-87 [11] Ahmed W, Qaswar M, Jing H, Wenjun D, Geng S, Kailou L, Ying M, Ao T, Mei S, Chao L. Tillage practices improve rice yield and soil phosphorus fractions in two typical paddy soils[J]. Journal of Soils and Sediments, 2020, 20: 850-861. [12] Akhtar K, Wang W, Khan A, Ren G, Zaheer S, Sial T A, Feng Y, Yang G. Straw mulching with fertilizer nitrogen: An approach for improving crop yield, soil nutrients and enzyme activities[J]. Soil Use and Management, 2019, 35(3): 526-535. [13] Alguacil M, Torrecillas E, García-Orenes F, Roldán A. Changes in the composition and diversity of AMF communities mediated by management practices in a Mediterranean soil are related with increases in soil biological activity[J]. Soil Biology and Biochemistry, 2014, 76: 34-44. [14] An Z Q, Hendrix J, Hershman D, Henson G. Evaluation of the “most probable number” (MPN)and wet-sieving methods for determining soil-borne populations of endogonaceous mycorrhizal fungi[J]. Mycologia, 1990, 82(5): 576-581. [15] An Z, Gross C D, Chen X, Bork E W, Carlyle C N, Chang S X. Manure and its biochar affect activities and stoichiometry of soil extracellular enzymes in croplands[J]. Journal of Soils and Sediments, 2024, 24(9): 3286-3296. [16] Antunes P M, Lehmann A, Hart M M, Baumecker M, Rillig M C. Long‐term effects of soil nutrient deficiency on arbuscular mycorrhizal communities[J]. Functional Ecology, 2012, 26(2): 532-540. [17] Aounallah M A, Slimene Debez I B, Djebali K, Gharbi D, Hammami M, Azaiez S, Limam F, Tabbene O. Enhancement of exochitinase production by Bacillus licheniformis AT6 strain and improvement of N-Acetylglucosamine production[J]. Applied Biochemistry and Biotechnology, 2017, 181: 650-666. [18] Bai Y L, Lei W, Lu Y L, Yang L P, Zhou L P, Lu N, Cheng M F. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation[J]. Journal of Integrative Agriculture, 2015, 14(12): 2467-2476. [19] Begum N, Qin C, Ahanger M A, Raza S, Khan M I, Ashraf M, Ahmed N, Zhang L. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance[J]. Frontiers in Plant Science, 2019, 10: 1068-1082. [20] Benaffari W, Boutasknit A, Anli M, Ait-El-Mokhtar M, Ait-Rahou Y, Ben-Laouane R, Ben Ahmed H, Mitsui T, Baslam M, Meddich A. The native arbuscular mycorrhizal fungi and vermicompost-based organic amendments enhance soil fertility, growth performance, and the drought stress tolerance of quinoa[J]. Plants, 2022, 11(3): 393-419. [21] Brundrett M C, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. New Phytologist, 2018, 220(4): 1108-1115. [22] Cai A, Liang G, Zhang X, Zhang W, Li L, Rui Y, Xu M, Luo Y. Long-term straw decomposition in agro-ecosystems described by a unified three-exponentiation equation with thermal time[J]. Science of the Total Environment, 2018, 636: 699-708. [23] Can Z, Huang H, Qian Z H, Jiang H X, Liu G M, Ke X, Hu Y J, Dai Q G, Huo Z Y. Effect of side deep placement of nitrogen on yield and nitrogen use efficiency of single season late japonica rice[J]. Journal of Integrative Agriculture, 2021, 20(6): 1487-1502. [24] Chagnon P L, Bradley R L, Maherali H, Klironomos J N. A trait-based framework to understand life history of mycorrhizal fungi[J]. Trends in Plant Science, 2013, 18(9): 484-491. [25] Chen Y, Peng J, Wang J, Fu P, Hou Y, Zhang C, Fahad S, Peng S, Cui K, Nie L. Crop management based on multi-split topdressing enhances grain yield and nitrogen use efficiency in irrigated rice in China[J]. Field Crops Research, 2015, 184: 50-57. [26] Chen Z, Wang H, Liu X, Lu D, Zhou J. The fates of 15N-labeled fertilizer in a wheat-soil system as influenced by fertilization practice in a loamy soil[J]. Scientific Reports, 2016, 6(1): 347-354. [27] Cheng Y, Ishimoto K, Kuriyama Y, Osaki M, Ezawa T. Ninety-year, but not single, application of phosphorus fertilizer has a major impact on arbuscular mycorrhizal fungal communities[J]. Plant and Soil, 2013, 365: 397-407. [28] Cheng Z, Guo J, Jin W, Liu Z, Wang Q, Zha L, Zhou Z, Meng Y. Responses of SOC, labile SOC fractions, and amino sugars to different organic amendments in a coastal saline-alkali soil[J]. Soil and Tillage Research, 2024, 239: 106051. [29] Choi J, Summers W, Paszkowski U. Mechanisms underlying establishment of arbuscular mycorrhizal symbioses[J]. Annual Review of Phytopathology, 2018, 56(1): 135-160. [30] Cho K, Toler H, Lee J, Ownley B, Stutz J C, Moore J L, Augé R M. Mycorrhizal symbiosis and response of sorghum plants to combined drought and salinity stresses[J]. Journal of Plant Physiology, 2006, 163(5): 517-528. [31] Chu Q, Zhang L, Zhou J, Yuan L, Chen F, Zhang F, Feng G, Rengel Z. Soil plant-available phosphorus levels and maize genotypes determine the phosphorus acquisition efficiency and contribution of mycorrhizal pathway[J]. Plant and Soil, 2020, 449: 357-371. [32] Coban O, De Deyn G B, van der Ploeg M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584): abe0725. [33] Cozzolino V, Pigna M, Di Meo V, Caporale A G, Violante A. Effects of arbuscular mycorrhizal inoculation and phosphorus supply on the growth of Lactuca sativa L. and arsenic and phosphorus availability in an arsenic polluted soil under non-sterile conditions[J]. Applied Soil Ecology, 2010, 45(3): 262-268. [34] Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, Wei D, Li D, Ma B, Tang C. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems[J]. The ISME Journal, 2020, 14(3): 757-770. [35] Damon P M, Bowden B, Rose T, Rengel Z. Crop residue contributions to phosphorus pools in agricultural soils: A review[J]. Soil Biology and Biochemistry, 2014, 74: 127-137. [36] Daniell T, Husband R, Fitter A, Young J. Molecular diversity of arbuscular mycorrhizal fungi colonising arable crops[J]. FEMS Microbiology Ecology, 2001, 36(2-3): 203-209. [37] De Miranda J, Harris P. Effects of soil phosphorus on spore germination and hyphal growth of arbuscular mycorrhizal fungi[J]. New Phytologist, 1994, 128(1): 103-108. [38] de Novais C B, Avio L, Giovannetti M, de Faria S M, Siqueira J O, Sbrana C. Interconnectedness, length and viability of arbuscular mycorrhizal mycelium as affected by selected herbicides and fungicides[J]. Applied Soil Ecology, 2019, 143: 144-152. [39] Demenois J, Rey F, Ibanez T, Stokes A, Carriconde F. Linkages between root traits, soil fungi and aggregate stability in tropical plant communities along a successional vegetation gradient[J]. Plant and Soil, 2018, 424: 319-334. [40] Dickson S. The Arum-Paris continuum of mycorrhizal symbioses[J]. New Phytologist, 2004: 187-200. [41] Du Z L, Ren T S, Hu C S, Zhang Q Z, Blanco-Canqui H. Soil aggregate stability and aggregate-associated carbon under different tillage systems in the North China Plain[J]. Journal of Integrative Agriculture, 2013, 12(11): 2114-2123. [42] Fan K, Delgado-Baquerizo M, Guo X, Wang D, Zhu Y G, Chu H. Biodiversity of key-stone phylotypes determines crop production in a 4-decade fertilization experiment[J]. The ISME Journal, 2021, 15(2): 550-561. [43] Feng H, Wang Y, Wang M, Xie X, Chang H, Wang L, Qu J, Sun K, He W. Mycorrhizal symbiosis modulates the rhizosphere microbiota to promote rhizobia-legume symbiosis[J]. Molecular Plant, 2021, 14(3): 503-516. [44] Ferrol N, Azcón-Aguilar C, Pérez-Tienda J. Arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: An overview on the mechanisms involved[J]. Plant Science, 2019, 280: 441-447. [45] Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome[J]. Nature Reviews Microbiology, 2017, 15(10): 579-590. [46] Gao X, Guo H, Zhang Q, Guo H, Zhang L, Zhang C, Gou Z, Liu Y, Wei J, Chen A, Chu Z, Zeng F. Arbuscular mycorrhizal fungi (AMF) enhanced the growth, yield, fiber quality and phosphorus regulation in upland cotton (Gossypium hirsutum L.)[J]. Scientific Reports, 2020, 10(1): 2084-2095. [47] Gao H, Xi Y, Wu X, Pei X, Liang G, Bai J, Song X, Zhang M, Liu X, Han Z. Partial substitution of manure reduces nitrous oxide emission with maintained yield in a winter wheat crop[J]. Journal of Environmental Management, 2023, 326: 116794. [48] Gazdag O, Kovács R, Parádi I, Füzy A, Ködöböcz L, Mucsi M, Szili-Kovács T, Inubushi K, Takács T. Density and diversity of microbial symbionts under organic and conventional agricultural management[J]. Microbes and Environments, 2019, 34(3): 234-243. [49] Gholamhoseini M, Ghalavand A, Dolatabadian A, Jamshidi E, Khodaei-Joghan A. Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress[J]. Agricultural Water Management, 2013, 117: 106-114. [50] Gianinazzi S, Gollotte A, Binet M-N, van Tuinen D, Redecker D, Wipf D. Agroecology: the key role of arbuscular mycorrhizas in ecosystem services[J]. Mycorrhiza, 2010, 20(8): 519-530. [51] Govindarajulu M, Pfeffer P E, Jin H, Abubaker J, Douds D D, Allen J W, Bücking H, Lammers P J, Shachar-Hill Y. Nitrogen transfer in the arbuscular mycorrhizal symbiosis[J]. Nature, 2005, 435(7043): 819-823. [52] Guo J H, Liu X J, Zhang Y, Shen J, Han W, Zhang W, Christie P, Goulding K, Vitousek P, Zhang F. Significant acidification in major Chinese croplands[J]. Science, 2010, 327(5968): 1008-1010. [53] He X, Mouratov S, Steinberger Y. Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes[J]. Arid Land Research and Management, 2002, 16(2): 149-160. [54] He Y, Cornelissen J H, Wang P, Dong M, Ou J. Nitrogen transfer from one plant to another depends on plant biomass production between conspecific and heterospecific species via a common arbuscular mycorrhizal network[J]. Environmental Science and Pollution Research, 2019, 26: 8828-8837. [55] Hijbeek R v, van Ittersum M K, ten Berge H F, Gort G, Spiegel H, Whitmore A P. Do organic inputs matter-a meta-analysis of additional yield effects for arable crops in Europe[J]. Plant and Soil, 2017, 411: 293-303. [56] Hijri M. Analysis of a large dataset of mycorrhiza inoculation field trials on potato shows highly significant increases in yield[J]. Mycorrhiza, 2016, 26(3): 209-214. [57] Hodge A, Campbell C D, Fitter A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413(6853): 297-299. [58] Hodge A, Fitter A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. Proceedings of the National Academy of Sciences, 2010, 107(31): 13754-13759. [59] Huang T, Yang N, Lu C, Qin X, Siddique K H. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods[J]. Soil and Tillage Research, 2021, 214: 105171. [60] Jackson L E, Burger M, Cavagnaro T R. Roots, nitrogen transformations, and ecosystem services[J]. Annual Review of Plant Biology, 2008, 59(1): 341-363. [61] Jakobsen I, Abbott L, Robson A. External hyphae of vesicular‐arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. Spread of hyphae and phosphorus inflow into roots[J]. New Phytologist, 1992, 120(3): 371-380. [62] Janos D P, Garamszegi S, Beltran B. Glomalin extraction and measurement[J]. Soil Biology and Biochemistry, 2008, 40(3): 728-739. [63] Jantamenchai M, Sukitprapanon T S, Tulaphitak D, Mekboonsonglarp W, Vityakon P. Organic phosphorus forms in a tropical sandy soil after application of organic residues of different quality[J]. Geoderma, 2022, 405: 115462. [64] Jiang D, Hengsdijk H, Ting Bo D, Qi J, Wei Xing C. Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China[J]. Pedosphere, 2006, 16(1): 25-32. [65] Jiang M, Caldararu S, Zaehle S, Ellsworth D S, Medlyn B E. Towards a more physiological representation of vegetation phosphorus processes in land surface models[J]. New Phytologist, 2019, 222(3): 1223-1229. [66] Jiang W, Yang C, Zhang H, Chen T. Shifts of arbuscular mycorrhizal fungal functioning along a simulated nitrogen deposition gradient[J]. Food and Energy Security, 2024, 13(2): e542. [67] Jie W, Huang Y, Jiang X-Y. Influence of ectomycorrhizal fungi on absorption and balance of essential elements of Pinus tabulaeformis seedlings in saline soil[J]. Pedosphere, 2011, 21(3): 400-406. [68] Jin Z, Shah T, Zhang L, Liu H, Peng S, Nie L. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review[J]. Food and Energy Security, 2020, 9(2): e200. [69] Kang H, Yu W, Dutta S, Gao H. Soil microbial community composition and function are closely associated with soil organic matter chemistry along a latitudinal gradient[J]. Geoderma, 2021, 383: 114744. [70] Kazeeroni E A, Al-Sadi A M. 454-pyrosequencing reveals variable fungal diversity across farming systems[J]. Frontiers in Plant Science, 2016, 7: 314-321. [71] Kleijn D, Berendse F, Smit R, Gilissen N. Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes[J]. Nature, 2001, 413(6857): 723-725. [72] Koester M, Stock S C, Nájera F, Abdallah K, Gorbushina A, Prietzel J, Matus F, Klysubun W, Boy J, Kuzyakov Y. From rock eating to vegetarian ecosystems-disentangling processes of phosphorus acquisition across biomes[J]. Geoderma, 2021, 388: 114827. [73] Köhl L, Van der Heijden M G. Arbuscular mycorrhizal fungal species differ in their effect on nutrient leaching[J]. Soil Biology and Biochemistry, 2016, 94: 191-199. [74] Koide R T, Mosse B. A history of research on arbuscular mycorrhiza[J]. Mycorrhiza, 2004, 14: 145-163. [75] Koltai H. Mycorrhiza in floriculture: difficulties and opportunities[J]. Symbiosis, 2010, 52(2): 55-63. [76] Lang M, Zhang C, Su W, Chen X, Zou C, Chen X. Long-term P fertilization significantly altered the diversity, composition and mycorrhizal traits of arbuscular mycorrhizal fungal communities in a wheat-maize rotation[J]. Applied Soil Ecology, 2022, 170: 104261. [77] Langhans C, Beusen A, Mogollón J, Bouwman A. Phosphorus for sustainable development goal target of doubling smallholder productivity[J]. Nature Sustainability, 2022, 5(1): 57-63. [78] Lehman R M, Osborne S L, Taheri W I, Buyer J S, Chim B K. Comparative measurements of arbuscular mycorrhizal fungal responses to agricultural management practices[J]. Mycorrhiza, 2019, 29(3): 227-235. [79] Lehmann J, Hansel C M, Kaiser C, Kleber M, Maher K, Manzoni S, Nunan N, Reichstein M, Schimel J P, Torn M S. Persistence of soil organic carbon caused by functional complexity[J]. Nature Geoscience, 2020, 13(8): 529-534. [80] Lekberg Y, Koide R. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta‐analysis of studies published between 1988 and 2003[J]. New Phytologist, 2005, 168(1): 189-204. [81] Li J, Meng B, Chai H, Yang X, Song W, Li S, Lu A, Zhang T, Sun W. Arbuscular mycorrhizal fungi alleviate drought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis[J]. Frontiers in Plant Science, 2019, 10: 499. [82] Li Y, Sun J, Liu J, Yuan Z, Hu S, Sun C, Du J, Ji W, Cao G, Wang Z. Effects of straw returning on drought tolerance and growth status of maize under drought stress in the cold and arid regions of northern China[J]. Agronomy, 2024, 14(11): 2580-2601. [83] Liang Z, Cao B, Jiao Y, Liu C, Li X, Meng X, Shi J, Tian X. Effect of the combined addition of mineral nitrogen and crop residue on soil respiration, organic carbon sequestration, and exogenous nitrogen in stable organic matter[J]. Applied Soil Ecology, 2022, 171: 104324. [84] Lidbury I D, Borsetto C, Murphy A R, Bottrill A, Jones A M, Bending G D, Hammond J P, Chen Y, Wellington E M, Scanlan D J. Niche-adaptation in plant-associated Bacteroidetes favours specialisation in organic phosphorus mineralisation[J]. The ISME Journal, 2021, 15(4): 1040-1055. [85] Liu B, Xia H, Jiang C, Riaz M, Yang L, Chen Y, Fan X, Xia X. 14 year applications of chemical fertilizers and crop straw effects on soil labile organic carbon fractions, enzyme activities and microbial community in rice-wheat rotation of middle China[J]. Science of the Total Environment, 2022, 841: 156608. [86] Liu J, Zhang J, Li D, Xu C, Xiang X. Differential responses of arbuscular mycorrhizal fungal communities to mineral and organic fertilization[J]. MicrobiologyOpen, 2020, 9(1): e00920. [87] Liu Y, Shi G, Mao L, Cheng G, Jiang S, Ma X, An L, Du G, Collins Johnson N, Feng H. Direct and indirect influences of 8 yr of nitrogen and phosphorus fertilization on Glomeromycota in an alpine meadow ecosystem[J]. New Phytologist, 2012, 194(2): 523-535. [88] Liu Z, Bai J, Qin H, Sun D, Li M, Hu J, Lin X. Application of rice straw and horse manure coameliorated soil arbuscular mycorrhizal fungal community: Impacts on structure and diversity in a degraded field in Eastern China[J]. Land Degradation and Development, 2021, 32(8): 2595-2605. [89] Long M, Li M, Yu C, Ding Y, Li W, Zhang H, Zhang T, Wen X. Effects of straw returning method on soil physical and chemical properties and growth of winter wheat in rainfed area of the Loess Plateau[J]. Journal of Soil Science and Plant Nutrition, 2023, 23(4): 5567-5581. [90] Luan H, Gao W, Huang S, Tang J, Li M, Zhang H, Chen X, Masiliūnas D. Organic amendment increases soil respiration in a greenhouse vegetable production system through decreasing soil organic carbon recalcitrance and increasing carbon-degrading microbial activity[J]. Journal of Soils and Sediments, 2020, 20: 2877-2892. [91] Luo P, Han X, Wang Y, Han M, Shi H, Liu N, Bai H. Influence of long-term fertilization on soil microbial biomass, dehydrogenase activity, and bacterial and fungal community structure in a brown soil of northeast China[J]. Annals of Microbiology, 2015, 65: 533-542. [92] Ma E, Zhang G, Ma J, Xu H, Cai Z, Yagi K. Effects of rice straw returning methods on N2O emission during wheat-growing season[J]. Nutrient Cycling in Agroecosystems, 2010, 88: 463-469. [93] Ma X, Geng Q, Zhang H, Bian C, Chen H Y, Jiang D, Xu X. Global negative effects of nutrient enrichment on arbuscular mycorrhizal fungi, plant diversity and ecosystem multifunctionality[J]. New Phytologist, 2021, 229(5): 2957-2969. [94] Ma X, Mason-Jones K, Liu Y, Blagodatskaya E, Kuzyakov Y, Guber A, Dippold M A, Razavi B S. Coupling zymography with pH mapping reveals a shift in lupine phosphorus acquisition strategy driven by cluster roots[J]. Soil Biology and Biochemistry, 2019, 135: 420-428. [95] Mai W, Xue X, Feng G, Yang R, Tian C. Arbuscular mycorrhizal fungi-15-fold enlargement of the soil volume of cotton roots for phosphorus uptake in intensive planting conditions[J]. European Journal of Soil Biology, 2019, 90: 31-35. [96] Manoharan L, Rosenstock N P, Williams A, Hedlund K. Agricultural management practices influence AMF diversity and community composition with cascading effects on plant productivity[J]. Applied Soil Ecology, 2017, 115: 53-59. [97] Mao Q, Lu X, Zhou K, Chen H, Zhu X, Mori T, Mo J. Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest[J]. Geoderma, 2017, 285: 57-63. [98] Martínez‐García L B, De Deyn G B, Pugnaire F I, Kothamasi D, van der Heijden M G. Symbiotic soil fungi enhance ecosystem resilience to climate change[J]. Global Change Biology, 2017, 23(12): 5228-5236. [99] Masto R, Chhonkar P, Purakayastha T, Patra A, Singh D. Soil quality indices for evaluation of long‐term land use and soil management practices in semi‐arid sub‐tropical India[J]. Land Degradation and Development, 2008, 19(5): 516-529. [100] McLaren T I, Smernik R J, McLaughlin M J, Doolette A L, Richardson A E, Frossard E. The chemical nature of soil organic phosphorus: A critical review and global compilation of quantitative data[J]. Advances in Agronomy, 2020, 160(1): 51-124. [101] Mcgonigle T P, Miller M H, Evans D G, et al. A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi [J]. New Phytologist, 1990, 115(3): 495-501. [102] Mehnaz K R, Keitel C, Dijkstra F A. Phosphorus availability and plants alter soil nitrogen retention and loss[J]. Science of the Total Environment, 2019, 671: 786-794. [103] Meyer J B, Song-Wilson Y, Foetzki A, Luginbühl C, Winzeler M, Kneubühler Y, Matasci C, Mascher-Frutschi F, Kalinina O, Boller T. Does wheat genetically modified for disease resistance affect root-colonizing pseudomonads and arbuscular mycorrhizal fungi?[J]. PLoS One, 2013, 8(1): e53825. [104] Nkebiwe P M, Weinmann M, Bar-Tal A, Müller T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis[J]. Field Crops Research, 2016, 196: 389-401. [105] Oehl F, Sieverding E, Mäder P, Dubois D, Ineichen K, Boller T, Wiemken A. Impact of long-term conventional and organic farming on the diversity of arbuscular mycorrhizal fungi[J]. Oecologia, 2004, 138: 574-583. [106] Palansooriya K N, Wong J T F, Hashimoto Y, Huang L, Rinklebe J, Chang S X, Bolan N, Wang H, Ok Y S. Response of microbial communities to biochar-amended soils: a critical review[J]. Biochar, 2019, 1: 3-22. [107] Parham J, Deng S. Detection, quantification and characterization of β-glucosaminidase activity in soil[J]. Soil Biology and Biochemistry, 2000, 32(8-9): 1183-1190. [108] Parihar M, Rakshit A, Meena V S, Gupta V K, Rana K, Choudhary M, Tiwari G, Mishra P K, Pattanayak A, Bisht J K. The potential of arbuscular mycorrhizal fungi in C cycling: a review[J]. Archives of Microbiology, 2020, 202: 1581-1596. [109] Paszkowski U. A journey through signaling in arbuscular mycorrhizal symbioses 2006[J]. New Phytologist, 2006, 172(1): 35-46. [110] Pellegrino E, Gamper H A, Ciccolini V, Ercoli L. Forage rotations conserve diversity of arbuscular mycorrhizal fungi and soil fertility[J]. Frontiers in Microbiology, 2020, 10: 2969. [111] Pellegrino E, Öpik M, Bonari E, Ercoli L. Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013[J]. Soil Biology and Biochemistry, 2015, 84: 210-217. [112] Pepe A, Giovannetti M, Sbrana C. Appressoria and phosphorus fluxes in mycorrhizal plants: connections between soil-and plant-based hyphae[J]. Mycorrhiza, 2020, 30(5): 589-600. [113] Pietikäinen A, Kytöviita M M. Defoliation changes mycorrhizal benefit and competitive interactions between seedlings and adult plants[J]. Journal of Ecology, 2007, 95(4): 639-647. [114] Powell J R, Rillig M C. Biodiversity of arbuscular mycorrhizal fungi and ecosystem function[J]. New Phytologist, 2018, 220(4): 1059-1075. [110] Powlson D S, Gregory P J, Whalley W R, Quinton J N, Hopkins D W, Whitmore A P, Hirsch P R, Goulding K W. Soil management in relation to sustainable agriculture and ecosystem services[J]. Food Policy, 2011, 36: S72-S87. [115] Qiao X, Bei S, Li H, Christie P, Zhang F, Zhang J. Arbuscular mycorrhizal fungi contribute to overyielding by enhancing crop biomass while suppressing weed biomass in intercropping systems[J]. Plant and Soil, 2016, 406: 173-185. [116] Qin H, Lu K, Strong P, Xu Q, Wu Q, Xu Z, Xu J, Wang H. Long-term fertilizer application effects on the soil, root arbuscular mycorrhizal fungi and community composition in rotation agriculture[J]. Applied Soil Ecology, 2015, 89: 35-43. [117] Qin Z, Peng Y, Yang G, Feng G, Christie P, Zhou J, Zhang J, Li X, Gai J. Relationship between phosphorus uptake via indigenous arbuscular mycorrhizal fungi and crop response: A 32P-labeling study[J]. Applied Soil Ecology, 2022, 180: 104624. [118] Qin Z, Zhang H, Feng G, Christie P, Zhang J, Li X, Gai J. Soil phosphorus availability modifies the relationship between AM fungal diversity and mycorrhizal benefits to maize in an agricultural soil[J]. Soil Biology and Biochemistry, 2020, 144: 107790. [119] Rezaie M, Pasari B, Mohammadi K, Rokhzadi A, Karami E. Study the effect of mycorrizal fungi chitosan and cycocel on agronomic characteristics of rainfed chickpea[J]. Legume Research, 2020, 43(4): 546-551. [120] Ruyi L, Jiafa L, Jianling F, Deyan L, Jin-Sheng H, Perveen N, Weixin D. Responses of soil microbial communities and functions associated with organic carbon mineralization to nitrogen addition in a Tibetan grassland[J]. Pedosphere, 2020, 30(2): 214-225. [121] Saiya-Cork K, Sinsabaugh R, Zak D. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. [122] Salmeron-Santiago I A, Martínez-Trujillo M, Valdez-Alarcón J J, Pedraza-Santos M E, Santoyo G, Pozo M J, Chávez-Bárcenas A T. An updated review on the modulation of carbon partitioning and allocation in arbuscular mycorrhizal plants[J]. Microorganisms, 2021, 10(1): 75-94. [123] Schütz L, Saharan K, Mäder P, Boller T, Mathimaran N. Rate of hyphal spread of arbuscular mycorrhizal fungi from pigeon pea to finger millet and their contribution to plant growth and nutrient uptake in experimental microcosms[J]. Applied Soil Ecology, 2022, 169: 104156. [124] Sheldrake M, Rosenstock N P, Revillini D, Olsson P A, Mangan S, Sayer E J, Wallander H, Turner B L, Tanner E V. Arbuscular mycorrhizal fungal community composition is altered by long‐term litter removal but not litter addition in a lowland tropical forest[J]. New Phytologist, 2017, 214(1): 455-467. [125] Singh A K, Zhu X, Chen C, Wu J, Yang B, Zakari S, Jiang X J, Singh N, Liu W. The role of glomalin in mitigation of multiple soil degradation problems[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(9): 1604-1638. [126] Smith S E, Facelli E, Pope S, Andrew Smith F. Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas[J]. Plant and Soil, 2010, 326: 3-20. [127] Smith S E, Jakobsen I, Grønlund M, Smith F A. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition[J]. Plant Physiology, 2011, 156(3): 1050-1057. [128] Smith S E, Smith F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology, 2011, 62(1): 227-250. [129] Smith S E, Smith F A, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM)symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake[J]. New Phytologist, 2004, 162(2): 511-524. [130] Staddon P L, Ramsey C B, Ostle N, Ineson P, Fitter A H. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C[J]. Science, 2003, 300(5622): 1138-1140. [131] Steinberg P D, Rillig M C. Differential decomposition of arbuscular mycorrhizal fungal hyphae and glomalin[J]. Soil Biology and Biochemistry, 2003, 35(1): 191-194. [132] Sun C Y Z, Y. H.Ma, J. Q.Liu, L.Liao, H. L.Huang, J. H. Effects of arbuscular mycorrhizal fungi inoculation on allelopathic potential of Artemisia annua L. root exudates[J]. Allelopathy Journal, 2019, 48(2): 104-136. [133] Svanbäck A, McCrackin M L, Swaney D P, Linefur H, Gustafsson B G, Howarth R W, Humborg C. Reducing agricultural nutrient surpluses in a large catchment-Links to livestock density[J]. Science of the Total Environment, 2019, 648: 1549-1559. [134] Tabatabai M. Methods of soil analysis, Part 2: Microbiological and biochemical properties[M]. John Wiley and Sons, 2020. [135] Talbot J, Allison S, Treseder K. Decomposers in disguise: mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change[J]. Functional Ecology, 2008, 22(6): 955-963. [136] Tedersoo L, Bahram M, Zobel M. How mycorrhizal associations drive plant population and community biology[J]. Science, 2020, 367(6480): eaba1223. [137] Tian J, Kuang X, Tang M, Chen X, Huang F, Cai Y, Cai K. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition[J]. Science of the Total Environment, 2021, 779: 146556. [138] Tian P, Lian H, Wang Z, Jiang Y, Li C, Sui P, Qi H. Effects of deep and shallow tillage with straw incorporation on soil organic carbon, total nitrogen and enzyme activities in Northeast China[J]. Sustainability, 2020, 12(20): 8679-8692. [139] Tian S, Wang M, Cheng Y, Chen X, Li D, Hu F, Liu M. Long-term effects of chemical and organic amendments on red soil enzyme activities[J]. Acta Ecologica Sinica, 2017, 37(15): 4963-4972. [140] Tian Z, Wang J J, Liu S, Zhang Z, Dodla S K, Myers G. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region[J]. Science of the Total Environment, 2015, 533: 329-338. [141] To H T M, Le K Q, Van Nguyen H, Duong L V, Kieu H T, Chu Q A T, Tran T P, Mai N T. A genome-wide association study reveals the quantitative trait locus and candidate genes that regulate phosphate efficiency in a Vietnamese rice collection[J]. Physiology and Molecular Biology of Plants, 2020, 26: 2267-2281. [142] Touhami D, McDowell R W, Condron L M, Bouray M. Nitrogen fertilization effects on soil phosphorus dynamics under a grass-pasture system[J]. Nutrient Cycling in Agroecosystems, 2022, 124(2): 227-246. [143] Toussaint J-P, St-Arnaud M, Charest C. Nitrogen transfer and assimilation between the arbuscular mycorrhizal fungus Glomus intraradices Schenck & Smith and Ri T-DNA roots of Daucus carota L. in an in vitro compartmented system[J]. Canadian Journal of Microbiology, 2004, 50(4): 251-260. [144] Treseder K K, Allen M F. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test[J]. New Phytologist, 2002, 155(3): 507-515. [145] van Der Heijden M G, Martin F M, Selosse M A, Sanders I R. Mycorrhizal ecology and evolution: the past, the present, and the future[J]. New Phytologist, 2015, 205(4): 1406-1423. [146] Verbruggen E, Xiang D, Chen B, Xu T, Rillig M C. Mycorrhizal fungi associated with high soil N: P ratios are more likely to be lost upon conversion from grasslands to arable agriculture[J]. Soil Biology and Biochemistry, 2015, 86: 1-4. [147] Veresoglou S D, Rillig M C. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi[J]. Biology Letters, 2012, 8(2): 214-217. [148] Videgain-Marco M, Marco-Montori P, Martí-Dalmau C, Jaizme-Vega M d C, Manyà-Cervelló J J, García-Ramos F J. The effects of biochar on indigenous arbuscular mycorrhizae fungi from agroenvironments[J]. Plants, 2021, 10(5): 950-968. [149] Wang L, George T S, Feng G. Concepts and consequences of the hyphosphere core microbiome for arbuscular mycorrhizal fungal fitness and function[J]. New Phytologist, 2024, 242(4): 1529-1533. [150] Wang M, Pei J, Yu Y, Wang S. Residual carbon derived from different maize parts differed in soil organic carbon fractions as affected by soil fertility[J]. Agronomy, 2023, 13(4): 1121-1133. [151] Wang P. Arbuscular mycorrhizal fungi associated with citrus orchards under different types of soil management, southern China[J]. Plant Soil and Environment, 2012, 58(7): 302-308. [152] Wang W, Lai D, Wang C, Pan T, Zeng C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field[J]. Soil and Tillage Research, 2015, 152: 8-16. [153] Wang X-X, van der Werf W, Yu Y, Hoffland E, Feng G, Kuyper T W. Field performance of different maize varieties in growth cores at natural and reduced mycorrhizal colonization: yield gains and possible fertilizer savings in relation to phosphorus application[J]. Plant and Soil, 2020, 450: 613-624. [154] Wang Z, Wang Z, Ma L, Lv X, Meng Y, Zhou Z. Straw returning coupled with nitrogen fertilization increases canopy photosynthetic capacity, yield and nitrogen use efficiency in cotton[J]. European Journal of Agronomy, 2021, 126: 126267. [155] Wehner J, Antunes P M, Powell J R, Mazukatow J, Rillig M C. Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity?[J]. Pedobiologia, 2010, 53(3): 197-201. [156] Wei K, Bao H, Huang S, Chen L. Effects of long-term fertilization on available P, P composition and phosphatase activities in soil from the Huang-Huai-Hai Plain of China[J]. Agriculture, Ecosystems and Environment, 2017, 237: 134-142. [157] Wei L, Lu C, Ding J, Yu S. Functional relationships between arbuscular mycorrhizal symbionts and nutrient dynamics in plant-soil-microbe system[J]. Acta Ecologica Sinica, 2016, 36(14): 4233-4243. [158] Whiteside M D, Treseder K K, Atsatt P R. The brighter side of soils: quantum dots track organic nitrogen through fungi and plants[J]. Ecology, 2009, 90(1): 100-108. [159] Williams A, Manoharan L, Rosenstock N P, Olsson P A, Hedlund K. Long‐term agricultural fertilization alters arbuscular mycorrhizal fungal community composition and barley (H ordeum vulgare) mycorrhizal carbon and phosphorus exchange[J]. New Phytologist, 2017, 213(2): 874-885. [160] Wright S F, Upadhyaya A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198: 97-107. [161] Wu J, Huang M, Xiao H A, Su Y R, Tong C L, Huang D Y, Syers J K. Dynamics in microbial immobilization and transformations of phosphorus in highly weathered subtropical soil following organic amendments[J]. Plant and Soil, 2007, 290: 333-342. [162] Wu Q S, Cao M Q, Zou Y N, He X H. Direct and indirect effects of glomalin, mycorrhizal hyphae and roots on aggregate stability in rhizosphere of trifoliate orange[J]. Scientific Reports, 2014, 4(1): 5823. [163] Wu Q S, Srivastava A, Cao M Q, Wang J. Mycorrhizal function on soil aggregate stability in root zone and root-free hyphae zone of trifoliate orange[J]. Archives of Agronomy and Soil Science, 2015, 61(6): 813-825. [164] Wu Q, Xia R, Zou Y. Arbuscular mycorrhizal fungal growth on citrus roots and its correlations with soil available phosphorus content and phosphatase activity[J]. Applied Ecology, 2006, 17(4): 685-689. [165] Xia L, Lam S K, Wolf B, Kiese R, Chen D, Butterbach‐Bahl K. Trade‐offs between soil carbon sequestration and reactive nitrogen losses under straw return in global agroecosystems[J]. Global Change Biology, 2018, 24(12): 5919-5932. [166] Xiao K, Katagi H, Harrison M, Wang Z-Y. Improved phosphorus acquisition and biomass production in Arabidopsis by transgenic expression of a purple acid phosphatase gene from M. truncatula[J]. Plant Science, 2006, 170(2): 191-202. [167] Xie W, Zhu A, Ali T, Zhang Z, Chen X, Wu F, Huang J, Davis K F. Crop switching can enhance environmental sustainability and farmer incomes in China[J]. Nature, 2023, 616(7956): 300-305. [168] Xin L, Dou S, Ndzelu B S, Bouerjilat H, Zhang X, Lin C, Ma R, Xie S. Response of 15N to corn straw and biochar application in soils with different fertility levels, during corn seedling stage[J]. Journal of Plant Nutrition, 2021, 44(19): 2863-2875. [169] Xu J, Liu S, Song S, Guo H, Tang J, Yong J W, Ma Y, Chen X. Arbuscular mycorrhizal fungi influence decomposition and the associated soil microbial community under different soil phosphorus availability[J]. Soil Biology and Biochemistry, 2018, 120: 181-190. [170] Yang C, Li J, Zhang G, Shu H, Wang X, Hu W, Liu R. Barley straw combined with urea and controlled-release nitrogen fertilizer improves lint yield and nitrogen utilization of field-seeded cotton[J]. Agronomy Basel, 2022, 12(5): 1208-1222. [171] Yang H, Berckx F, Fransson P, Weih M. Harnessing plant-microbe interactions to promote nitrogen use efficiency in cereal crops[J]. Plant and Soil, 2024, 494(1): 75-83. [172] Yang Z, Li C, Wang Y, Hu Y, Christie P, Zhang J, Li X. Maize yield and soil fertility with combined use of compost and inorganic fertilizers on a calcareous soil on the North China Plain[J]. Soil and Tillage Research, 2016, 155: 85-94. [173] Zhang N, Wan S, Guo J, Han G, Gutknecht J, Schmid B, Yu L, Liu W, Bi J, Wang Z. Precipitation modifies the effects of warming and nitrogen addition on soil microbial communities in northern Chinese grasslands[J]. Soil Biology and Biochemistry, 2015, 89: 12-23. [174] Zhang P, Chen X, Wei T, Yang Z, Jia Z, Yang B, Han Q, Ren X. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China[J]. Soil and Tillage Research, 2016, 160: 65-72. [175] Zhe L, Ma X, He N, Zhang J, Wu J, Liu C. Shifts in microbial communities and networks are correlated with the soil ionome in a kiwifruit orchard under different fertilization regimes[J]. Applied Soil Ecology, 2020, 149: 103517. [176] Zheng L, Pei J, Jin X, Schaeffer S, An T, Wang J. Impact of plastic film mulching and fertilizers on the distribution of straw-derived nitrogen in a soil-plant system based on 15N–labeling[J]. Geoderma, 2018, 317: 15-22. [177] Zheng L, Zhang Q, Zhang A, Hussain H A, Liu X, Yang Z. Spatiotemporal characteristics of the bearing capacity of cropland based on manure nitrogen and phosphorus load in mainland China[J]. Journal of Cleaner Production, 2019, 233: 601-610. [178] Zhou M H, Zhu B, Brüggemann N, Dannenmann M, Wang Y Q, Butterbach-Bahl K. Sustaining crop productivity while reducing environmental nitrogen losses in the subtropical wheat-maize cropping systems: A comprehensive case study of nitrogen cycling and balance[J]. Agriculture, Ecosystems and Environment, 2016, 231: 1-14. [179] Zhou J, Chai X, Zhang L, George T S, Wang F, Feng G. Different arbuscular mycorrhizal fungi cocolonizing on a single plant root system recruit distinct microbiomes[J]. Msystems, 2020, 5(6): 1110-1128. [180] Zou T, Zhang X, Davidson E. Global trends of cropland phosphorus use and sustainability challenges[J]. Nature, 2022, 611(7934): 81-87. |
中图分类号: | S56 |
开放日期: | 2025-06-11 |