中文题名: | 巨型艾美耳球虫与产气荚膜梭菌多价疫苗构建及其免疫保护效果评估 |
姓名: | |
学号: | 2022807184 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 095200 |
学科名称: | 农学 - 兽医 |
学生类型: | 硕士 |
学位: | 兽医硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 动物疫病防控与检疫 |
第一导师姓名: | |
第一导师单位: | |
第二导师姓名: | |
完成日期: | 2025-04-28 |
答辩日期: | 2025-05-28 |
外文题名: | Construction of Multivalent Vaccines Preparations against Eimeria maxima and Clostridium perfringens and Evaluation of Their Immune Protection Efficacy |
中文关键词: | |
外文关键词: | Clostridium perfringens ; Eimeria maxima ; NE co-infection model ; multivalent vaccines ; immune protection |
中文摘要: |
产气荚膜梭菌(Clostridium perfringens)是一种革兰氏阳性、杆状、产芽孢厌氧菌,是一种重要的条件性致病菌,可引起人和动物多种疾病,包括气性坏疽、食物中毒、非食源性腹泻等。C. perfringens可产生大量的毒力因子,包括肠毒素(enterotoxin,cpe)、α毒素(cpa)、β毒素(cpb)、β2毒素(cpb2)ε毒素(etx)、ι毒素(iap/ibp)、坏死性肠炎β样毒素(necrotic enteritis B-like toxin,NetB)、TpeL毒素(Toxin C. perfringens large cytotoxin,tpeL)、微生物胶原酶等20余种毒素及酶类。根据其产生的不同毒素组合可将C. perfringens菌株分为七种类型(A-G)。由C. perfringens感染诱发的鸡坏死性肠炎(necrotic enteritis,NE)是一种常见的禽类肠道疾病,每年可在全球造成约60亿美金的经济损失。目前认为能引发NE的C. perfringens菌株通常为G型,产生NetB毒素。过去NE的防控依赖于抗生素的使用,但随着中国、欧盟、美国、加拿大等国家和地区的“禁抗”、“限抗”等政策的实施,曾经被控制较好的NE已重新流行并对家禽养殖业造成较大影响。而相比于国外对鸡源C. perfringens主要流行型别及其毒素特征的较为系统的研究,我国仍较为缺乏对鸡源C. perfringens毒素型分布数据的掌握。高饲养密度、高蛋白饲料、鸡球虫感染等多种因素均可引起NE,而鸡球虫病是NE的核心诱因。因此,鸡球虫常被用于构建NE实验室模型以探究NE的致病机制及防治策略,但鸡球虫与C. perfringens共感染NE实验室模型仍需优化。此外,在NE替抗策略研发中,多种疫苗已被测试,但其免疫保护功效未达预期,开发有效的疫苗已成为迫切需要。基于此,本论文旨在进一步明确我国鸡源C. perfringens的流行特征,为NE防控提供本土化病原学依据;优化巨型艾美耳球虫(Eimeria maxima)与C. perfringens共感染NE模型,为NE致病机制研究和替抗策略研发提供稳定、可重复的标准化工具;针对单一病原疫苗效果不足的问题,开发新型联合免疫策略,将鸡球虫抗原与产气荚膜梭菌关键抗原结合,构建多价重组亚单位疫苗与DNA疫苗,评估其免疫保护功效。具体研究内容如下: 我国部分地区鸡源C. perfringens的分离鉴定 从四川、安徽、新疆、广东、江苏部分地市肉鸡养殖场采集疑似NE病鸡的肠道内容物等样品。采用胰胨-亚硫酸盐-环丝氨酸琼脂(TSC)选择培养基从样品中分离纯化C. perfringens,并对分离菌株进行形态观察、生化鉴定和16S rDNA分子鉴定;再通过聚合酶链式反应(PCR)技术测定C. perfringens的毒力基因,并根据检测结果和现有毒素分型系统进行归类分型。结果表明,从383份样品中分离出297株分离菌,其形态特征、生化鉴定和16S rDNA分子鉴定均符合C. perfringens特性;PCR结果显示分离出A型C. perfringens 291株,阳性率为97.98%(291/297),其中仅cpa阳性菌株有208株,cpa和cpb2阳性的A型菌株有83株;G型C. perfringens(cpa和netB阳性)6株,阳性率为2.02%。此外,cpb、etx、iap、cpe、tpeL五种毒力基因未被检测到。 E. maxima与C. perfringens共感染NE模型的建立与评估 将200只14日龄的肉鸡分为10组,分别为Control组(空白对照组)、C. perfringens(CP)组(1.0×109 CFUs/羽)、E. maxima(EM)1组(5.0×103卵囊/羽)、EM2组(1.0×104卵囊/羽)、EM3组(2.0×104卵囊/羽)、EM4组(5.0×104卵囊/羽)、EMCP1组(5.0×103卵囊/羽+1.0×109 CFUs/羽)、EMCP2组(1.0×104卵囊/羽+1.0×109 CFUs/羽)、EMCP3组(2.0×104卵囊/羽+1.0×109 CFUs/羽)和EMCP4组(5.0×104卵囊/羽+1.0×109 CFUs/羽)。在14日龄时,使用不同剂量E. maxima孢子化卵囊感染。在感染后4天使用C. perfringens攻毒,在20日龄时终止试验,剖杀鸡只,记录攻虫前、20日龄体重及存活率并进行肠道病变记分。结果显示,随着E. maxima感染剂量的增加,单一E. maxima感染组的增重逐渐减缓,但在EMCP共感染组未见该趋势,EMCP1组中增重率显著高于其余EMCP共感染组,EMCP2组、EMCP3组、EMCP4组间未见显著差异。肠道病变记分呈现与体重增长率较为相似的趋势,EMCP1组肠道病变程度较其他EMCP共感染组较轻,且EMCP2组、EMCP3组、EMCP4组间未见显著区别。在EMCP共感染组中,EMCP2组的存活率为85%,而EMCP3组和EMCP4组存活率偏低,分别为80%和70%。综合增重情况、肠道病变记分、存活率三个指标进行判断,EMCP2组的攻虫攻毒剂量(1.0×104卵囊/羽+1.0×109 CFUs/羽)最适用于E. maxima诱发NE实验室模型的构建。 NE重组亚单位疫苗与DNA疫苗制备及其免疫保护效果研究 克隆了E. maxima延伸因子(Elongation factor)1α(EmEF-1α)、C. perfringens胶原蛋白粘附分子(Collagen adhesion protein,CpCna),C. perfringens嵌合分子CpFZ【靶向果糖-1,6-二磷酸醛缩酶(Fructose-1,6-bisphosphate aldolase,FBA)和锌金属蛋白酶(Zinc metalloprotease,Zm)】、C. perfringens嵌合分子CpNA(靶向NetB和α毒素),构建了其原核表达质粒和真核表达质粒,制备了重组亚单位疫苗和DNA疫苗,并将7日龄肉鸡分为13组。重组亚单疫苗免疫保护试验共分7组(试验1),分别为:rEmEF-1α免疫组(rEM)、将rCpCna、rCpNA和rCpFZ混合的C. perfringens重组蛋白免疫组(rCP)、使用rEmEF-1α、rCpCna、rCpNA和rCpFZ的联合免疫组(rEMCP)、未感染未免疫对照组(NCON1)、感染未免疫对照组(CCON1)、佐剂对照组(ACON)和pET-32a标签蛋白对照组(pET-32a)。DNA疫苗免疫保护试验共分6组(试验2),分别为:pEmEF-1α免疫组(pEM)、将pCpCna、pCpNA和pCpFZ混合的免疫组(pCP)、将pEmEF-1α、pCpCna、p-CpNA和pCpFZ混合的联合免疫组(pEMCP)、未感染未免疫对照组(NCON2)、感染未免疫对照组(CCON2)和pVAX1空载体对照组(pVAX1)。两项试验于7日龄一免,17日龄二免,采用E. maxima/C. perfringens共感染NE实验室模型,通过增重率、肠道病变记分、存活率和特异性IgY水平的动力学变化,评估其保护效力。结果显示,与EM免疫组(rEM或pEM)、CP免疫组(rCP或pCP)和对照组相比,rEMCP免疫组和pEMCP免疫组均表现为增重显著改善、零死亡率和最轻的肠道病变,二免后血清特异性IgY抗体显著升高并维持在较高水平。以上研究结果进一步证实加入抗球虫免疫可降低NE致病程度,且针对两种病原的联合免疫策略具有一定潜力。 |
外文摘要: |
Clostridium perfringens is a Gram-positive, rod-shaped, spore-forming anaerobic bacterium and an important opportunistic pathogen that can cause various intestinal diseases in humans and animals, including gas gangrene, food poisoning, and non-foodborne diarrhea. C. perfringens produces a wide range of virulence factors, including over 20 toxins and enzymes such as enterotoxins, alpha toxin, beta toxin, epsilon toxin, iota toxin, Necrotic Enteritis B-like toxin (NetB), and microbial collagenase. Based on the different combinations of toxins produced, C. perfringens strains can be classified into seven types (A-G). Necrotic enteritis (NE) in chickens, induced by C. perfringens infection, is a common avian intestinal disease that causes global economic losses of approximately $6 billion annually. Currently, it is believed that C. perfringens strains capable of causing NE are typically type G, which produce NetB toxin. In the past, prevention and control of NE relied heavily on antibiotics. However, with the implementation of antibiotic-free and antibiotic-restriction policies in China, the European Union, the United States, Canada, and other regions, NE, which was once well-controlled, has re-emerged and significantly impacted the poultry industry. Compared to the relatively systematic research on the predominant types and toxin characteristics of chicken-derived C. perfringens in other countries, China still lacks comprehensive data on the distribution of toxin types in chicken-derived C. perfringens. Additionally, multiple factors such as high stocking density, high-protein feed, and chicken coccidiosis infection contribute to NE, with chicken coccidiosis being a major predisposing factor. Therefore, Eimeria spp. are often used to establish laboratory models of NE to investigate its pathogenic mechanisms and prevention strategies. However, the co-infection laboratory model of Eimeria spp. and C. perfringens for NE still requires optimization. Furthermore, in the development of antibiotic-alternative strategies for NE, various vaccines have been tested, but their protective efficacy has not met expectations. Developing effective vaccines has become an urgent need. Based on this, this study aims to further clarify the epidemiological characteristics of chicken-derived C. perfringens in China, providing localized etiological evidence for NE prevention and control; to optimize the co-infection NE model of Eimeria maxima and C. perfringens, providing a stable, reproducible, and standardized tool for NE pathogenesis research and antibiotic-alternative strategy development and to address the insufficient efficacy of single-pathogen vaccines by developing a novel combined immunization strategy. This strategy integrates Eimeria antigens with key C. perfringens antigens to construct multivalent recombinant subunit vaccines and DNA vaccines and evaluate their immune protection efficacy. The specific research contents are as follows: 1. Isolation and identification of chicken-derived C. perfringens isolates in some regions of China Intestinal contents and other samples were collected from broiler farms in parts of Sichuan, Anhui, Xinjiang, Guangdong, and Jiangsu provinces from chickens suspected of having NE. C. perfringens were isolated and purified from the samples using TSC selective medium, and the isolates were subjected to morphological observation, biochemical identification, and 16S rDNA molecular identification. Polymerase chain reaction was then used to detect virulence genes of C. perfringens, and the isolates were classified based on the results and existing toxin typing systems. The results showed that 297 isolates were obtained from 383 samples, all of which met the characteristics of C. perfringens in terms of morphology, biochemical identification, and 16S rDNA molecular identification. PCR results revealed that 291 isolates were C. perfringens type A, with a positivity rate of 97.98% (291/297), including 208 strains positive only for cpa and 83 type A strains positive for both cpa and cpb2. Six isolates were C. perfringens type G (cpa and netB positive), with a positivity rate of 2.02%. Additionally, the five virulence genes cpb, etx, iap, cpe, and tpeL were not detected. 2. Establishment and evaluation of the E. maxima and C. perfringens Co-Infection Model of NE A total of 200 14-day-old broilers were divided into 10 groups: the Control group (blank control), C. perfringens (CP) group (1.0×109 CFUs/bird), E. maxima (EM) 1 group (5.0×103 oocysts/bird), EM2 group (1.0×104 oocysts/bird), EM3 group (2.0×104 oocysts/bird), EM4 group (5.0×104 oocysts/bird), EMCP1 group (5.0×103 oocysts/bird + 1.0×109 CFUs/bird), EMCP2 group (1.0×104 oocysts/bird + 1.0×109 CFUs/bird), EMCP3 group (2.0×104 oocysts/bird + 1.0×109 CFUs/bird), and EMCP4 group (5.0×104 oocysts/bird + 1.0×109 CFUs/bird). At 14 days of age, the birds were challenged with different doses of E. maxima sporulated oocysts. Four days post-infection, they were challenged with C. perfringens type G. The experiment was terminated at 20 days of age, and the birds were euthanized for necropsy. Body weight before challenge and weight at 20 days, survival rate, and intestinal lesion scores were recorded. The results showed that as the dose of E. maxima infection increased, weight gain gradually slowed in the single E. maxima infection groups, but this trend was not observed in the EMCP co-infection groups. The body weight rate in EMCP1 was significantly higher than in the other EMCP co-infection groups, while no significant differences were observed among EMCP2, EM/CP3, and EMCP4 groups. Intestinal lesion scores followed a trend similar to weight gain, with EMCP1 exhibiting milder lesions compared to the other EMCP co-infection groups, while no significant differences were observed among EMCP2, EM/CP3, and EMCP4 groups. Among the EMCP co-infection groups, EMCP2 had a survival rate of 85%, while EMCP3 and 4 had lower survival rates of 80% and 70%, respectively. Based on weight gain, intestinal lesions, and survival rate, the challenge dose of EMCP2 (1.0×104 oocysts/bird + 1.0×109 CFUs/bird) was determined to be the most suitable for constructing an E. maxima-induced NE laboratory model. 3. Preparation and immune protection efficacy study of NE recombinant subunit vaccine and DNA vaccine The elongation factor 1α (EmEF-1α) of E. maxima, the collagen adhesion protein (CpCna) of C. perfringens, and the chimeric molecules CpFZ [targeting fructose-1,6-bisphosphate aldolase (FBA) and zinc metalloprotease (Zm)] and CpNA (targeting NetB and alpha toxin) of C. perfringens were cloned. Their prokaryotic and eukaryotic expression plasmids were constructed, and recombinant subunit vaccines and DNA vaccines were prepared. Seven-day-old broilers were divided into 13 groups. The recombinant subunit vaccine immune protection experiment (Trial 1) consisted of 7 groups: rEmEF-1α immunization group (rEM), C. perfringens recombinant protein immunization group (rCP, a mixture of rCpCna, rCpNA, and rCpFZ), combined immunization group (rEMCP, using rEmEF-1α, rCpCna, rCpNA, and rCpFZ), uninfected and unimmunized control group (NCON1), infected and unimmunized control group (CCON1), adjuvant control group (ACON), and pET-32a tag protein control group (pET-32a). The DNA vaccine immune protection experiment (Trial 2) consisted of 6 groups: pEmEF-1α immunization group (pEM), mixed immunization group (pCP, a mixture of pCpCna, pCpNA, and pCpFZ), combined immunization group (pEMCP, a mixture of pEmEF-1α, pCpCna, pCpNA, and pCpFZ), uninfected and unimmunized control group (NCON2), infected and unimmunized control group (CCON2), and pVAX1 empty vector control group (pVAX1). In both trials, the first immunization was administered at 7 days of age, and the second immunization was administered at 17 days of age. The E. maxima/C. perfringens co-infection model of NE was used to evaluate protective efficacy of vaccine preparations through body weight gain, intestinal lesion scores, survival rate, and kinetic changes in specific IgY levels. The results showed that compared to the EM immunization groups (rEM or pEM), CP immunization groups (rCP or pCP), and control groups, the rEMCP and pEMCP immunization groups exhibited significant improvement in weight gain, no mortality, and the mildest intestinal lesions. Additionally, serum-specific IgY antibody levels significantly increased after the second immunization and remained at high levels. These findings further confirm that incorporating anti-Eimeria immunity reduces the severity of NE and demonstrate the potential of a combined immunization strategy targeting both pathogens. |
参考文献: |
[1] 霍萍萍, 张聪敏, 胡明丽, 等. 产气荚膜梭菌β毒素研究进展 [J]. 动物医学进展, 2013, 34(09): 90-94. [2] 宋忠锋, 戚南山, 廖申权, 等. G型产气荚膜梭菌NetB毒素研究进展 [J]. 动物医学进展, 2021, 42(10): 80-84. [3] A 型产气荚膜梭菌灭活疫苗类毒素含量与疫苗攻毒保护率之间的平行关系研究 [J]. 中国兽 药杂志, 2009, 43(09): 24-25. [4] 陈星任, 杨晓华, 陆肖, 等. G型产气荚膜梭菌的分离鉴定及黄羽肉鸡发病模型的建立 [J]. 中 国预防兽医学报, 2024, 46(08): 783-790. [5] 楚玉婷, 朱阳华, 谢长清, 等. 枯草芽孢杆菌复合微生物制剂对鸡坏死性肠炎的预防效果 [J]. 华中农业大学学报, 2024, 43(03): 275-281. [6] 都立辉, 刘芳. 16S rRNA基因在细菌菌种鉴定中的应用 [J]. 乳业科学与技术, 2006, (05): 207 209. [7] 杜燕, 王鑫, 袁东芳, 等. 山东部分地区肉鸡场产气荚膜梭菌的调查分析 [J]. 山东畜牧兽医, 2024, 45(11): 1-3. [8] 范学政, 李文平, 秦玉明, 等. 产气荚膜梭菌及其公共卫生危害 [J]. 中国兽药杂志, 2021, 55(09): 57-64. [9] 付萍, 王连森, 陈江, 等. 2015 年中国大陆食源性疾病暴发事件监测资料分析 [J]. 中国食品 卫生杂志, 2019, 31(01): 64-70. [10] 黄紫贝, 罗健雅, 赵以恒, 等. 肉鸡源产气荚膜梭菌的分离鉴定及耐药性分析 [J]. 中国畜牧 兽医, 2024, 51(03): 1298-1307. [11] 阚刘刚, 刘艳, 吴媛媛, 等. 鸡坏死性肠炎生物性防控研究进展 [J]. 畜牧兽医学报, 2019, 50(06): 1123-1134. [12] 林栩慧, 周海波, 孙铭飞. 鸡球虫病与鸡坏死性肠炎流行特点及防治技术 [J]. 养禽与禽病防 治, 2019, (06): 40-43. [13] 刘少冰, 方肆云, 戚南山, 等. G 型产气荚膜梭菌全菌灭活疫苗的研制及其免疫效力的评估 [J]. 安徽科技学院学报, 2023, 37(03): 16-22. [14] 龙航宇, 吕梦娜, 郭宸旭, 等. 鸡4种艾美耳球虫单一虫种与产气荚膜梭菌共感染对鸡生产性 能的影响 [J]. 中国兽医杂志, 2020, 56(09): 30-33. [15] 吕振松. 凝结芽孢杆菌 BC168 预防鸡坏死性肠炎效果评价 [D]. 华中农业大学,2023. 2023.002394. [16] 缪西鹏, 高瑞, 谢玉杰, 等. 产气荚膜梭菌多重 PCR 检测方法的建立及初步应用 [J]. 中国兽 医学报, 2022, 42(08): 1591-1596. [17] 孙栋, 宋忠锋, 倪君丽, 等. G 型产气荚膜梭菌的分离鉴定及其在鸡坏死性肠炎发病模型中的 应用 [J]. 安徽科技学院学报, 2024, 38(02): 31-38. [18] 邰蓉. 鸡源产气荚膜梭菌的分离鉴定及噬菌体对其疗效的研究 [D]. 华中农业大学,2022. 2022.000779. [19] 王柏森, 谷长勤, 佟建南. 产气荚膜梭菌检测方法研究进展 [J]. 当代畜牧, 2020, (10): 37-42. [20] 王帝, 王欣宇, 郭伟奇, 等. 江苏和浙江地区 16 株鸡源产气荚膜梭菌的分离鉴定及生物学特 性分析 [J]. 中国动物传染病学报, 2023: 1-8. [21] 王虹迪, 余聪, 傅思武. 产气荚膜梭菌致死性毒素致病机制和检测技术研究现状 [J]. 中国动 物检疫, 2025, 42(02): 66-72. [22] 王建东, 王景松, 王健霖, 等. 产气荚膜梭菌检测方法研究进展 [J]. 甘肃畜牧兽医, 2023, 53(06): 12-17. [23] 吴允正, 韩春生, 戴益民, 等. 多种动物源 A 型产气荚膜梭菌的分离鉴定及生物学特性 [J]. 江西农业大学学报, 2020, 42(03): 546-552. [24] 杨文静, 张富友, 刘娜, 等. 禽产气荚膜梭菌研究进展 [J]. 中国动物检疫, 2023, 40(03): 46-53. [25] 臧江华, 安一娜, 王婧, 等. 鸡源 A 型产气荚膜梭菌致病性及药物疗效分析 [J]. 畜牧兽医学 报, 2022, 53(10): 3561-3569. [26] 张凯悦. 产气荚膜梭菌六重 PCR 分型检测方法的建立及分离菌株的cpe定位 [D]. 西北农林 科技大学, 2022. 2022.000330: [27] 张莉, 代华, 简洁, 等. 贵州省一起产气荚膜梭菌引起食源性疾病暴发事件的调查及病原体溯 源 [J]. 中国食品卫生杂志, 2024, 36(05): 557-563. [28] 张田勘. 饲料禁抗生素大势所趋,配套须跟上 [J]. 科学大观园, 2020, (02): 62. [29] 中华人民共和国农业农村部. 中华人民共和国农业农村部公告 第573号 [Z]. 2022: 118-120 [30] Abd El-Hack M E, El-Saadony M T, Elbestawy A R, et al. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives - a comprehensive review [J]. Poult Sci, 2022, 101(2): 101590. [31] Alimolaei M, Ezatkhah M, Soltani S. Toxin genotypes of Clostridium perfringens isolates from common quail (Coturnix coturnix) with or without acute necrotic enteritis [J]. Toxicon, 2023, 221106984. [32] Alizadeh M, Shojadoost B, Boodhoo N, et al. Necrotic enteritis in chickens: a review of pathogenesis, immune responses and prevention, focusing on probiotics and vaccination [J]. Anim Health Res Rev, 2021, 22(2): 147-162. [33] Alves G G, Machado de Ávila R A, Chávez-Olórtegui C D, Lobato F C. Clostridium perfringens epsilon toxin: the third most potent bacterial toxin known [J]. Anaerobe, 2014, 30102-107. [34] Amimoto K, Noro T, Oishi E, Shimizu M. A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C [J]. Microbiology (Reading), 2007, 153(Pt 4): 1198-1206. [35] Awad M M, Bryant A E, Stevens D L, Rood J I. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene [J]. Mol Microbiol, 1995, 15(2): 191 202. [36] Blake D P, Knox J, Dehaeck B, et al. Re-calculating the cost of coccidiosis in chickens [J]. Vet Res, 2020, 51(1): 115. [37] Bokori-Brown M, Savva C G, Fernandes da Costa S P, et al. Molecular basis of toxicity of Clostridium perfringens epsilon toxin [J]. Febs j, 2011, 278(23): 4589-4601. [38] Caly D L, D'Inca R, Auclair E, Drider D. Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective [J]. Front Microbiol, 2015, 61336. [39] Chalmers G, Bruce H L, Hunter D B, et al. Multilocus sequence typing analysis of Clostridium perfringens isolates from necrotic enteritis outbreaks in broiler chicken populations [J]. J Clin Microbiol, 2008, 46(12): 3957-3964. [40] Chapman H D. Milestones in avian coccidiosis research: a review [J]. Poult Sci, 2014, 93(3): 501 511. [41] Clark E L, Macdonald S E, Thenmozhi V, et al. Cryptic Eimeria genotypes are common across the southern but not northern hemisphere [J]. Int J Parasitol, 2016, 46(9): 537-544. [42] Collier C T, Hofacre C L, Payne A M, et al. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth [J]. Vet Immunol Immunopathol, 2008, 122(1-2): 104-115. [43] Coursodon C F, Glock R D, Moore K L, et al. TpeL-producing strains of Clostridium perfringens type A are highly virulent for broiler chicks [J]. Anaerobe, 2012, 18(1): 117-121. [44] Crouch C F, Withanage G S, de Haas V, et al. Safety and efficacy of a maternal vaccine for the passive protection of broiler chicks against necrotic enteritis [J]. Avian Pathol, 2010, 39(6): 489-497. [45] Dewey-Mattia D, Manikonda K, Hall A J, et al. Surveillance for Foodborne Disease Outbreaks - United States, 2009-2015 [J]. MMWR Surveill Summ, 2018, 67(10): 1-11. [46] Dolan G P, Foster K, Lawler J, et al. An epidemiological review of gastrointestinal outbreaks associated with Clostridium perfringens, North East of England, 2012-2014 [J]. Epidemiol Infect, 2016, 144(7): 1386-1393. [47] Duc H M, Hoa T T K, Ha C T T, et al. Prevalence and Antibiotic Resistance Profile of Clostridium perfringens Isolated from Pork and Chicken Meat in Vietnam [J]. Pathogens, 2024, 13(5): 400. [48] Eichner M, Augustin C, Fromm A, et al. In Colon Epithelia, Clostridium perfringens Enterotoxin Causes Focal Leaks by Targeting Claudins Which are Apically Accessible Due to Tight Junction Derangement [J]. J Infect Dis, 2017, 217(1): 147-157. [49] Engberg R M, Hedemann M S, Jensen B B. The influence of grinding and pelleting of feed on the microbial composition and activity in the digestive tract of broiler chickens [J]. Br Poult Sci, 2002, 43(4): 569-579. [50] Fach P, Guillou J P. Detection by in vitro amplification of the alpha-toxin (phospholipase C) gene from Clostridium perfringens [J]. J Appl Bacteriol, 1993, 74(1): 61-66. [51] Fatemi Motlagh M, Mousavi Gargari S L. A bivalent vaccine against avian necrotic enteritis and coccidiosis [J]. J Appl Microbiol, 2022, 132(1): 113-125. [52] Fathima S, Hakeem W G A, Shanmugasundaram R, Selvaraj R K. Necrotic Enteritis in Broiler Chickens: A Review on the Pathogen, Pathogenesis, and Prevention [J]. Microorganisms, 2022, 10(10): 1958. [53] Fatoba A J, Adeleke M A. Diagnosis and control of chicken coccidiosis: a recent update [J]. J Parasit Dis, 2018, 42(4): 483-493. [54] Fukata T, Hadate Y, Baba E, Arakawa A. Influence of bacteria on Clostridium perfringens infections in young chickens [J]. Avian Dis, 1991, 35(1): 224-227. [55] Gholamiandekhordi A R, Ducatelle R, Heyndrickx M, et al. Molecular and phenotypical characterization of Clostridium perfringens isolates from poultry flocks with different disease status [J]. Vet Microbiol, 2006, 113(1-2): 143-152. [56] Gibert M, Jolivet-Reynaud C, Popoff M R. Beta2 toxin, a novel toxin produced by Clostridium perfringens [J]. Gene, 1997, 203(1): 65-73. [57] Goo D, Choi J, Ko H, et al. Effects of Eimeria maxima infection doses on growth performance and gut health in dual-infection model of necrotic enteritis in broiler chickens [J]. Front Physiol, 2023, 141269398. [58] Grenda T, Jarosz A, Sapała M, et al. Clostridium perfringens-Opportunistic Foodborne Pathogen, Its Diversity and Epidemiological Significance [J]. Pathogens, 2023, 12(6): 768. [59] Heida F H, van Zoonen A, Hulscher J B F, et al. A Necrotizing Enterocolitis-Associated Gut Microbiota Is Present in the Meconium: Results of a Prospective Study [J]. Clin Infect Dis, 2016, 62(7): 863-870. [60] Heidarpanah S, Thibodeau A, Parreira V R, et al. Evaluation of the Immunoprotective Capacity of Five Vaccine Candidate Proteins against Avian Necrotic Enteritis and Impact on the Caecal Microbiota of Vaccinated Birds [J]. Animals (Basel), 2023, 13(21): 3323. [61] Heidarpanah S, Thibodeau A, Parreira V R, et al. Immunization of broiler chickens with five newly identified surface-exposed proteins unique to Clostridium perfringens causing necrotic enteritis [J]. Sci Rep, 2023, 13(1): 5254. [62] Hofacre C L, Smith J A, Mathis G F. An optimist's view on limiting necrotic enteritis and maintaining broiler gut health and performance in today's marketing, food safety, and regulatory climate [J]. Poult Sci, 2018, 97(6): 1929-1933. [63] Jiang Y, Mo H, Willingham C, et al. Protection Against Necrotic Enteritis in Broiler Chickens by Regulated Delayed Lysis Salmonella Vaccines [J]. Avian Dis, 2015, 59(4): 475-485. [64] Katalani C, Ahmadian G, Nematzadeh G, et al. Immunization with oral and parenteral subunit chimeric vaccine candidate confers protection against Necrotic Enteritis in chickens [J]. Vaccine, 2020, 38(46): 7284-7291. [65] Keyburn A L, Boyce J D, Vaz P, et al. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens [J]. PLoS Pathog, 2008, 4(2): e26. [66] Keyburn A L, Portela R W, Ford M E, et al. Maternal immunization with vaccines containing recombinant NetB toxin partially protects progeny chickens from necrotic enteritis [J]. Vet Res, 2013, 44(1): 108. [67] Keyburn A L, Sheedy S A, Ford M E, et al. Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens [J]. Infect Immun, 2006, 74(11): 6496-6500. [68] Kim D M, Liu J, Whitmore M A, et al. Two intestinal microbiota-derived metabolites, deoxycholic acid and butyrate, synergize to enhance host defense peptide synthesis and alleviate necrotic enteritis [J]. J Anim Sci Biotechnol, 2024, 15(1): 29. [69] Kiu R, Hall L J. An update on the human and animal enteric pathogen Clostridium perfringens [J]. Emerg Microbes Infect, 2018, 7(1): 141. [70] Kulkarni R R, Gaghan C, Gorrell K, et al. Probiotics as Alternatives to Antibiotics for the Prevention and Control of Necrotic Enteritis in Chickens [J]. Pathogens, 2022, 11(6): 692. [71] Kulkarni R R, Parreira V R, Sharif S, Prescott J F. Immunization of broiler chickens against Clostridium perfringens-induced necrotic enteritis [J]. Clin Vaccine Immunol, 2007, 14(9): 1070 1077. [72] Kwon Y K, Lee Y J, Mo I P. An outbreak of necrotic enteritis in the ostrich farm in Korea [J]. J Vet Med Sci, 2004, 66(12): 1613-1615. [73] Lanckriet A, Timbermont L, Eeckhaut V, et al. Variable protection after vaccination of broiler chickens against necrotic enteritis using supernatants of different Clostridium perfringens strains [J]. Vaccine, 2010, 28(36): 5920-5923. [74] Lee K W, Lillehoj H S. Role of Clostridium perfringens Necrotic Enteritis B-like Toxin in Disease Pathogenesis [J]. Vaccines (Basel), 2021, 10(1): 61. [75] Lencer W I. Everything Illuminated-Clostridium perfringens β-toxin [J]. Cell Host Microbe, 2020, 28(1): 5-6. [76] Lepp D, Zhou Y, Ojha S, et al. Clostridium perfringens Produces an Adhesive Pilus Required for the Pathogenesis of Necrotic Enteritis in Poultry [J]. J Bacteriol, 2021, 203(7): e00578-20. [77] Li J, Zhou Y, Yang D, et al. Prevalence and antimicrobial susceptibility of Clostridium perfringens in chickens and pigs from Beijing and Shanxi, China [J]. Vet Microbiol, 2020, 252108932. [78] Lin R Q, Lillehoj H S, Lee S K, et al. Vaccination with Eimeria tenella elongation factor-1α recombinant protein induces protective immunity against E. tenella and E. maxima infections [J]. Vet Parasitol, 2017, 24379-84. [79] Liu J, Wu S, Zhao H, et al. Baicalin-aluminum alleviates necrotic enteritis in broiler chickens by inhibiting virulence factors expression of Clostridium perfringens [J]. Front Cell Infect Microbiol, 2023, 131243819. [80] Lu M, Li R W, Zhao H, et al. Effects of Eimeria maxima and Clostridium perfringens infections on cecal microbial composition and the possible correlation with body weight gain in broiler chickens [J]. Res Vet Sci, 2020, 132142-149. [81] M'Sadeq S A, Wu S, Swick R A, Choct M. Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide [J]. Anim Nutr, 2015, 1(1): 1-11. [82] MacMillan J L, Vicaretti S D, Noyovitz B, et al. Structural analysis of broiler chicken small intestinal mucin O-glycan modification by Clostridium perfringens [J]. Poult Sci, 2019, 98(10): 5074-5088. [83] Marcano V, Gamble T, Maschek K, et al. Necrotizing Hepatitis Associated with Clostridium perfringens in Broiler Chicks [J]. Avian Dis, 2022, 66(3): 337-344. [84] Martin T G, Smyth J A. Prevalence of netB among some clinical isolates of Clostridium perfringens from animals in the United States [J]. Vet Microbiol, 2009, 136(1-2): 202-205. [85] McClane B, Shrestha A. Using More Than 1 (Path)Way to Kill a Host Cell: Lessons From Clostridium perfringens Enterotoxin [J]. Microbiol Insights, 2020, 131178636120931518. [86] McReynolds J L, Byrd J A, Anderson R C, et al. Evaluation of immunosuppressants and dietary mechanisms in an experimental disease model for necrotic enteritis [J]. Poult Sci, 2004, 83(12): 1948 1952. [87] Mehdizadeh Gohari I, Li J, Navarro M A, et al. Identification of orphan histidine kinases that impact sporulation and enterotoxin production by Clostridium perfringens type F strain SM101 in a pathophysiologically-relevant ex vivo mouse intestinal contents model [J]. PLoS Pathog, 2023, 19(6): e1011429. [88] Mishra N, Smyth J A. Oral vaccination of broiler chickens against necrotic enteritis using a non virulent NetB positive strain of Clostridium perfringens type A [J]. Vaccine, 2017, 35(49 Pt B): 6858 6865. [89] Moore R J. Necrotic enteritis predisposing factors in broiler chickens [J]. Avian Pathol, 2016, 45(3): 275-281. [90] Moore R J. Necrotic enteritis and antibiotic-free production of broiler chickens: Challenges in testing and using alternative products [J]. Anim Nutr, 2024, 16288-298. [91] Moran E T, Jr. Intestinal events and nutritional dynamics predispose Clostridium perfringens virulence in broilers [J]. Poult Sci, 2014, 93(12): 3028-3036. [92] Nagahama M, Ochi S, Oda M, et al. Recent insights into Clostridium perfringens beta-toxin [J]. Toxins (Basel), 2015, 7(2): 396-406. [93] Nagahama M, Takehara M, Kobayashi K. Interaction of Clostridium perfringens Iota Toxin and Lipolysis-Stimulated Lipoprotein Receptor (LSR) [J]. Toxins (Basel), 2018, 10(10): 405. [94] Nascimento I P, Leite L C. Recombinant vaccines and the development of new vaccine strategies [J]. Braz J Med Biol Res, 2012, 45(12): 1102-1111. [95] Navarro M A, McClane B A, Uzal F A. Mechanisms of Action and Cell Death Associated with Clostridium perfringens Toxins [J]. Toxins (Basel), 2018, 10(5): 212. [96] Notomi T, Okayama H, Masubuchi H, et al. Loop-mediated isothermal amplification of DNA [J]. Nucleic Acids Res, 2000, 28(12): E63. [97] Oda M, Terao Y, Sakurai J, Nagahama M. Membrane-Binding Mechanism of Clostridium perfringens Alpha-Toxin [J]. Toxins (Basel), 2015, 7(12): 5268-5275. [98] Olkowski A A, Wojnarowicz C, Chirino-Trejo M, Drew M D. Responses of broiler chickens orally challenged with Clostridium perfringens isolated from field cases of necrotic enteritis [J]. Res Vet Sci, 2006, 81(1): 99-108. [99] Paiva D, McElroy A. Necrotic enteritis: Applications for the poultry industry [J]. Journal of Applied Poultry Research, 2014, 23(3): 557-566. [100] Park J Y, Kim S, Oh J Y, et al. Characterization of Clostridium perfringens isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea [J]. Poult Sci, 2015, 94(6): 1158-1164. [101] Patel S A, Hassan M K, Dixit M. Oncogenic activation of EEF1A2 expression: a journey from a putative to an established oncogene [J]. Cell Mol Biol Lett, 2024, 29(1): 6. [102] Prescott J F, Smyth J A, Shojadoost B, Vince A. Experimental reproduction of necrotic enteritis in chickens: a review [J]. Avian Pathol, 2016, 45(3): 317-322. [103] Qiu Q, Dewey-Mattia D, Subramhanya S, et al. Food recalls associated with foodborne disease outbreaks, United States, 2006-2016 [J]. Epidemiol Infect, 2021, 149e190. [104] Rood J I, Adams V, Lacey J, et al. Expansion of the Clostridium perfringens toxin-based typing scheme [J]. Anaerobe, 2018, 535-10. [105] Savva C G, Fernandes da Costa S P, Bokori-Brown M, et al. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens [J]. J Biol Chem, 2013, 288(5): 3512-3522. [106] Shams F, Oldfield N J, Wooldridge K G, Turner D P. Fructose-1,6-bisphosphate aldolase (FBA)-a conserved glycolytic enzyme with virulence functions in bacteria: 'ill met by moonlight' [J]. Biochem Soc Trans, 2014, 42(6): 1792-1795. [107] Shojadoost B, Vince A R, Prescott J F. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: a critical review [J]. Vet Res, 2012, 43(1): 74. [108] Songer J G. Clostridial enteric diseases of domestic animals [J]. Clin Microbiol Rev, 1996, 9(2): 216-234. [109] Soutter F, Werling D, Tomley F M, Blake D P. Poultry Coccidiosis: Design and Interpretation of Vaccine Studies [J]. Front Vet Sci, 2020, 7101. [110] Sun Z, Lu M, Lillehoj H, et al. Characterization of Collagen Binding Activity of Clostridium perfringens Strains Isolated from Broiler Chickens [J]. Pathogens, 2023, 12(6): 778. [111] Takehara M, Takagishi T, Seike S, et al. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin [J]. Toxins (Basel), 2017, 9(8): 247. [112] Tamai E, Ishida T, Miyata S, et al. Accumulation of Clostridium perfringens epsilon-toxin in the mouse kidney and its possible biological significance [J]. Infect Immun, 2003, 71(9): 5371-5375. [113] Thompson D R, Parreira V R, Kulkarni R R, Prescott J F. Live attenuated vaccine-based control of necrotic enteritis of broiler chickens [J]. Vet Microbiol, 2006, 113(1-2): 25-34. [114] Timbermont L, Lanckriet A, Gholamiandehkordi A R, et al. Origin of Clostridium perfringens isolates determines the ability to induce necrotic enteritis in broilers [J]. Comp Immunol Microbiol Infect Dis, 2009, 32(6): 503-512. [115] Uzal F A, Plumb J J, Blackall L L, Kelly W R. PCR detection of Clostridium perfringens producing different toxins in faeces of goats [J]. Lett Appl Microbiol, 1997, 25(5): 339-344. [116] Van Immerseel F, Rood J I, Moore R J, Titball R W. Rethinking our understanding of the pathogenesis of necrotic enteritis in chickens [J]. Trends Microbiol, 2009, 17(1): 32-36. [117] Wade B, Keyburn A L, Haring V, et al. Two putative zinc metalloproteases contribute to the virulence of Clostridium perfringens strains that cause avian necrotic enteritis [J]. J Vet Diagn Invest, 2020, 32(2): 259-267. [118] Wade B, Keyburn A L, Seemann T, et al. Binding of Clostridium perfringens to collagen correlates with the ability to cause necrotic enteritis in chickens [J]. Vet Microbiol, 2015, 180(3-4): 299-303. [119] Waller S B, Galvão C C, Rodrigues R R, et al. Clostridium perfringens antigens and challenges for development of vaccines against necrotic enteritis in poultry [J]. Anaerobe, 2024, 89102902. [120] Wang R F, Cao W W, Franklin W, et al. A 16S rDNA-based PCR method for rapid and specific detection of Clostridium perfringens in food [J]. Mol Cell Probes, 1994, 8(2): 131-137. [121] Wang S, Hofacre C L, Wanda S Y, et al. A triple-sugar regulated Salmonella vaccine protects against Clostridium perfringens-induced necrotic enteritis in broiler chickens [J]. Poult Sci, 2022, 101(2): 101592. [122] Wang S, Zeng X F, Wang Q W, et al. The antimicrobial peptide sublancin ameliorates necrotic enteritis induced by Clostridium perfringens in broilers [J]. J Anim Sci, 2015, 93(10): 4750-4760. [123] Wilde S, Jiang Y, Tafoya A M, et al. Salmonella-vectored vaccine delivering three Clostridium perfringens antigens protects poultry against necrotic enteritis [J]. PLoS One, 2019, 14(2): e0197721. [124] Williams R B, Marshall R N, La Ragione R M, Catchpole J. A new method for the experimental production of necrotic enteritis and its use for studies on the relationships between necrotic enteritis, coccidiosis and anticoccidial vaccination of chickens [J]. Parasitol Res, 2003, 90(1): 19-26. [125] Xu L, Li X. Conserved proteins of Eimeria and their applications to develop universal subunit vaccine against chicken coccidiosis [J]. Veterinary Vaccine, 2024, 3(2): 100068. [126] Xu W, Wang H, Liu L, et al. Prevalence and characterization of Clostridium perfringens isolated from different chicken farms in China [J]. Anaerobe, 2021, 72102467. [127] Yamada T, Yoshida T, Kawamoto A, et al. Cryo-EM structures reveal translocational unfolding in the clostridial binary iota toxin complex [J]. Nat Struct Mol Biol, 2020, 27(3): 288-296. [128] Yonogi S, Matsuda S, Kawai T, et al. BEC, a novel enterotoxin of Clostridium perfringens found in human clinical isolates from acute gastroenteritis outbreaks [J]. Infect Immun, 2014, 82(6): 2390 2399. [129] Yuan B, Sun Z, Lu M, et al. Immunization with Pooled Antigens for Clostridium perfringens Conferred Partial Protection against Experimental Necrotic Enteritis in Broiler Chickens [J]. Vaccines (Basel), 2022, 10(6): 979. [130] Zhang W, Wang P, Wang B, et al. A combined Clostridium perfringens/Trueperella pyogenes inactivated vaccine induces complete immunoprotection in a mouse model [J]. Biologicals, 2017, 471-10. |
中图分类号: | S85 |
开放日期: | 2025-06-13 |