- 无标题文档
查看论文信息

中文题名:

 哈茨木霉NJAU4742液体生物有机肥对多种作物的促生效应研究    

姓名:

 黄凯悦    

学号:

 2022803226    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 095132    

学科名称:

 农学 - 农业 - 资源利用与植物保护    

学生类型:

 硕士    

学位:

 农业硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 资源利用与植物保护(专业学位)    

研究方向:

 土壤微生物与生物肥料    

第一导师姓名:

 沈其荣    

第一导师单位:

 南京农业大学    

第二导师姓名:

 宋克超    

完成日期:

 2024-05-22    

答辩日期:

 2024-06-27    

外文题名:

 Study on the growth-promoting effect of Trichoderma harzianum NJAU4742 liquid bio-organic fertilizer on a variety of crops    

中文关键词:

 哈茨木霉NJAU4742 ; 促生 ; 盐土 ; 微生物群落 ; 黄瓜枯萎病 ; 番茄青枯病    

外文关键词:

 Trichoderma harzianum NJAU4742 ;  saline soil ; growth-promoting ;  microbial community ;  cucumber wilt ;  tomato bacterial wilt    

中文摘要:

 

化肥的大量使用在增加作物产量的同时,也造成了土壤退化、作物品质下降等问题。随着水肥一体化设施的逐步推进,为实现农业的可持续发展,开发和研制高效液体生物有机肥成为肥料领域研究的热点。本文在实验室先前研究的基础上,首先利用盆栽试验评估了哈茨木霉NJAU4742液体有机肥在盐渍化土壤上对八种不同作物(玉米、白菜、葵花、大豆、番茄、莴笋、辣椒和茄子)的促生效果,在此基础上进一步研究了施用该木霉液体有机肥对葵花和大豆根际土壤微生物群落的影响,并测试了施用该木霉液体有机肥对黄瓜枯萎病和番茄青枯病的影响。主要研究结果如下:

施用哈茨木霉NJAU4742液体有机肥的盆栽试验结果表明,施用哈茨木霉NJAU4742液体有机肥对这八种作物的各项生理指标都有显著促进作用。其中,作用较为明显的有葵花、大豆和番茄。葵花施用哈茨木霉NJAU4742液体有机肥(T3)处理的根长比施用化肥(T1)显著提高了34.04%,比施用液体有机肥(T2)显著提高了14.10%;施用哈茨木霉NJAU4742液体有机肥(T3)处理的地下部鲜重比施用化肥(T1)显著提高了215.38%,比施用液体有机肥(T2)显著提高了27.40%。施用哈茨木霉NJAU4742液体有机肥(T3)处理的地下部干重比施用化肥(T1)显著提高了330.77%,比施用液体有机肥(T2)显著提高了107.41%。大豆施用哈茨木霉NJAU4742液体有机肥(T3)处理的地上部鲜重比施用化肥(T1)显著提高了15.25%。施用哈茨木霉NJAU4742液体有机肥(T3)处理的地上部干重比施用化肥(T1)显著提高了148.24%,比施用液体有机肥(T2)显著提高了108.91%。施用哈茨木霉NJAU4742液体有机肥(T3)处理的番茄株高比施用化肥(T1)显著提高了45.64%,比施用液体有机肥(T2)显著提高了32.79%。

含哈茨木霉NJAU4742液体有机肥对于根际土壤微生物群落的探究结果表明,施用哈茨木霉NJAU4742液体有机肥(T3)处理对葵花、大豆根际土壤细菌、真菌的群落多样性没有显著提升,但施用哈茨木霉NJAU4742液体有机肥(T3)处理葵花、大豆根际土壤细菌、真菌的群落组成有显著差别。葵花和大豆的根际土壤细菌的拟杆菌门和节杆菌属相对丰度在施用哈茨木霉NJAU4742液体有机肥后明显提高了,葵花和大豆的根际土壤真菌子囊菌门相对丰度在施用哈茨木霉NJAU4742液体有机肥后也明显提高了。葵花和大豆施用哈茨木霉NJAU4742液体有机肥的土壤微生物与株高、茎粗、根长、地上部干鲜重和地下部干鲜重呈正相关关系。

含哈茨木霉NJAU4742液体有机肥应用于黄瓜枯萎病、番茄青枯病抗病能力的试验结果表明,在防治黄瓜枯萎病方面,施用哈茨木霉NJAU4742液体有机肥(T3)处理的病情指数较较施用化肥(T1)处理显著降低了38.24%;较施用液体有机肥(T2)处理显著降低了41.67%。在防治番茄青枯病方面,施用哈茨木霉NJAU4742液体有机肥(T3)处理的病情指数较施用化肥(T1)处理降低了21.88%;较施用液体有机肥(T2)处理降低了5.71%。

综上所述,在盐渍化土壤中施用含哈茨木霉NJAU4742的液体有机肥对作物的促生效果较为显著,并且通过根际土壤微生物和作物生理指标的相关性分析,表明施用含哈茨木霉NJAU4742的液体有机肥有助于促进植物生长和根系发育。此外,施用含哈茨木霉NJAU4742的液体有机肥对作物抗病也有积极作用,有良好的应用前景。

外文摘要:

The excessive use of chemical fertilizer has led to soil degradation and decreased crop quality, depite increasing crop yields. With the development of intergrated water and fertilizerfacilities, in order to achieve sustainable agriculture development, the development and research of efficient liquid bio-organic fertilizer have become a hot topic in the field of fertilizer. Building upon previous laboratory studies, we evaluated the growth-promoting effects of liquid organic fertilizer containing Trichoderma harzianum NJAU4742 on eight different crops (corn, cabbage, sunflower, soybean, tomato, lettuce, pepper and eggplant) through pot experiments on salinized soil. Subsequently, the influence of applying Trichoderma harzianum liquid organic fertilizer on the rhizosphere microbial communities of sunflowers and soybeans was further investigated, and the impact of applying Trichoderma harzianum liquid organic fertilizer on cucumber wilt disease and tomato bacterial wilt disease was tested. The main findings are as follows: Pot experiments using liquid organic fertilizer containing Trichoderma harzianum NJAU4742 showed significant promotion of various physiological indicators for all the eight crops. Notably, sunflowers, soybeans, and tomatoes exhibited particularly significant effects. To be specific, the root length of sunflower treated with Trichoderma harzianum liquid organic fertilizer (T3) increased significantely by 34.04% compared to chemical fertilizer (T1), and by 14.10% compared to liquid organic fertilizer(T2). The results of pot experiments with the application of Trichoderma harzianum liquid organic fertilizer (T3) showed a significant increase in underground fresh weight compared to chemical fertilizer (T1) by 215.38%, and compared to liquid organic fertilizer (T2) by 27.40%. Similarly, the application of Trichoderma harzianum liquid organic fertilizer (T3) significantly increased underground dry weight, compared to T1 by 330.77%, and compared to T2 by 107.41%. For soybeans, the application of Trichoderma harzianum liquid organic fertilizer (T3) significantly increased above-ground fresh weight by 41.30% compared to CK and by 15.25% compared to T1. Additionally, the application of Trichoderma harzianum liquid organic fertilizer (T3) significantly increased above-ground dry weight by 148.24% compared to T1, and by 108.91% compared to T2. Moreover, tomato plant height treated with Trichoderma harzianum liquid organic fertilizer (T3) significantly increased by 45.64% compared to T1, and by 32.79% compared to T2. The investigation into the rhizosphere microbial communities revealed that the application of Trichoderma harzianum liquid organic fertilizer (T3) did not significantly enhance the diversity of bacterial and fungal communities in the rhizosphere of sunflowers and soybeans.  

However, there were significant differences in the composition of bacterial and fungal communities in the rhizosphere of sunflowers and soybeans treated with Trichoderma harzianum liquid organic fertilizer (T3). The relative abundance of Pseudomonas and Streptomyces in the rhizosphere bacteria of sunflowers and soybeans significantly increased after the application of Trichoderma harzianum liquid organic fertilizer, while the relative abundance of Ascomycota in the rhizosphere fungi of sunflowers and soybeans also increased significantly. There was a positive correlation between soil microorganisms and plant height, stem diameter, root length, aboveground dry fresh weight and underground dry fresh weight of sunflower and soybean applied with Trichoderma liquid organic fertilizer.

The experimental results on the resistance to cucumber wilt disease and tomato bacterial wilt disease demonstrated that the severity index was significantly reduced by the application of Trichoderma harzianum liquid organic fertilizer (T3). Specifically, the severity index of cucumber wilt disease decreased by 43.25% compared to CK, by 38.24% compared to T1, and by 41.67% compared to T2. Similarly, the severity index of tomato bacterial wilt disease decreased by 21.88% compared to T1, and by 5.71% compared to T2.

In conclusion, the application of liquid organic fertilizer containing Trichoderma harzianum NJAU4742 in saline soil had a significant effect on crop growth, and the correlation analysis between rhizosphere soil microorganisms and crop physiological indicators showed that the application of liquid organic fertilizer containing Trichoderma harzianum NJAU4742 could promote plant growth and root development. In addition, the application of liquid organic fertilizer containing Trichoderma harzianum NJAU4742 also has a positive effect on crop disease resistance, and has a good application prospect.

参考文献:

[1]白永莉. 合理使用微生物肥料的方法[C]. 现代农业,2007(7):82-83.

[2]暴增海,马桂珍,王淑芳,等. 海洋放线菌BM-2菌株对黄瓜的促生作用和诱导抗性研究[J]. 作物杂志,2013(05):94-98.

[3]蔡双虎,程立生,沙林华,等. 二斑叶螨为害与寄主植物叶绿素含量变化的关系[J]. 热带作物学报,2003(3):54-59.

[4]曾西柏,苏世鸣,蒋细良,等. 一种尖孢镰刀菌的筛选方法及其应用[P]. 北京:CN102925362A,2013-02-13.

[5]常肖锐,叶项宇,王政,等. 生物有机肥研究及应用进展[J]. 现代农业科技,2021(22):145-148.

[6]陈姝含,王娜,陈健. 对于农村生态水环境治理的思考与对策分析[J]. 中国林业经济,2019(05):10-12.

[7]陈添昌,钟平,李添华,等. 微生物肥料在烟草生产中的应用[J]. 农技服务,2012,29(05):564-566.

[8]陈颖潇,何胥,施洁君,等. 黄瓜霜毒病生防菌株的筛选及防病促生研究. 安徽农业科学,2015,43(23):121-124

[9]戴以周,韦青侠. 几种生防菌剂对番茄的促生作用[J]. 安徽农业科学,2015,43(18):121-127.

[10]丁凯. 农村水环境污染现状及治理研究[J]. 乡村科技,2017(08):83-84.

[11]冯程龙,王晓婷,康文晶,等. 利用小麦秸秆生产木霉分生孢子及其生物有机肥对黄瓜的促生效果[J]. 植物营养与肥料学报,2017,23(05):1286-1295.

[12]冯元琦. 美国高浓度液体肥料——无水液氨[J]. 化肥设计,2001(01):59-60.

[13]郜普源. 哈茨木霉NJAU4742产木质纤维素酶系及其降解稻草秸秆效应研究[D]. 南京农业大学,2021.

[14]耿士均. 专用微生物肥克服土壤连作障碍及机理的研究[J]. 苏州:苏州大学,2012.

[15]巩子毓,高旭,黄炎,等. 连续施用生物有机肥提高设施黄瓜产量和品质的研究[J]. 南京农业大学学报,2016,39(05):777-783.

[16]樊晓刚. 耕作对土壤微生物多样性的影响[D]. 北京:中国农业科学院,2010:6.

[17]缑晶毅,索升州,姚丹,等. 微生物肥料研究进展及其在农业生产中的应用[J]. 安徽农业科学,2019,47(11):13-17.

[18]韩松竹,高杰. 氮肥减施与氨基酸液体肥增施对露地膜下滴灌洋葱生长、产量和品质的影响[J]. 新疆农业科学,2021,58(05):838-845.

[19]宦月庆. 我国化肥产业存在的问题及对策[J]. 化肥设计,2019,57(04):1-2+49.

[20]黄晶,孔亚丽,徐青山,等. 盐渍土壤特征及改良措施研究进展[J]. 土壤,2022,54(1):18-23.

[21]黄燕,汪春,衣淑娟. 液体肥料的应用现状与发展前景[J]. 农机化研究,2006(02):198-200.

[22]霍雪雪,王庆玲,张豪,等. 绿色木霉Tv-1511对黄瓜的促生增产作用及防病效果[J]. 南京农业大学学报,2022,45(03):553-561.

[23]姜佰文,牛煜,王春宏,等. 应用液体有机肥减施氮肥对玉米氮素利用效率及产量的影响[J]. 东北农业大学学报,2020,51(12):24-31+40.

[24]金宏鑫,裴占江,李淑芹,等. 污泥生物有机肥对大豆产量和氮磷吸收的影响[J]. 作物杂志,2012(1):92-95

[25]寇永磊. 微生物肥料对玉米的促生作用及G1菌株抗逆性研究[J]. 郑州:郑州大学,2012.

[26]李笃仁,黄照愿. 实用土壤肥料手册[M]. 北京:中国农业科技出版社,1989.

[27]李红丽,郭夏丽,李清飞,等. 抑制烟草青枯病生物有机肥的研制及其生防效果研究[J]. 土壤学报,2010,47(04):798-801.

[28]李吉进,邹国元,孙钦平,等. 蔬菜废弃物沤制液体有机肥的理化性状和腐熟特性研究[J]. 中国农学通报,2012,28(13):264-270.

[29]李建峰,孙文广,郑继亮. 悬浮态液体肥料生产技术简析[J]. 新疆农业科技,2021(02):41-43.

[30]李俊,姜昕,李力,等. 微生物肥料的发展与土壤生物肥力的维持[J]. 中国土壤与肥料,2006,(04):1-5.

[31]李明. 微生物肥料研究[J]. 生物学通报,2001,(07):5-7.

[32]李思,弓瑶,詹保成,等. 中国有机液肥的应用现状及发展趋势[J]. 中国农学通报,2021,37(21):75-79.

[33]李晓欣,胡春胜,程一松. 不同施肥处理对作物产量及土壤中硝态氮累积的影响[J]. 干旱地区农业研究,2003(03):38-42.

[34]李新华,巩前文. 从“增量增产”到“减量增效”:农户施肥调控政策演变及走向[J]. 农业现代化研究,2016,37(05):877-884.

[35]李秀芬,朱金兆,顾晓君等. 农业面源污染现状与防治进展[J]. 中国人口·资源与环境,2010,20(04):81-84.

[36]李玉顺,高继光,刘伟,周翔. 浅析液体肥发展现状与存在问题[J]. 氮肥技术,2016,37(04):48-50.

[37]刘健,李俊,葛诚. 微生物肥料作用机理的研究进展[J]. 微生物学杂志,2001,21(1):33-36,46

[38]刘俊英. 施磷水平和接种AMF与解磷细菌对苜蓿产量及磷素利用效率的影响[J]. 农业工程学报,2020,(19):142-149.

[39]刘启明,孟晓华,李婷婷,等,贵州木NJAU4742基生物有机肥辣椒的生长促进作用[J]. 微生物,2020,8(9):1296-1319

[40]刘秋梅. 哈茨木霉菌NJAU 4742促进植物生长的效应及其分子作用机制[D]. 南京农业大学, 2023.

[41]刘喆. 有机肥施用对土壤微生物区系及作物生长影响研究[D]. 西北农林科技大学,2021.

[42]刘志鹏. 黄土高原地区土壤养分的空间分布及其影响因素. 中国科学院大学,2013.

[43]鲁洪娟,周德林,叶文玲,等. 生物有机肥在土壤改良和重金属污染修复中的研究进展[J]. 环境污染与防治,2019,41(11):1378-1383.

[44]麻坤,刁钢. 化肥对中国粮食产量变化贡献率的研究[J]. 植物营养与肥料学报,2018,24(04):1113-1120.

[45]马黎霞. 农田土壤化肥污染及应对措施[J]. 农业开发与装备,2021(12):155-156.

[46]马燕,郝先哲,夏军等. 有机液体肥对棉花生长发育及产量的影响[J]. 新疆农垦科技,2020,43(09):27-29.

[47]孟晓慧. 哈茨木霉菌NJAU 4742中TgSWO蛋白的功能及其作用机制研究[D]. 南京农业大学,2023.

[48]宁琪,陈林,李芳,等. 被孢霉对土壤养分有效性和秸秆降解的影响[J]. 土壤学报,2022,59(1):206-217

[49]任洪雷,陶波. 氯嘧磺隆降解菌F8土壤适应性的研究[J]. 作物杂志,2012(3):71-73.

[50]沙海辉,邹盛联,叶志伟. 化学肥料对中国农业发展的长处与短处[J]. 农业开发与装备,2017(03):102-103.

[51]盛荣,肖和艾,谭周进,等. 土壤解磷微生物及其磷素有效性转化机理研究进展[J]. 土壤通报,2010,41(06):1505-1510.

[52]宋其岩. 肥水管理对杨梅容器苗生长及生理生态影响[J]. 临安:浙江农林大学,2010

[53]石元亮,王晶. 有机物料改良苏打盐土机制的研究-对土壤化学组成及盐碱特性的影响[J]. 土壤通报,1989,20(4):154-157.

[54]宋玉珍. 微生物肥料在松嫩平原盐碱地造林中的应用研究[D]. 东北林业大学,2009

[55]隋永辉. 绿色木霉孢子的高密度发酵及其对植物生长的调控研究[D]. 齐鲁工业大学,2021.

[56]汤春纯,李海平,夏照明. 配施有机肥对提高棉花产量和肥料利用率的影响[J]. 湖南农业科学,2007(06):123-124.

[57]唐开军. 化肥减量配施液体有机肥对土壤理化性质及葡萄产质量的影响[J]. 安徽农业科学,2023,51(17):132-134+138.

[58]陶磊,褚贵新,刘涛,等. 有机肥替代部分化肥对长期连作棉田产量、土壤微生物数量及酶活性的影响[J]. 生态学报,2014,34(21):6137-6146.

[59]汪家铭. 液体肥料开发应用前景广阔[J]. 上海化工,1999(Z1):67.

[60]汪钱龙,张德智,王菊芬,等. 不同植物促生细菌对玉米生长的影响及其生长素分泌能力研究[J]. 云南农业大学学报,2015,30(4):494-498.

[61]王柏娇. 农业化肥产业发展对生态环境的影响分析研究[J]. 环境科学与管理,2020,45(10):177-180.

[62]王红茹. 化肥污染与防治[J]. 内蒙古环境科学,2009,21(02):15-17.

[63]王静,孔凡玉,陈晓红,等. 短小芽胞杆菌AR03对烟草炭疽病的抑制作用[J]. 植物保护,2015,41(1):104-107

[64]王军. 2015. 蓄水单坑灌施条件下不同土温和水温对土壤水氮运移规律的影响[J]. 太原理工大学.

[65]王科,李浩,张成,等. 化肥过量施用的危害及防治措施[J]. 四川农业科技,2017(09):33-35.

[66]王磊,李淑芹,许景钢,等. 普施特降解Bacilus sp. zx2和zx7生长及降解特性[J]. 农业环境科学学报,2012. 31(2):351-356

[67]王沛裴,郑顺林,何彩莲,等. 液体有机肥对铅、镉污染下马铃薯重金属吸收及干物质积累的研究[J]. 农业环境科学学报,2016,35(03):425-431.

[68]王世斌,高佩玲,赵亚东,相龙康,孟庆梅,刘月. 生物炭、有机肥连续施用对盐碱土壤改良效果研究[J]. 干旱地区农业研究,2021,39(3):154-161

[69]王薇薇,王莉,王伟. 化肥产业综合发展现状及分析[J]. 磷肥与复肥,2015,30(06):19-21.

[70]王夏雯,吴绍军,孟佳丽,等. 2种类型微生物肥料对连作西瓜枯萎病的防治效果研究[J]. 江西农业学报,2019,31(11):23-28.

[71]王孝涛,李淑芹,许景钢,等,生物肥对大豆根际过氧化氢酶和脲酶活性的影响[J]. 东北农业大学学报,2012,43(5):96-99

[72]王笑庸,牛彦波,殷博,等. 生物肥料生产菌株对有机磷农药降解能力的比较研究[J]. 黑龙江科学,2015,1(6):26-27,29

[73]王幸,邢兴华,徐泽俊,齐玉军,季春梅,吴存祥. 2017. 耕作方式和秸秆还田对黄淮海夏大豆产量和土壤理化性状的影响[J]. 中国油料作物学报,6:834-841.

[74]王云霞. 液体肥料的应用现状与发展趋势[J]. 化肥设计,2003(04):10-13+3.

[75]吴秉奇,梁永江,丁延芹,等,两株烟草根际拮抗菌的生防和促生效果研究[J]. 中国烟草科学,2013,34(1):66-71

[76]吴凤娉. 长期过量施用化肥对农业生态环境的负面影响及对策[J]. 中国农业信息,2016(10):67-68.

[77]吴建峰,林先贵. 我国微生物肥料研究现状及发展趋势[J]. 土壤,2002,(02):68-72.

[78]吴鹏,施红,于云等. 液体有机肥对莴苣生长和产量的影响[J]. 中南农业科技,2023,44(10):248-250.

[79]谢承陶. 盐土改良原理与作物抗性[M]. 北京:中国农业科技出版社,1993:120-181.

[80]肖佳雷,赵明,王贵江,等. 微肥与化学调控剂处理对春大豆农艺性状及产量性能的影响[J]. 作物杂志,2013(4):83-86

[81]修芬连. 浙粳22等浙江省晚稻主栽品种的特征特性研究[D]. 金华:浙江师范大学,2011.

[82]徐京磐. 化肥产业发展形势浅析[J]. 氮肥技术,2016,37(05):1-3+15.

[83]徐欣韵,王宁,丁佳,等. 番茄青枯病拮抗菌的定向筛选及其抗病促生机制研究[J]. 微生物学报,2021,61(10):3276-3290.

[84]许靖,赵栋. 微生物肥料对枸杞土壤生态特征及病情指数的影响[J]. 甘肃农业,2013(19):29-31

[85]薛泉宏,李素俭,张俊宏,等. 液培条件下钾细菌对土壤养分的活化作用研究[J] 西北农业大学学报,1999,27(2):33-37

[86]阎立江,孙治军,荆亚玲. “荣木”液体有机肥不同施肥处理对草莓生长的影响[J]. 北方园艺,2011(22):131-134.

[87]杨帆,孟远夺,姜义等. 2013年我国种植业化肥施用状况分析[J]. 植物营养与肥料学报,2015,21(01):217-225.

[88]杨倩,柴文娟,张春林,等. 一种微生物菌肥对甜高粱种子萌发、幼苗生长和抗逆能力的影响[J]. 内蒙古农业大学学报(自然科学版),2013,34(06):102-109.

[89]于树,汪景宽,李双异. 应用PLFA方法分析长期不同施肥处理对玉米地土壤微生物群落结构的影响[J]. 生态学报,2008,28(9):4221-4227.

[90]易啸,郑若欣,舒帮云,等. 土壤化肥重金属污染问题分析与研究[J]. 化工设计通讯,2020,46(07):243-244.

[91]袁玉娟,胡江,凌宁,等. 施用不同生物有机肥对连作黄瓜枯萎病防治效果及其机理初探[J]. 植物营养与肥料学报,2014,20(2):372-379. DOI:10. 11674/zwyf. 2014. 0213

[92]占新华,蒋延惠,徐阳春,等. 微生物制剂促进植物生长机理的研究进展[J]. 植物营养与肥料科学,1999,5(2):97-105.

[93]战徊旭,任洪雷,蒋凌雪,等. 氟磺胺草醚降解菌的分离鉴定及生长特性研究[J]. 作物杂志,2011(2):40-44

[94]张福锁. 科学认识化肥的作用[J]. 中国农技推广,2017,33(01):16-19.

[95]张贵云,吕贝贝,张丽萍. 2019. 黄土高原旱地麦田26年免耕覆盖对土壤肥力及原核微生物群落多样性的影响[J]. 中国生态农业学报,27(03):26-36.

[96]张鲁云,何义川,杨怀君,等. 国内外液体肥料施肥机械发展概况及需求分析[J]. 湖北农业科学,2020,59(15):12-15+19.

[97]张弦,朱玉华,高阔等. 世界化肥产业格局及竞争力研究[J]. 世界农业,2018(08):146-152.

[98]赵小蓉,林启美. 微生物解磷的研究进展[J]. 土壤肥料,2001(3):7-11.

[99]赵志浩,徐银荣,邱龙. 胶质芽孢杆菌的发酵工艺研究和田间应用[J]. 湖南农业科学,2004(5):34-37

[100]郑雪芳,陈燕萍,肖荣凤,等. 水肥菌一体化番茄基质栽培系统青枯病病株和健株根际微生物群落结构的差异[J]. 微生物学报,2022,62(4):1524-1535.

[101]中国人民共和国国家统计局. 2017年中国统计年鉴[M]. 北京:中国统计出版社,2017.

[102]中国人民共和国国家统计局. 2019年中国统计年鉴[M]. 北京:中国统计出版社,2019.

[103]朱佳芯,张庚,商美妮,等. 耐热木霉菌株筛选及其对热作区香蕉促生效应的研究[J]. 微生物学报,2021,61(1):206-218.

[104]Abbass Z, Okon Y. Plant growth promotion by Azotobacter paspalin the rhizosphere[J]. Soil Biology&Biochemistry, 1993, 25(8):1075-1083.

[105]Bonila, N. Enhancing soil quality andplant health through suppressive organic amendments[J]. 2012, Diversity 4.

[106]Bowles T M, Acosta-Martinez V, Calderon F, et al. Soil enzyme activities, microbialcommunities, and carbon and nitrogen availability in organic agroecosystems across anintensively-managed agricultural landscape[J]. Soil Biology Biochemistry. 2014, 68: 252-262.

[107]Cai, F, Yu G, Wang P. Harzianolide, a novel plant growth regulator and systemic resistance elicitorfrom Trichoderma harzianum[J]. Plant Physiology and Biochemistry 73, 2013, 106-13.

[108]Carter C A, zhong f, Zhu J. Advances in chinese agriculture and its global implicationsl[J]. Applied Economic Perspectives and Policy, 2012, 34(1):1-36

[109]Chaparro J, Sheflin A, Manter D, Vivanco J. Manipulatinghealth and plant fertFertility Soils[J]. 2012, 48:489-499.

[110]Chen Y, Wen X, Sun Y, et al. Mulching practices altered soil bacterialcommunity structure and improved orchard productivity and apple quality after five growingseasons[J]. Scientia Horticulturae. 2014, 172:248-257

[111]Contreras-Comejo H. Trichodermavirens, a plant beneficial fungus, enhances biomass production and promotes lateral root growththrough an Auxin-Dependent mechanism in Arabidopsis[J]. 2009, Plant Physiology 149.

[112]Cui Z, Li S, Fu G. lsolation of methyl parathion degrader strain M6and cloning of the methyl parathion hydrolase gene[J]. Applied and Environmental Microbiology, 2001(67): 4922-4925.

[113]Ding L J, Su J Q, Sun G X, et al. Increased microbial functional diversity underlong-term organic and integrated fertilization in a paddy soil[J]. Applied Microbiology Biotechnology, 2018, 102:1969-1982.

[114]Fu, L. Inducing the rhizosphere microbiome by biofertilizer application to suppress banana Fusarium wilt disease[J]. Soil Biology and Biochemistry 104, 39-48.

[115]Garland J, Mills A L. Classification and characterization of heterotrophic microbial communities basedon patterns of community-level sole carbon-source utilization[J]. Applied EnvironmentalMicrobiology. 1991, 57(8): 2351-2359.

[116]Guzman-Guzman P. Identification of effector-like proteins in 7richoderma spp. and role of a hydrophobin in the plant-fungus interaction and mycoparasitism[J]. 2017, Genetics 18, 16.

[117]Hang B j, Hong Q, Xie X T et al. A sulfonylurea herbicide deesterifieation esterase from Hansschlegelia zhihuaiaeS113[J]. Applied and Environmental Microbiology, 2012, 78(6):1962-1968.

[118]HAO Zhipeng, XIE Wei, CHEN Baodong. Application of arbuscular mycorrhizal fungi in agriculture: Research progress and challenges[J]. Science & Technology Review, 2022, 40(3): 87-98.

[119]Herbst, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients[J]. Nature, 2014, 515-563.

[120]HU Fang, WANG Fang, HAN Xiaozeng, et al. Succession of Microbial Community in Typical Black Soil under Different Land Use Pattern[J]. Acta Pedologica Sinica, 2022, 59(5): 1238-1247.

[121]Ji R, Dong G, Shi W, Min J. Effects of Liquid Organic Fertilizers on Plant Growth and Rhizosphere Soil Characteristics of Chrysanthemum[J]. Sustainability. 2017, 9(5):841.

[122]Joa J, Moon D, Won H, et al. Effect of different fertilization practices on soil microbialactivities and community structure in volcanic ash citrus orchard soil[J]. World Congress of SoilScience, 2010.

[123]Jun Zhao, Tian Ni, Jing Li. Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system [J] . Applied Soil Ecology. Volume 99, Issue . 2016. PP 1-12

[124]Kamaa M, Mburu H, Blanchart E, et al. Efects oforganic and inorganic fertilization on soil bacterial and fungal microbial diversity in the Kabetelong-term trial[J]. Biology Fertility Soils. 2011, 47: 315-321.

[125]Kaur T, Khanna K, Sharma S, et al. Mechanistic insights into the role of actinobacteria as potential biocontrol candidates against fungal phytopathogens[J]. Basic Microbiol. 2023,  63: 1196–1218.  

[126]Kennedy A C. Bacterial diversity in agroecosystems[J]. Agriculture Ecosystem Environment. 1999, 74:65-76.

[127]Kotrocz6 2, Veres 2, Fekete I, Krakomperger Z. Soil enzyme activity in response to long-term organic matter manipulation[J]. Soil Biology Biochemistry. 2014, 70: 237-243

[128]Kumar P. Vlatile organic compounds emitted by Trichodermaharzianum OTPB3 elicites antifungal activity against Phytophthora infestans and induces plantgrowth promotion and systemic resistance in tomato[J]. International Jourmal of lnnovative Horticulture. 2018, 128-38.

[129]Li C, Yan K, Tang L. Change in deep soil microbial communities due to long-termfertilization[J]. Soil Biology Biochemistry. 2014, 75: 264-272.

[130]LI Peng, WU Jian-qiang, SHA Chen-yan, et al. Effects of Manure and Organic Fertilizer Application on Soil Microbial Community Diversity in Paddy Fields[J]. Environmental Science, 2020, 41(9): 4262-4272.

[131]Li, YT. Efects of Trichoderma asperellum on nutrientuptake and Fusarium wilt oftomato[J]. Crop Protection, 2018, 110, 275-282.

[132]Lin F, Penton C R, Ruan Y, et al. Inducing the rhizospheremicrobiome by biofertilizer application to suppress banana Fusarium wilt disease[J]. Soil BiologyBiochemistry. 2017, 104: 39-48.

[133]Liu H, Wu X, Zhang R, et al. Continuous application of differentorganic additives can suppress tomato disease by inducing the healthy rhizospheric microbiotathrough alterations to the bulk soil microflora[J]. Plant Soil. 2018, 423: 229-240.

[134]LU Kai-Heng, JIN Jie-Ren, XIAO Ming. Prospect of microbial fertilizer in saline soil[J]. Microbiology China, 2019, 46(7): 1695-1705.

[135]Martinez-Medina A. Interaction between arbuscular mycorrhizal fingiand 7richoderma harzianum under conventional and low input fertilization field condition in meloncrops: Growth response and Fusarium wilt biocontrol[J]. Applied Soil Ecology, 2011: 98-105.

[136]Numan M, Bashir S, Khan Y, et al. Plant growth promoting bacteria as an alternative strategy for saltolerance in plants: A review [J]. Microbiological research, 2018, 209: 21-32

[137]Qiu M, Zhang R, Xue C, et al. Application of bio-organic fertilizercan control Fusarium wilt of cucumber plants by regulating microbial community of rhizospheresoil[J]. Biology Fertility Soils. 2012, 48: 807-816.

[138]Shen Z, Wang D, Ruan Y, et al. Deep 16S rRNA pyrosequencing revealsa bacterial community associated with banana fusarium wilt disease suppression induced bybio-organic fertilizer application[J]. Plos One. 2014, e98420.

[139]Siddiqui Z. A. PGPR: biocontrol and biofertilization. Springer.

[140]Sinsabaugh R L, et al. Carbon use eficiency of microbialcommunities: stoichiometry, methodology and modelling[J]. Ecology Letters l6, 2013, 930-9.

[141]Tandon, A. et al. Effect of 7richodermakoningiopsis on Chickpea Rhizosphere Activities under Different Fertilization Regimes[J]. OpenJournal of Soil Science, 2018(10): 261.

[142]Viterbo A. et al. Characterization of ACC deaminase from thebiocontrol and plant growth-promoting agent Trichoderma asperellum T203[J]. FEMS MicrobiologyLetters, 2012, 305, 42-48.

[143]Wang Runbo, Wang Zeming, Wang Hongyue, Yu Jingli. Landward distribution and association of the soil stable organic carbon fractions and dominant bacterial phyla[J]. Acta Microbiologica Sinica, 2022, 62(6): 2389-2402.

[144]WANG Yongqian, HU Ruiwen, ZHOU Qingming, et al. Effects of Phosphate-Resolving Bacterial Fertilizer on Phosphorus Absorption and Phosphorus Fertilizer Utilization Rate of Flue-cured Tobacco[J]. CHINESE TOBACCO SCIENCE, 2020, 41(4): 7-12.

[145]WANG Yongqian, HU Ruiwen, ZHOU Qingming, et al. Effects of Phosphate-Resolving Bacterial Fertilizer on Phosphorus Absorption and Phosphorus Fertilizer Utilization Rate of Flue-cured Tobacco[J]. CHINESE TOBACCO SCIENCE, 2020, 41(4): 7-12.

[146]Wardle D A, Yeates G W, Bonner K l, et al. Impacts of ground vegetationmanagement strategies in a kiwifruit orchard on the composition and functioning of the soil[J]. Soil Biology Biochemistry. 2001, 33: 893-905.

[147]WU Xian, HU He, WANG Rui, et al. Effects of Reduction of Chemical Fertilizer and Substitution Coupled with Organic Manure on the Molecular Ecological Network of Microbial Communities in Fluvo-aquic Soil[J]. Acta Pedologica Sinica, 2022, 59(2): 545-556.

[148]YANG Kai, DU Yanquan, ZHANG Xixing, et al. Effects of Different Organic Materials Combined with Chemical Fertilizers on Soil Fungal Community Structure and Ecological Function[J]. Soils, 2024, 56(1): 222-228.

[149]YOU Jiaqi, WU Mingde, LI Guoqing, et al. Application and Mechanism of Trichoderma in Biological Control of Plant Disease[J]. Chinese Journal Of Biological Control, 2019, 35(6): 966-976.

[150]Young S E, Pharis R P, Reid D, et al. PGPR:ls there a relationship between plant growth regulators and stimulation of plant growth or biological activity[J]. Bulletin Oilb Scrop, 1991, 14(8):182-186.

[151]ZHANG M, WANG H, Yl Y, et al. Effect of nitrogen levels and nitrogen ratios on lodging resistance and yield potential of winter wheat (Triticum aestivum L. )[J]. PLo sOne, 2017, 12(11):e0187543.

[152]ZHANG Si-qi, LIU Hong-jun, SHEN Zong-zhuan, et al. Development of Granular Compound Bioorganic Fertilizer with Bacillus Inside and Trichoderma Outside and Its Growth Promotion Effect[J]. Chinese Journal of Soil Science, 2022, 53(2): 465 − 471

[153]Zhang S. Mechanisms of the lAA and ACC-deaminase producing strain of7richoderma. longibrachiatum T6 in enhancing wheat seedling tolerance to NaCl stress[J]. BMC PlantBiology, 2019. 22.

中图分类号:

 S14    

开放日期:

 2024-06-09    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式