中文题名: | 花铃期土壤干旱影响棉纤维发育与纤维品质形成的生理机制研究 |
姓名: | |
学号: | 2019201015 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090101 |
学科名称: | 农学 - 作物学 - 作物栽培学与耕作学 |
学生类型: | 博士 |
学位: | 农学博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 作物生理生态 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2023-04-19 |
答辩日期: | 2023-06-03 |
外文题名: | Physiological Mechanism of Soil Drought during the Flowering and Boll Forming Stage Affecting Cotton Fiber Development and Fiber Quality Formation |
中文关键词: | 棉花(Gossypium hirsutumL.) ; 纤维 ; 花铃期 ; 土壤干旱 ; 起始发育 ; 伸长发育 ; 加厚发育 ; 纤维长度 ; 纤维比强度 |
外文关键词: | Cotton (Gossypium hirsutum. L.) ; Cotton fiber ; Flowering and boll forming stage ; Soil drought ; Yield and quality ; Initiation development ; Elongation development ; Thickening development |
中文摘要: |
棉花是我国集棉、油、饲为一体的重要经济作物,在国民经济发展和国际贸易中占居举足轻重的地位。棉纤维是重要的纺织原料,长度、比强度等纤维品质指标直接影响棉花的纺纱性能。随着全球气候变暖,干旱等极端天气频发,严重威胁了棉花生产和产业发展。花铃期是棉花产量品质形成的关键期,对水分变化最为敏感,此时发生干旱显著降低纤维产量和纤维品质。纤维伸长、加厚发育分别决定纤维长度、比强度的形成。目前,有关干旱影响棉纤维伸长期渗透调节的研究较多,而对纤维初生细胞壁合成、重塑与松弛的研究较少,且缺乏关于干旱下三者协同影响纤维伸长的系统探讨;针对棉纤维加厚发育期纤维素、β-1,3-葡聚糖累积已进行较为详尽的探究,而对干旱下蔗糖由种皮向纤维的转运变化、纤维木质素累积及其与纤维比强度形成的关系有待解答。因此,为了应对全球气候变化和适应我国棉花种植向旱地盐碱地的区域性转移,亟需深入系统研究花铃期干旱影响棉纤维发育与纤维品质形成的生理机制,为探索优质高产棉花生产的水分逆境栽培途径提供理论依据。 本研究选用耐旱品种德夏棉1号、干旱敏感品种豫早棉9110为材料,于2017-2019年在江苏南京(118°50′E, 32°02′N)南京农业大学牌楼试验站开顶式防雨棚(长25 m×宽8 m×高3 m)进行棉花花铃期土壤水分[土壤相对含水量SRWC(75±5)%(适宜含水量,CK)、SRWC(60±5)%、SRWC(45±5)%]盆栽试验,按照“物质代谢→酶学基础→基因表达”的研究思路,在纤维伸长发育期研究了纤维渗透调节物质累积、初生细胞壁合成、细胞壁重塑与松弛等对纤维长度形成的影响,在纤维加厚期发育期研究了纤维中蔗糖输入、蔗糖向次生细胞壁组分合成的分配等对纤维比强度形成的影响。主要研究结果如下: 1、花铃期土壤干旱对纤维产量与纤维品质的影响 干旱下棉花单株纤维产量、单铃纤维生物量、衣分、单铃棉籽数、单籽纤维生物量、单籽纤维数和单根纤维生物量均降低,在SRWC(45±5)%下的降低幅度显著大于SRWC(60±5)%,干旱敏感品种的降低幅度较耐旱品种更大。单籽纤维生物量的降低幅度显著大于单铃棉籽数,是单铃纤维生物量降低的主要原因;单籽纤维数的降低幅度显著大于单根纤维生物量,是单籽纤维生物量降低的主要原因;起始发育期纤维突起密度降低是单籽纤维数降低的主要原因。 干旱下纤维长度、比强度和纤维整齐度均显著降低,在SRWC(45±5)%下的降低幅度显著大于SRWC(60±5)%,干旱敏感品种的降低幅度较耐旱品种更大。 2、花铃期土壤干旱对纤维伸长发育与纤维长度形成的影响 在干旱影响纤维伸长渗透调节物质累积方面:干旱下,纤维酸性转化酶(acid-INV)基因(GhTIV1)表达量及acid-INV活性显著降低,抑制了蔗糖分解,使己糖浓度降低;磷酸烯醇式丙酮酸羧化酶(PEPC)活性显著增加,促进了苹果酸合成,苹果酸浓度增加;同时钾离子转运蛋白基因(GhPOT11)和钾离子通道蛋白基因(GhATK1)表达显著上调,质膜ATP酶(PM-ATPase)和液泡膜ATP酶(V-ATPase)活性显著增加,促进了对钾离子的累积,钾离子浓度增加。上述苹果酸、钾离子浓度的增加可弥补己糖浓度的降低,导致干旱下纤维渗透势在花后10-15天显著降低,有利于纤维伸长。以上说明干旱下渗透调节物质累积并非纤维伸长发育的限制因子;SRWC(45±5)%下上述相关物质含量和相关酶活性的变化幅度显著大于SRWC(60±5)%,相同干旱水平下干旱敏感品种的变化幅度较耐旱品种更大。 在干旱影响纤维伸长初生壁建成、重塑与松弛方面:干旱下,纤维半乳糖醛酸转移酶样酶基因(GhGATL9、GhGATL10)、木糖基转移酶基因(GhXXT1)和纤维素合成酶基因(GhCesA6)表达量显著下调,分别抑制了果胶、木葡聚糖(主要的半纤维素)和纤维素合成及纤维初生细胞壁建成;蔗糖合成酶(Sus)基因(GhSus)表达量及Sus活性降低,不利于蔗糖向纤维素合成直接底物尿苷二磷酸葡萄糖(UDPG)的转化,使纤维素合成受抑制程度较果胶、半纤维素更显著;果胶甲酯酶(PME)基因(GhPME3、GhPME61)、木葡聚糖内转糖苷酶/水解酶(XTH)基因(GhXTH8、GhXTHB)、β-1,4-内切葡聚糖酶(EG)基因(GhEG6)和膨胀素(Expansin)基因(GhEXPA4、GhEXPA8)表达量显著下调,PME、木葡聚糖内水解酶(XEH)和EG活性降低,抑制了果胶、木葡聚糖、纤维素的分解和细胞壁的松弛。以上说明纤维初生细胞壁合成受阻和重塑与松弛性降低的协同作用抑制了纤维伸长。SRWC(45±5)%下上述相关物质含量、相关酶活性的降低幅度显著大于SRWC(60±5)%,相同干旱水平下干旱敏感品种的变化幅度较耐旱品种更大。初步确定纤维初生细胞壁建成受阻及松弛性降低是干旱下纤维缩短的主要原因,纤维素、Sus、GhSus分别是纤维伸长发育响应干旱的关键物质、关键酶、关键基因。
3、花铃期土壤干旱对纤维加厚发育与纤维比强度形成的影响 在干旱影响蔗糖由种皮向纤维转运方面:干旱下,棉籽外种皮蔗糖转运蛋白基因(GhSWEET10、GhSWEET15)表达量显著下调,阻碍了蔗糖由种皮向纤维的转运,减少了输送至纤维的蔗糖量,导致种皮可溶性糖含量增加,而纤维可溶性糖含量降低。SRWC(45±5)%下上述相关物质含量的变化幅度显著大于SRWC(60±5)%,相同干旱水平下干旱敏感品种的变化幅度较耐旱品种更大。 在干旱影响纤维次生细胞壁合成方面:干旱下,纤维Sus基因GhSus表达量及Sus活性降低,阻碍了由种皮转运而来的蔗糖向UDPG的转化,使纤维素合成底物减少,不利于纤维素合成,导致纤维素含量降低,是纤维比强度降低的主要原因;胼胝质合成酶(CALS)基因GhCALS7表达量仅在干旱敏感品种中显著上调,CALS活性在两品种中均显著增加,促进了β-1,3-葡聚糖合成,增强了β-1,3-葡聚糖合成途径对蔗糖、UDPG的竞争能力,通过间接抑制纤维素的合成而影响纤维比强度的形成;与木质素合成相关的苯丙氨酸解氨酶(PAL)基因(GhPAL)、过氧化物酶(POD)基因(耐旱品种德夏棉1号:GhPER4、GhPER43,干旱敏感品种豫早棉9110:GhPER64)、漆酶(LAC)基因(耐旱品种德夏棉1号:GhLAC17,干旱敏感品种豫早棉9110:GhLAC4)表达量显著上调,POD和LAC活性显著增加,促进了木质素合成,增加了纤维木质素含量,但对纤维比强度形成并无不利作用。SRWC(45±5)%下上述相关物质含量、相关酶活性的变化幅度显著大于SRWC(60±5)%,相同干旱水平下干旱敏感品种的变化幅度较耐旱品种更大(UDPG含量、Sus活性的降低幅度除外)。初步确定纤维素含量降低是干旱下纤维比强度降低的主要原因,纤维素、Sus、GhSus分别是纤维加厚发育响应干旱的关键物质、关键酶、关键基因。 |
外文摘要: |
Cotton is an important cash crop integrating cotton, oil, and forage in China, and plays a critical role in national economic development and international trade. Cotton fiber is an important textile raw material and its quality indicators such as length and strength directly affect the spinning performance. With global warming, the frequent occurrence of extreme weather such as drought seriously threatens the production and industry development of cotton. The flowering and boll forming stage is a critical period for the formation of cotton yield and quality and is most sensitive to moisture changes. Drought during this stage significantly decreases fiber yield and quality. Fiber elongation and thickening development determine the formation of fiber length and strength, respectively. At present, there exist many studies on the influence of drought on osmotic regulation during fiber elongation, whilst little work on the synthesis, remodeling, and relaxation of fiber primary cell wall has been done. And there lacks a systematic exploration of the joint impact of the three factors on fiber elongation under drought. In terms of fiber thickening development, the accumulation of cellulose and β-1,3-glucan has been extensively explored, but the changes in sucrose translocation from cottonseed coat to fiber, lignin accumulation in cotton fiber, and their relationships with fiber strength formation under drought remain unclear. Under the background of global climate change and the regional transfer of cotton cultivation to arid and saline land, it is urgent to conduct in-depth and systematic research on the physiological mechanism by which drought during the flowering and boll forming stage affects cotton fiber development and quality formation to provide a theoretical basis for exploring the high quality and high yield cotton cultivation practice under water stress. This study was carried out in a potted experiment using the drought-tolerant cultivar Dexiamian 1 and drought-sensitive cultivar Yuzaomian 9110 in an open-top rainproof greenhouse (length 25 m×width 8 m×height 3 m) at Pailou Experimental Station, Nanjing Agricultural University, Nanjing (118°50′E, 32°02′N), China, from 2017 to 2019. Three soil relative water content (SRWC) at (75±5)% (optimal moisture content, CK), (60±5)%, and (45±5)% were imposed during the flowering and boll forming stage. Following the research road of “substance metabolism→enzymology basis→gene expression”, we investigated the effects of osmolytes accumulation, primary cell wall synthesis, and cell wall remodeling and loosening on fiber length formation during the elongation stage, and the effects of sucrose input and the partitioning of sucrose into secondary cell wall components biosynthesis pathways on fiber strength formation during thickening stage. The main research findings are as follows: 1. Effects of soil drought during the flowering and boll forming stage on fiber yield and fiber quality Drought reduced fiber yield per plant, fiber biomass per boll, lint percentage, seed number per boll, fiber biomass per seed, fiber number per seed, and biomass per fiber. The reductions of these indicators under SRWC(45±5)% were greater than those under SRWC(60±5)% and those in Yuzaomian 9110 were greater than those in Dexiamian 1. Biomass per seed showed a significantly greater decrease than seed number per boll, which was the main reason for the decrease in fiber biomass per boll. Fiber number per seed showed a significantly greater decrease than fiber biomass per seed, which was the main reason for the decrease in fiber biomass per seed. The decreased fiber protrusion density during fiber initiation was the main reason for the decrease in fiber number per seed. Drought decreased fiber length, strength, and uniformity. The decrease of these indicators under SRWC(45±5)% was greater than those under SRWC(60±5)% and those in Yuzaomian 9110 were greater than those in Dexiamian 1. 2. Effects of soil drought during the flowering and boll forming stage on fiber elongation development and fiber length formation In terms of drought affecting fiber osmotic regulation: under drought, the significant decrease in expression of acid invertase (acid-INV) gene (GhTIV1) and activity of acid-INV suppressed the conversion of sucrose into hexose, resulting in reduced hexose concentration; the significantly increased phosphoenolpyruvate carboxylase (PEPC) activity promoted malate biosynthesis, leading to increased malate concentration; the significant up-regulation of potassium transporter gene (GhPOT11) and potassium channel gene (GhAKT1) and increased activities of plasma membrane ATPase (PM-PATase) and vacuolar ATPase (V-PATase) jointly facilitated K+ intake, which resulted in increased K+ concentration. Under drought, the increase in K+ and malate concentrations compensated for the decrease in hexose concentration, leading to pronouncedly decreased osmotic potential during 10-15 days post anthesis, which was beneficial for fiber elongation. Thus, the accumulation of osmolytes under drought was not a limiting factor for fiber elongation development. The variations in enzyme activities and substance concentrations under SRWC(45±5)% were greater than those under SRWC(60±5)% and the variations in Yuzaomian 9110 were greater than those in Dexiamian 1. In terms of drought affecting fiber primary cell wall synthesis and remodeling and loosening: under drought, the expressions of galacturonosyltransferase-like (GATL) genes (GhGATL9 and GhGATL10), xylosyltransferase gene (GhXXT1), and cellulose synthase genes (GhCesA6) were down-regulated, resulting in the decreased biosynthesis of pectin, xyloglucan (the dominant hemicellulose), and cellulose, respectively, which restricted the construction of primary cell wall; the decreased expression of GhSus and Sus activity suppressed the conversion of sucrose into the direct substrate of cellulose synthesis, uridine diphosphate glucose (UDPG), leading to the more significant inhibition of cellulose synthesis than pectin and hemicellulose; the down-regulation of pectin methylesterase genes (GhPME3 and GhPME61), xyloglucan endoglycosidase/hydrolase genes (GhXTH8 and GhXTHB), β-1,4-endoglucanase (EG) genes (GhEG6), and expansin genes (GhEXPA4 and GhEXPA8), and the decreased activities of PME, xyloglucan endohydrolase (XEH), and EG, jointly led to the suppressed decomposition of pectin, xyloglucan and cellulose, and cell wall loosening. Therefore, the combined effect of obstructed synthesis and remodeling and loosening of the primary wall led to inhibited fiber elongation. The decreases in the above-mentioned substance contents and enzyme activities under SRWC(45±5)% were greater than those under SRWC(60±5)% and the decreases in Yuzaomian 9110 were greater than those in Dexiamian 1. Here, it was preliminarily concluded that the obstructed construction and restricted remodeling and loosening of fiber primary cell wall were the main reasons for shortened fiber length under drought, and cellulose, Sus, and GhSus were the key substance, enzyme, and gene in the response of fiber elongation development to drought, respectively. 3. Effects of soil drought during the flowering and boll forming stage on fiber thickening development and fiber strength formation In terms of drought affecting sucrose translocation from seed coat to fiber: under drought, the significant down-regulation of sucrose transporter genes (GhSWEET10 and GhSWEET15) in the outer cottonseed coat markedly blocked the sucrose translocation from the seed coat to the fiber, and consequently reduced the amount of sucrose delivered to fiber, resulting in increased soluble sugars in seed coat but decreased soluble sugars in fiber. The variations in the above-mentioned substance contents under SRWC(45±5)% were greater than those under SRWC(60±5)% and the variations in Yuzaomian 9110 were greater than those in Dexiamian 1. In terms of drought affecting fiber secondary cell wall synthesis: under drought, the decreased expression of GhSusC and Sus activity hindered the conversion of sucrose (immigrated from the seed coat) into UDPG and resulted in decreased precursor for cellulose synthesis, leading to reduced cellulose content, which was the main reason for decreased fiber strength; the expression of callose synthase (CALS) gene GhCALS7 was specifically increased in Yuzaomian 9110 and the CALS activity was significantly promoted in both cultivars, which increased β-1,3-glucan biosynthesis and enhanced competitive ability of β-1,3-glucan biosynthesis pathway for sucrose and UDPG, and thus, it was deemed that β-1,3-glucan influenced fiber strength formation by indirectly suppressing cellulose biosynthesis; significantly up-regulation of genes related to lignin biosynthesis, including phenylalaninase genes (GhPAL), peroxidase (POD) genes (GhPER4 and GhPER43 in Dexiamian 1 and GhPER64 in Yuzaomian 9110), and laccase (LAC) genes (GhLAC17 in Dexiamian 1 and GhLAC4 in Yuzaomian 9110) and the promoted activities of POD and LAC jointly promoted the lignin biosynthesis, leading to increased lignin content in cotton fiber, which had no adverse effect on fiber strength formation. The variations in the above-mentioned substance contents and enzyme activities under SRWC(45±5)% were greater than those under SRWC(60±5)% and variations in Yuzaomian 9110 were greater than those in Dexiamian 1 (except for decreases in UDPG content and Sus activity). Here, it was preliminarily concluded that the reduced cellulose content was the main reason for decreased fiber strength, and cellulose, Sus, and GhSus were the key substance, enzyme, and gene in the response of fiber thickening development to drought, respectively. |
参考文献: |
[1] 卞海云, 王友华, 陈兵林, 束红梅, 周治国. 低温条件下相关关键酶活性对棉纤维比强度形成的影响[J]. 中国农业科学, 2008, 41(4): 1235-1241. [2] 陈学留, 刘继华, 尹承佾, 于凤英, 孙清荣. 棉花纤维强度的形成机理与改良途径[J]. 中国农业科学, 1994, 27(5): 10-16. [3] 胡宏标, 张文静, 王友华, 陈兵林, 周治国. 棉纤维加厚发育相关物质对纤维比强度的影响[J]. 西北植物学报, 2007, 27(4): 4726-4733. [4] 刘瑞显, 郭文琦, 陈兵林, 周治国, 孟亚利. 氮素对花铃期干旱再复水后棉花纤维比强度形成的影响[J]. 植物营养与肥料学报, 2009, 15(3): 662-669. [5] 刘素华, 彭延, 彭小峰, 罗振, 董合忠. 调亏灌溉与合理密植对旱区棉花生长发育及产量与品质的影响[J]. 棉花学报, 2016, 28(2): 184-188. [6] 罗宏海, 张亚黎, 张旺锋, 白慧东, 何在菊, 杜明伟, 张宏芝. 新疆滴灌棉花花铃期干旱复水对叶片光合特性及产量的影响[J]. 作物学报, 2008, 34(1): 171-174. [7] 牛静, 张雷, 张思平, 刘绍东, 马慧娟, 赵新华. 花铃期干旱胁迫复水后棉花产量和纤维品质的变化研究[J]. 棉花学报, 2016, 28(6): 584-593. [8] 杨长琴, 刘瑞显, 张国伟, 帕尔哈提·买买提, 娄善伟. 花铃期干旱对棉纤维素累积及纤维比强度的影响[J]. 江苏农业学报, 2015, 31(6): 1218-1223. [9] 姚改芳, 张绍铃, 吴俊, 曹玉芬, 刘军, 韩凯, 杨志军. 10个不同系统梨品种的可溶性糖与有机酸组分含量分析[J]. 南京农业大学学报, 2011, 34(5): 25-31. [10] 张国宁, 李元玉, 马雪祺, 李姝诺, 陈万生, 肖莹. 菘蓝中咖啡酸氧甲基转移酶IiCOMT的克隆与表达分析[J]. 中草药, 2022, 53(1): 214-221. [11] 张美玲, 宋宪亮, 孙学振, 王振林, 赵庆龙, 李宗泰, 姬红, 许晓龙. 彩色棉纤维分化及色素沉积过程观察[J]. 作物学报, 2011, 37(7): 1280-1288. [12] 周青, 王友华, 许乃银, 张传喜, 周治国, 陈兵林. 温度对棉纤维糖代谢相关酶活性的影响[J]. 应用生态学报, 2009, 20(1): 149-156. [13] 邹洁. 花铃期土壤干旱影响棉花铃重形成相关源强的生理机制[D]. 南京: 南京农业大学, 2022. [14] AbdElgawad H, Avramova V, Baggerman G, Van Raemdonck G, Valkenborg D, Van Ostade X, Guisez Y, Prinsen E, Asard H, Van den Ende W, Beemster G T S. Starch biosynthesis contributes to the maintenance of photosynthesis and leaf growth under drought stress in maize[J]. Plant, Cell & Environment, 2020, 43(9): 2254-2271. [15] Abdelraheem A, Esmaeili N, O'Connell M, Zhang J F. Progress and perspective on drought and salt stress tolerance in cotton[J]. Industrial Crops and Products, 2019, 130: 118-129. [16] Abidi N, Cabrales L, Haigler C H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FTIR spectroscopy[J]. Carbohydrate Polymers, 2014, 100: 9-16. [17] Abidi N, Hequet E, Cabrales L. Changes in sugar composition and cellulose content during the secondary cell wall biogenesis in cotton fibers[J]. Cellulose, 2010, 17(1): 153-160. [18] Agurla S, Gahir S, Munemasa S, Murata Y, Raghavendra A S. Mechanism of stomatal closure in plants exposed to drought and cold stress[M], in: Iwaya-Inoue M, Sakurai M, Uemura M (Ed.) Survival strategies in extreme cold and desiccation: adaptation mechanisms and their applications. Singapore: Springer Singapore, p. 215-232. [19] Ahl L I, Mravec J, Jørgensen B, Rudall P J, Rønsted N, Grace O M. Dynamics of intracellular mannan and cell wall folding in the drought responses of succulent Aloe species[J]. Plant, Cell & Environment, 2019, 42(8): 2458-2471. [20] Ahmad I, Mian A, Maathuis F J M. Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance[J]. Journal of Experimental Botany, 2016, 67(9): 2689-2698. [21] Ahmed M, Iqbal A, Latif A, Din S U, Sarwar M B, Wang X D, Rao A Q. Overexpression of a sucrose synthase gene indirectly improves cotton fiber quality through sucrose cleavage[J]. Frontiers in Plant Science, 2020, 11: 476251. [22] Albacete A A, Martínez-Andújar C, Pérez-Alfocea F. Hormonal and metabolic regulation of source–sink relations under salinity and drought: from plant survival to crop yield stability[J]. Biotechnology Advances, 2014, 32(1): 12-30. [23] Ali O, Traas J. Force-driven polymerization and turgor-induced wall expansion[J]. Trends in Plant Science, 2016, 21(5): 398-409. [24] Amor Y, Haigler C H, Johnson S, Wainscott M, Delmer D P. A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(20): 9353-9357. [25] Amos R A, Pattathil S, Yang J, Atmodjo M A, Urbanowicz B R, Moremen K W, Mohnen D. A two-phase model for the non-processive biosynthesis of homogalacturonan polysaccharides by the GAUT1:GAUT7 complex[J]. Journal of Bological Chemistry, 2018, 293(49): 19047-19063. [26] Amthor J S. Efficiency of lignin biosynthesis: a quantitative analysis[J]. Annals of Botany, 2003, 91(6): 673-695. [27] An S H, Sohn K H, Choi H W, Hwang I S, Lee S C, Hwang B K. Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance[J]. Planta, 2008, 228(1): 61-78. [28] Andersen M N, Asch F, Wu Y, Jensen C R, Næsted H, Mogensen V O, Koch K E. Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize[J]. Plant Physiology, 2002, 130(2): 591-604. [29] Anderson C T, Kieber J J. Dynamic construction, perception, and remodeling of plant cell walls[J]. Annual Review of Plant Biology, 2020, 71(1): 39-69. [30] Avci U, Pattathil S, Singh B, Brown V L, Hahn M G, Haigler C H. Cotton fiber cell walls of Gossypium hirsutum and Gossypium barbadense have differences related to loosely-bound xyloglucan[J]. PLoS One, 2013, 8(2): e56315. [31] Ayre B G. Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning[J]. Molecular Plant, 2011, 4(3): 377-394. [32] Baetz U, Eisenach C, Tohge T, Martinoia E, De Angeli A. Vacuolar chloride fluxes impact ion content and distribution during early salinity stress[J]. Plant Physiology, 2016, 172(2): 1167-1181. [33] Baker R F, Leach K A, Braun D M. SWEET as sugar: new sucrose effluxers in plants[J]. Molecular Plant, 2012, 5(4): 766-768. [34] Balasubramanian V K, Rai K M, Thu S W, Hii M M, Mendu V. Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development[J]. Scientific Reports, 2016, 6: 34309. [35] Bang S W, Lee D K, Jung H, Chung P J, Kim Y S, Choi Y D, Suh J W, Kim J K. Overexpression of OsTF1L, a rice HD-Zip transcription factor, promotes lignin biosynthesis and stomatal closure that improves drought tolerance[J]. Plant Biotechnology Journal, 2019, 17(1): 118-131. [36] Basal H, Dagdelen N, Unay A, Yilmaz E. Effects of deficit drip irrigation ratios on cotton (Gossypium hirsutum L.) yield and fibre quality[J]. Journal of Agronomy and Crop Science, 2009, 195(1): 19-29. [37] Bashline L, Lei L, Li S D, Gu Y. Cell wall, cytoskeleton, and cell expansion in higher plants[J]. Molecular Plant, 2014, 7(4): 586-600. [38] Basra A S, Malik C P. Dark metabolism of CO2 during fibre elongation of two cottons differing in fibre lengths[J]. Journal of Experimental Botany, 1983, 34(138): 1-9. [39] Basra A S, Malik C P. Development of the cotton fiber[M], in: Bourne G H, Danielli J F, Jeon K W (Ed.) International Review of Cytology. Academic Press, p. 65-113. [40] Behmüller R, Forstenlehner I C, Tenhaken R, Huber C G. Quantitative HPLC-MS analysis of nucleotide sugars in plant cells following off-line SPE sample preparation[J]. Analytical and Bioanalytical Chemistry, 2014, 406(13): 3229-3237. [41] Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cézard L, Le Bris P, Borrega N, Hervé J, Blondet E, Balzergue S, Lapierre C, Jouanin L. Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems[J]. The Plant Cell, 2011, 23(3): 1124-37. [42] Biswal A K, Atmodjo M A, Li M, Baxter H L, Yoo C G, Pu Y, Lee Y, Mazarei M, Black I M, Zhang J, Ramanna H, Bray A L, King Z R, LaFayette P R, Pattathil S, Donohoe B S, Mohanty S S, Ryno D, Yee K, Thompson O A, Rodriguez M, Dumitrache A, Natzke J, Winkeler K, Collins C, Yang X H, Tan L, Sykes R W, Gjersing E L, Ziebell A, Turner G B, Decker S R, Hahn M G, Davison B H, Udvardi M K, Mielenz J R, Davis M F, Nelson R S, Parrott W A, Ragauskas A J, Neal Stewart C, Mohnen D. Sugar release and growth of biofuel crops are improved by downregulation of pectin biosynthesis[J]. Nature Biotechnology, 2018, 36(3): 249-257. [43] Boron A K, Loock B V, Suslov D, Markakis M N, Verbelen J, Vissenberg K. Over-expression of AtEXLA2 alters etiolated arabidopsis hypocotyl growth[J]. Annals of Botany, 2015, 115(1): 67-80. [44] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976, 72: 248-254. [45] Brill E, van Thournout M, White R G, Llewellyn D, Campbell P M, Engelen S, Ruan Y L, Arioli T, Furbank R T. A novel isoform of sucrose synthase is targeted to the cell wall during secondary cell wall synthesis in cotton fiber[J]. Plant Physiology, 2011, 157(1): 40-54. [46] Burton R A, Gidley M J, Fincher G B. Heterogeneity in the chemistry, structure and function of plant cell walls[J]. Nature Chemical Biology, 2010, 6: 724-732. [47] Carpita N C, Delmer D P. Concentration and metabolic turnover of UDP-glucose in developing cotton fibers[J]. Journal of Biological Chemistry, 1981, 256(1): 308-315. [48] Cavalier D M, Lerouxel O, Neumetzler L, Yamauchi K, Reinecke A, Freshour G, Zabotina O A, Hahn M G, Burgert I, Pauly M, Raikhel N V, Keegstra K. Disrupting two Arabidopsis thaliana xylosyltransferase genes results in plants deficient in xyloglucan, a major primary cell wall component[J]. The Plant Cell, 2008, 20(6): 1519-1537. [49] Chen J, Lv F J, Liu J R, Ma Y N, Wang Y H, Chen B L, Meng Y L, Zhou Z G, Oosterhuis D M. Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development[J]. PLoS One, 2014a, 9(8): e105088. [50] Chen J, Lv F J, Liu J R, Ma Y, Wang Y H, Chen B L, Meng Y L, Zhou Z G. Effects of different planting dates and low light on cotton fibre length formation[J]. Acta Physiologiae Plantarum, 2014b, 36(10): 2581-2595. [51] Chen L Q, Cheung L S, Feng L, Tanner W, Frommer W B. Transport of sugars[J]. Annual Review of Biochemistry, 2015, 84(1): 865-894. [52] Chen Y L, Wang H M, Hu W, Wang S S, Snider J L, Zhou Z G. Co-occurring elevated temperature and waterlogging stresses disrupt cellulose synthesis by altering the expression and activity of carbohydrate balance-associated enzymes during fiber development in cotton[J]. Environmental and Experimental Botany, 2017, 135: 106-117. [53] Chen Y L, Wang H M, Hu W, Wang S S, Wang Y H, Snider J L, Zhou Z G. Combined elevated temperature and soil waterlogging stresses inhibit cell elongation by altering osmolyte composition of the developing cotton (Gossypium hirsutum L.) fiber[J]. Plant Science, 2017, 256: 196-207. [54] Chen Z J, Sun L L, Liu P D, Liu G D, Tian J, Liao H. Malate synthesis and secretion mediated by a manganese-enhanced malate dehydrogenase confers superior manganese tolerance in Stylosanthes guianensis[J]. Plant Physiology, 2015, 167(1): 176-188. [55] Cosgrove D J. How do plant cell walls extend?[J]. Plant Physiology, 1993, 102(1): 1-6. [56] Cosgrove D J. Loosening of plant cell walls by expansins[J]. Nature, 2000, 407(6802): 321-326. [57] Cosgrove D J. Growth of the plant cell wall[J]. Nature Reviews Molecular Cell Biology, 2005, 6(11): 850-861. [58] Cosgrove D J. Plant expansins: diversity and interactions with plant cell walls[J]. Current Opinion in Plant Biology, 2015, 25: 162-172. [59] Cosgrove D J. Plant cell wall extensibility: connecting plant cell growth with cell wall structure, mechanics, and the action of wall-modifying enzymes[J]. Journal of Experimental Botany, 2016, 67(2): 463-476. [60] Cosgrove D J. Primary walls in second place[J]. Nature Plants, 2018, 4(10): 748-749. [61] Cuellar-Ortiz S M, De La Paz A M, Acosta-Gallegos J, Covarrubias A A. Relationship between carbohydrate partitioning and drought resistance in common bean[J]. Plant, Cell & Environment, 2008, 31(10): 1399-409. [62] Culbertson A T, Chou Y, Smith A L, Young Z T, Tietze A A, Cottaz S, Fauré R, Zabotina O A. Enzymatic activity of xyloglucan xylosyltransferase 5[J]. Plant Physiology, 2016, 171(3): 1893-1904. [63] Cutler S. Cellulose synthesis: cloning in silico[J]. Current Biology, 1997, 7(2): R108–R111. [64] Dabbert T A, Pauli D, Sheetz R, Gore M A. Influences of the combination of high temperature and water deficit on the heritabilities and correlations of agronomic and fiber quality traits in upland cotton[J]. Euphytica, 2016, 213(1): 6. [65] Dağdelen N, Başal H, Yılmaz E, Gürbüz T, Akçay S. Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey[J]. Agricultural Water Management, 2009, 96(1): 111-120. [66] Dai Y J, Chen B L, Meng Y L, Zhao W Q, Zhou Z G, Oosterhuis D M, Wang Y H. Effects of elevated temperature on sucrose metabolism and cellulose synthesis in cotton fibre during secondary cell wall development[J]. Functional Plant Biology, 2015, 42(9): 909-919. [67] Dao O, Kuhnert F, Weber A P M, Peltier G, Li-Beisson Y. Physiological functions of malate shuttles in plants and algae[J]. Trends in Plant Science, 2022, 27(5): 488-501. [68] De Caroli M, Manno E, Piro G, Lenucci M S. Ride to cell wall: Arabidopsis XTH11, XTH29 and XTH33 exhibit different secretion pathways and responses to heat and drought stress[J]. The Plant Journal, 2021, 107(2): 448-466. [69] De Godoy F, Bermúdez L, Lira B S, De Souza A P, Elbl P, Demarco D, Alseekh S, Insani M, Buckeridge M, Almeida J, Grigioni G, Fernie A R, Carrari F, Rossi M. Galacturonosyltransferase 4 silencing alters pectin composition and carbon partitioning in tomato[J]. Journal of Experimental Botany, 2013, 64(8): 2449-2466. [70] De Kock J, De Bruyn L P, Human J J. The relative sensitivity to plant water stress during the reproductive phase of upland cotton (Gossypium hirsutum L.)[J]. Irrigation Science, 1990, 11(4): 239-244. [71] Del-Bem L. Xyloglucan evolution and the terrestrialization of green plants[J]. New Phytologist, 2018, 219(4): 1150-1153. [72] Delmer D P, Amor Y. Cellulose biosynthesis[J]. The Plant Cell, 1995, 7(7): 987-1000. [73] Delmer D P, Haigler C H. The regulation of metabolic flux to cellulose, a major sink for carbon in plants[J]. Metabolic Engineering, 2002, 4(1): 22-28. [74] Dhindsa R S, Beasley C A, Ting I P. Osmoregulation in cotton fiber: accumulation of potassium and malate during growth[J]. Plant Physiology, 1975, 56(3): 394-398. [75] Ding X Y, Li X B, Wang L, Zeng J Y, Huang L, Xiong L, Song S Q, Zhao J, Hou L, Wang F L, Pei Y. Sucrose-enhanced reactive oxygen species generation promotes cotton fiber initiation and secondary cell wall deposition[J]. Plant Biotechnology Journal, 2021, 6(19): 1092-1094. [76] Ding X Y, Zeng J Y, Huang L, Li X B, Song S Q, Pei Y. Senescence-induced expression of ZmSUT1 in cotton delays leaf senescence while the seed coat-specific expression increases yield[J]. Plant Cell Reports, 2019, 38(8): 991-1000. [77] Dixon R A, Barros J. Lignin biosynthesis: old roads revisited and new roads explored[J]. Open Biology, 2019, 9(12): 190215. [78] Dong H, Bai L, Zhang Y, Zhang G Z, Mao Y Q, Min L L, Xiang F Y, Qian D D, Zhu X H, Song C P. Modulation of guard cell turgor and drought tolerance by a peroxisomal acetate–malate shunt[J]. Molecular Plant, 2018, 11(10): 1278-1291. [79] Doong R L, Mohnen D. Solubilization and characterization of a galacturonosyltransferase that synthesizes the pectic polysaccharide homogalacturonan[J]. The Plant Journal, 1998, 13(3): 363-374. [80] Du J, Kirui A, Huang S X, Wang L L, Barnes W J, Kiemle S N, Zheng Y Z, Rui Y, Ruan M, Qi S Q, Kim S H, Wang T, Cosgrove D J, Anderson C T, Xiao C W. Mutations in the pectin methyltransferase QUASIMODO2 Influence cellulose biosynthesis and wall integrity in Arabidopsis[J]. The Plant Cell, 2020, 32(11): 3576-3597. [81] Du Y L, Zhao Q, Chen L R, Yao X D, Zhang H J, Wu J J, Xie F T. Effect of drought stress during soybean R2-R6 growth stages on sucrose metabolism in leaf and seed[J]. International Journal of Molecular Sciences, 2020, 21(2): 618. [82] Dugasa M T, Chala I G, Wu F B. Genotypic difference in secondary metabolism-related enzyme activities and their relative gene expression patterns, osmolyte and plant hormones in wheat[J]. Physiologia Plantarum, 2020, 168(4): 921-933. [83] Ende W, Laere A. Purification and properties of a neutral invertase from the roots of Cichorium intybus[J]. Physiologia Plantarum, 1995, 93(2): 241-248. [84] Eom J S, Chen L Q, Sosso D, Julius B T, Lin I W, Qu X Q, Braun D M, Frommer W B. SWEETs, transporters for intracellular and intercellular sugar translocation[J]. Current Opinion in Plant Biology, 2015, 25: 53-62. [85] Ertek A, Kanber R. Effects of different drip irrigation programs on the boll number and shedding percentage and yield of cotton[J]. Agricultural Water Management, 2003, 60(1): 1-11. [86] Fan S M, Liu A Y, Zou X Y, Zhang Z, Ge Q, Gong W K, Li J W, Gong J W, Shi Y Z, Deng X Y, Jia T T, Yuan Y L, Shang H H. Evolution of pectin synthesis relevant galacturonosyltransferase gene family and its expression during cotton fiber development[J]. Journal of Cotton Research, 2021, 4(3): 239-260. [87] Fang Y J, Xiong L Z. General mechanisms of drought response and their application in drought resistance improvement in plants[J]. Cellular and Molecular Life Sciences, 2015, 72(4): 673-689. [88] Farrokhi N, Burton R A, Brownfield L, Hrmova M, Wilson S M, Bacic A, Fincher G B. Plant cell wall biosynthesis: genetic, biochemical and functional genomics approaches to the identification of key genes[J]. Plant Biotechnology Journal, 2006, 4(2): 145-167. [89] Feng X, Liu W X, Cao F B, Wang Y Z, Zhang G P, Chen Z H, Wu F B. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling[J]. Journal of Experimental Botany, 2020, 71(20): 6587-6600. [90] Florkiewicz A B, Kućko A, Kapusta M, Burchardt S, Przywieczerski T, Czeszewska-Rosiak G, Wilmowicz E. Drought disrupts auxin localization in abscission zone and modifies cell wall structure leading to flower separation in yellow lupine[J]. International Journal of Molecular Sciences, 2020, 21(18): 6848. [91] Gao M, Snider J L, Bai H, Hu W, Wang R, Meng Y L, Wang Y H, Chen B L, Zhou Z G. Drought effects on cotton (Gossypium hirsutum L.) fibre quality and fibre sucrose metabolism during the flowering and boll‐formation period[J]. Journal of Agronomy and Crop Science, 2020, 206(3): 309-321. [92] Gao M, Xu B J, Wang Y H, Zhou Z G, Hu W. Quantifying individual and interactive effects of elevated temperature and drought stress on cotton yield and fibre quality[J]. Journal of Agronomy and Crop Science, 2021, 207(3): 422-436. [93] Gao Z Y, Sun W J, Wang J, Zhao C Y, Zuo K J. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers[J]. Plant Science, 2019, 286: 7-16. [94] Gerik T J, Faver K L, Thaxton P M, El Zik K M. Late season water stress in cotton: I. Plant growth, water use, and yield[J]. Crop Science, 1996, 36(4): 914-921. [95] Giglioli-Guivarc'H N, Pierre J N, Brown S, Chollet R, Vidal J, Gadal P. The light-dependent transduction pathway controlling the regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase in protoplasts from Digitaria sanguinalis[J]. The Plant Cell, 1996, 8(4): 573-586. [96] Graves D A, Stewart J M. Chronology of the differentiation of cotton (Gossypium hirsutum L.) fiber cells[J]. Planta, 1988, 175(2): 254-258. [97] Gribaa A, Dardelle F, Lehner A, Rihouey C, Burel C, Ferchichi A, Driouich A, Mollet J. Effect of water deficit on the cell wall of the date palm (Phoenix dactylifera 'Deglet nour', Arecales) fruit during development[J]. Plant Cell & Environment, 2013, 36(5): 1056-1070. [98] Grimes D W, Miller R J, Dickens L. Water stress during flowering of cotton[J]. California Agriculture, 1970, 24(3): 4-6. [99] Haigler C H, Ivanova-Datcheva M, Hogan P S, Salnikov V V, Hwang S, Martin K, Delmer D P. Carbon partitioning to cellulose synthesis[J]. Plant Molecular Biology, 2001, 47(1-2): 29-51. [100] Haigler C H, Lissete B, Stiff M R, Tuttle J R. Cotton fiber: a powerful single-cell model for cell wall and cellulose research[J]. Frontiers in Plant Science, 2012, 3: 104. [101] Haigler C H, Singh B, Zhang D S, Hwang S J, Wu C F, Cai W X, Hozain M, Kang W, Kiedaisch B, Strauss R E. Transgenic cotton over-producing spinach sucrose phosphate synthase showed enhanced leaf sucrose synthesis and improved fiber quality under controlled environmental conditions[J]. Plant Molecular Biology, 2007, 63(6): 815-832. [102] Han L B, Li Y B, Wang H Y, Wu X M, Li C L, Luo M, Wu S J, Kong Z S, Pei Y, Jiao G L, Xia G X. The dual functions of WLIM1a in cell elongation and secondary wall formation in developing cotton fibers[J]. The Plant Cell, 2013, 25(11): 4421-4438. [103] Harb A, Krishnan A, Ambavaram M M R, Pereira A. Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth[J]. Plant Physiology, 2010, 154(3): 1254-1271. [104] Hauser M. Molecular basis of natural variation and environmental control of trichome patterning[J]. Frontiers in Plant Science, 2014, 5: 320. [105] Held M A, Penning B, Brandt A S, Kessans S A, Yong W, Scofield S R, Carpita N C. Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(51): 20534-20539. [106] Himanshu S K, Ale S, Bordovsky J, Darapuneni M. Evaluation of crop-growth-stage-based deficit irrigation strategies for cotton production in the Southern High Plains[J]. Agricultural Water Management, 2019, 225: 105782. [107] Hocq L, Pelloux J, Lefebvre V. Connecting homogalacturonan-type pectin remodeling to acid growth[J]. Trends in Plant Science, 2017, 22(1): 20-29. [108] Hong Z L, Zhang Z M, Olson J M, Verma D P. A novel UDP-glucose transferase is part of the callose synthase complex and interacts with phragmoplastin at the forming cell plate[J]. The Plant Cell, 2001, 13(4): 769-779. [109] Hu H Y, Wang M J, Ding Y H, Zhu S T, Zhao G N, Tu L L, Zhang X L. Transcriptomic repertoires depict the initiation of lint and fuzz fibres in cotton (Gossypium hirsutum L.)[J]. Plant Biotechnology Journal, 2018, 16(5): 1002-1012. [110] Hu W, Cao Y T, Loka D A, Harris-Shultz K R, Reiter R J, Ali S, Liu Y, Zhou Z G. Exogenous melatonin improves cotton (Gossypium hirsutum L.) pollen fertility under drought by regulating carbohydrate metabolism in male tissues[J]. Plant Physiology and Biochemistry, 2020, 151: 579-588. [111] Hu W, Gao M, Xu B J, Wang S S, Wang Y H, Zhou Z G. Co-occurring elevated temperature and drought stresses during cotton fiber thickening stage inhibit fiber biomass accumulation and cellulose synthesis[J]. Industrial Crops and Products, 2022, 187: 115348. [112] Hu W, Jiang N, Yang J S, Meng Y L, Wang Y H, Chen B L, Zhao W Q, Oosterhuis D M, Zhou Z G. Potassium (K) supply affects K accumulation and photosynthetic physiology in two cotton (Gossypium hirsutum L.) cultivars with different K sensitivities[J]. Field Crops Research, 2016, 196: 51-63. [113] Hu W, Snider J L, Wang H M, Zhou Z G, Chastain D R, Whitaker J, Perry C D, Bourland F M. Water-induced variation in yield and quality can be explained by altered yield component contributions in field-grown cotton[J]. Field Crops Research, 2018, 224: 139-147. [114] Hu Y, Chen J D, Fang L, Zhang Z Y, Ma W, Niu Y C, Ju L Z, Deng J Q, Zhao T, Lian J M, Baruch K, Fang D, Liu X, Ruan Y, Rahman M, Han J L, Wang K, Wang Q, Wu H T, Mei G F, Zang Y H, Han Z G, Xu C Y, Shen W J, Yang D F, Si Z F, Dai F, Zou L F, Huang F, Bai Y L, Zhang Y G, Brodt A, Ben-Hamo H, Zhu X F, Zhou B L, Guan X Y, Zhu S J, Chen X Y, Zhang T Z. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton[J]. Nature Genetics, 2019, 51(4): 739-748. [115] Huang L, Li X H, Zhang W W, Ung N, Liu N N, Yin X L, Li Y, Mcewan R E, Dilkes B, Dai M J, Hicks G R, Raikhel N V, Staiger C J, Zhang C H. Endosidin20 targets the cellulose synthase catalytic domain to inhibit cellulose biosynthesis[J]. The Plant Cell, 2020, 32(7): 2141-2157. [116] Huber D J, Nevins D J. Partial purification of endo- and exo-β-D-glucanase enzymes from Zea mays L. seedlings and their involvement in cell-wall autohydrolysis[J]. Planta, 1981, 151(3): 206-214. [117] Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteillé M, Stitt M, Gibon Y, Muller B. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis[J]. Plant Physiology, 2010, 154(1): 357-372. [118] Humphreys J M, Chapple C. Rewriting the lignin roadmap[J]. Current Opinion in Plant Biology, 2002, 5(3): 224-229. [119] Hussein F, Janat M, Yakoub A. Assessment of yield and water use efficiency of drip-irrigated cotton (Gossypium hirsutum L.) as affected by deficit irrigation[J]. Turkish Journal of Agriculture and Forestry, 2011, 35(6): 611-621. [120] Huwyler H R, Franz G, Meier H. Changes in the composition of cotton fibre cell walls during development[J]. Planta, 1979, 146(5): 635-642. [121] James M S. Fiber initiation on the cotton ovule (Gossypium hirsutum)[J]. American Journal of Botany, 1975, 62(7): 723-730. [122] Jiang W, Tong T, Chen X, Deng F L, Zeng F R, Pan R, Zhang W Y, Chen G, Chen Z H. Molecular response and evolution of plant anion transport systems to abiotic stress[J]. Plant Molecular Biology, 2022, 110(4): 397-412. [123] Jiang Y J, Guo W Z, Zhu H Y, Ruan Y L, Zhang T Z. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality[J]. Plant Biotechnology Journal, 2012, 10(3): 301-312. [124] Karnik R, Waghmare S, Zhang B, Larson E, Lefoulon C, Gonzalez W, Blatt M R. Commandeering channel voltage sensors for secretion, cell turgor, and volume control[J]. Trends in Plant Science, 2017, 22(1): 81-95. [125] Kim H J, Hinchliffe D J, Triplett B A, Chen Z J, Stelly D M, Yeater K M, Moon H S, Gilbert M K, Thyssen G N, Turley R B, Fang D D. Phytohormonal networks promote differentiation of fiber initials on pre-anthesis cotton ovules grown in vitro and in planta[J]. PLoS One, 2015, 10(4): e0125046. [126] King S P, Lunn J E, Furbank R T. Carbohydrate content and enzyme metabolism in developing canola siliques[J]. Plant Physiology, 1997, 114(1): 153-160. [127] Köhle H, Jeblick W, Poten F, Blaschek W, Kauss H. Chitosan-elicited callose synthesis in soybean cells as a ca-dependent process[J]. Plant Physiology, 1985, 77(3): 544-551. [128] Lee J J, Woodward A W, Chen Z J. Gene expression changes and early events in cotton fibre development[J]. Annals of Botany, 2007, 100(7): 1391-1401. [129] Lee J, Burns T H, Light G, Sun Y, Fokar M, Kasukabe Y, Fujisawa K, Maekawa Y, Allen R D. Xyloglucan endotransglycosylase/hydrolase genes in cotton and their role in fiber elongation[J]. Planta, 2010, 232(5): 1191-1205. [130] Leigh R A, Wyn Jones R G. A hypothesis relating critical potassium concentrations for growth to the distribution and functions of this ion in the plant cell[J]. New Phytologist, 1984, 97(1): 1-13. [131] Li A, Xia T, Xu W, Chen T T, Li X L, Fan J, Wang R Y, Feng S Q, Wang Y T, Wang B R, Peng L C. An integrative analysis of four CESA isoforms specific for fiber cellulose production between Gossypium hirsutum and Gossypium barbadense[J]. Planta, 2013, 237(6): 1585-1597. [132] Li C Q, Guo W Z, Zhang T Z. Fiber initiation development in upland cotton (Gossypium hirsutum L.) cultivars varying in lint percentage[J]. Euphytica, 2009, 165(2): 223-230. [133] Li H J, Wang J W, Huang X L, Zhou Z G, Wang S S, Hu W. Novel intra-boll yield components and Q-score can further evaluate the effect of phosphorus fertilizer on cotton yield and fiber quality[J]. Field Crops Research, 2022, 275: 108325. [134] Li J, Long Y, Qi G N, Li J, Xu Z J, Wu W H, Wang Y. The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex[J]. The Plant Cell, 2014, 26(8): 3387-3402. [135] Li W H, Xu G H, Alli A, Yu L. Plant HAK/KUP/KT K+ transporters: function and regulation[J]. Seminars in Cell & Developmental Biology, 2018, 74: 133-141. [136] Li W J, Shang H H, Ge Q, Zou C S, Cai J, Wang D J, Fan S M, Zhang Z, Deng X Y, Tan Y N, Song W W, Li P T, Koffi P K, Jamshed M, Lu Q W, Gong W K, Li J W, Shi Y Z, Chen T T, Gong J W, Liu A Y, Yuan Y L. Genome-wide identification, phylogeny, and expression analysis of pectin methylesterases reveal their major role in cotton fiber development[J]. BMC Genomics, 2016, 17(1): 1000. [137] Li W, Sun K, Ren Z Y, Song C X, Pei X Y, Liu Y A, Wang Z Y, He K L, Zhang F, Zhou X J, Ma X F, Yang D G. Molecular evolution and stress and phytohormone responsiveness of SUT genes in Gossypium hirsutum[J]. Frontiers in Genetics, 2018, 9: 494. [138] Li X R, Wang L, Ruan Y L. Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation[J]. Journal of Experimental Botany, 2010, 61(1): 287-295. [139] Li Y, Tu L L, Pettolino F A, Ji S M, Hao J, Yuan D J, Deng F L, Tan J F, Hu H Y, Wang Q, Llewellyn D J, Zhang X L. GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring[J]. Plant Biotechnology Journal, 2016, 14(3): 951-963. [140] Liang F B, Chen M Z, Shi Y, Tian J S, Gou L, Zhang W F. Single boll weight depends on photosynthetic function of boll–leaf system in field-grown cotton plants under water stress[J]. Photosynthesis Research, 2021, 150(1-3): 227-237. [141] Liu H H, Ma Y, Chen N A, Guo S I Y, Liu H L, Guo X Y, Chong K, Xu Y Y. Overexpression of stress-inducible OsBURP16, the β subunit of polygalacturonase 1, decreases pectin content and cell adhesion and increases abiotic stress sensitivity in rice[J]. Plant, Cell & Environment, 2014, 37(5): 1144-1158. [142] Liu W, Jiang Y, Wang C H, Zhao L L, Jin Y Z, Xing Q J, Li M, Lv T H, Qi H Y. Lignin synthesized by CmCAD2 and CmCAD3 in oriental melon (Cucumis melo L.) seedlings contributes to drought tolerance[J]. Plant Molecular Biology, 2020, 103(6): 689-704. [143] Liu X H, Cui H Y, Zhang B C, Song M, Chen S L, Xiao C W, Tang Y J, Liesche J. Reduced pectin content of cell walls prevents stress-induced root cell elongation in Arabidopsis[J]. Journal of Experimental Botany, 2021, 72(4): 1073-1084. [144] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method[J]. Methods, 2001, 25(4): 402-408. [145] Lokhande S, Reddy K R. Reproductive and fiber quality responses of upland cotton to moisture deficiency[J]. Agronomy Journal, 2014, 106(3): 1060-1069. [146] Long Q, Yue F, Liu R C, Song S Q, Li X B, Ding B, Yan X Y, Pei Y. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton[J]. Molecular Genetics and Genomics, 2018, 293(5): 1139-1149. [147] Luo M, Xiao Y H, Li X B, Lu X F, Deng W, Li D M, Hou L, Hu M Y, Li Y, Pei Y. GhDET2, a steroid 5α-reductase, plays an important role in cotton fiber cell initiation and elongation[J]. The Plant Journal, 2007, 51(3): 419-430. [148] Lv L M, Zuo D Y, Wang X F, Cheng H L, Zhang Y P, Wang Q L, Song G L, Ma Z Y. Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton[J]. BMC Plant Biology, 2020, 20(1): 223-223. [149] Maltby D, Carpita N C, Montezinos D, Kulow C, Delmer D P. β-1,3-glucan in developing cotton fibers: structure, localization, and relationship of synthesis to that of secondary wall cellulose[J]. Plant Physiology, 1979, 63(3): 1158-1164. [150] McDowell N G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality[J]. Plant Physiology, 2011, 155(3): 1051-1059. [151] McFarlane H E, Mutwil-Anderwald D, Verbančič J, Picard K L, Gookin T E, Froehlich A, Chakravorty D, Trindade L M, Alonso J M, Assmann S M, Persson S. A G protein-coupled receptor-like module regulates cellulose synthase secretion from the endomembrane system in Arabidopsis[J]. Developmental Cell, 2021, 56(10): 1484-1497. [152] Mcqueenmason S, Cosgrove D J. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(14): 6574-6578. [153] Meinert M C, Delmer D P. Changes in biochemical composition of the cell wall of the cotton fiber during development[J]. Plant Physiology, 1977, 59(6): 1088-1097. [154] Meredith W R, Bridge R R. Yield, yield component and fiber property variation of cotton (Gossypium hirsutum L.) within and among environments[J]. Crop Science, 1973, 13(3): 307-312. [155] Michailidis G, Argiriou A, Darzentas N, Tsaftaris A. Analysis of xyloglucan endotransglycosylase/hydrolase (XTH) genes from allotetraploid (Gossypium hirsutum) cotton and its diploid progenitors expressed during fiber elongation[J]. Journal of Plant Physiology, 2009, 166(4): 403-416. [156] Micheli F. Pectin methylesterases: cell wall enzymes with important roles in plant physiology[J]. Trends in Plant Science, 2001, 6(9): 414-419. [157] Mohnen D. Pectin structure and biosynthesis[J]. Current Opinion in Plant Biology, 2008, 11(3): 266-277. [158] Mølhøj M, Ulvskov P, Dal Degan F. Characterization of a functional soluble form of a Brassica napus membrane-anchored endo-1,4-β-glucanase heterologously expressed in Pichia pastoris[J]. Plant Physiology, 2001, 127(2): 674-684. [159] Muñoz F J, Baroja-Fernández E, Morán-Zorzano M T, Viale A M, Etxeberria E, Alonso-Casajús N, Pozueta-Romero J. Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves[J]. Plant and Cell Physiology, 2005, 46(8): 1366-1376. [160] Najeeb U, Bange M P, Atwell B J, Tan D K Y. Low incident light combined with partial waterlogging impairs photosynthesis and imposes a yield penalty in cotton[J]. Journal of Agronomy and Crop Science, 2016, 202(4): 331-341. [161] Nan N, Wang J, Shi Y J, Qian Y W, Jiang L, Huang S Z, Liu Y T, Wu Y, Liu B, Xu Z Y. Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content[J]. Plant Biotechnology Journal, 2020, 18(1): 172-184. [162] Naoumkina M, Hinchliffe D J, Fang D D, Florane C B, Thyssen G N. Role of xyloglucan in cotton (Gossypium hirsutum L.) fiber elongation of the short fiber mutant Ligon lintless-2 (Li2)[J]. Gene, 2017, 626: 227-233. [163] Naoumkina M, Thyssen G N, Fang D D. RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li1) and – 2 (Li2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation[J]. BMC Plant Biology, 2015, 15(1): 65. [164] Nicol F, His I, Jauneau A, Vernhettes S, Canut H, Höfte H. A plasma membrane-bound putative endo-1,4-β-D-glucanase is required for normal wall assembly and cell elongation in Arabidopsis[J]. EMBO Journal, 1998, 17(19): 5563-5576. [165] Niu J, Zhang S P, Liu S D, Ma H J, Chen J, Shen Q, Ge C W, Zhang X M, Pang C Y, Zhao X H. The compensation effects of physiology and yield in cotton after drought stress[J]. Journal of Plant Physiology, 2018, 224-225: 30-48. [166] Okuda K, Kudlicka K, Kuga S, Brown R M. β-glucan synthesis in the cotton fiber: I. identification of β-1,4- and β-1,3-glucans synthesized in vitro[J]. Plant Physiology, 1993, 101(4): 1131-1142. [167] Oury V, Caldeira C F, Prodhomme D, Pichon J, Gibon Y, Tardieu F, Turc O. Is change in ovary carbon status a cause or a consequence of Maize ovary abortion in water deficit during flowering?[J]. Plant Physiology, 2016, 171(2): 997-1008. [168] Pang C Y, Wang H, Pang Y, Xu C, Jiao Y, Qin Y M, Western T L, Yu S X, Zhu Y X. Comparative proteomics indicates that biosynthesis of pectic precursors is important for cotton fiber and Arabidopsis root hair elongation[J]. Molecular & Cellular Proteomics, 2010, 9(9): 2019-2033. [169] Papastylianou P T, Argyrokastritis I G. Effect of limited drip irrigation regime on yield, yield components, and fiber quality of cotton under Mediterranean conditions[J]. Agricultural Water Management, 2014, 142: 127-134. [170] Parida A K, Dagaonkar V S, Phalak M S, Aurangabadkar L P. Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery[J]. Acta Physiologiae Plantarum, 2008, 30(5): 619-627. [171] Parida A K, Dagaonkar V S, Phalak M S, Umalkar G V, Aurangabadkar L P. Alterations in photosynthetic pigments, protein and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery[J]. Plant Biotechnology Reports, 2007, 1(1): 37-48. [172] Park Y B, Cosgrove D J. Changes in cell wall biomechanical properties in the xyloglucan-deficient xxt1/xxt2 mutant of Arabidopsis[J]. Plant Physiology, 2012, 158(1): 465-475. [173] Peng S, Krieg D R, Hicks S K. Cotton lint yield response to accumulated heat units and soil water supply[J]. Field Crops Research, 1989, 19(4): 253-262. [174] Pettigrew W T. Environmental effects on cotton fiber carbohydrate concentration and quality[J]. Crop Science, 2001, 41(4): 1108-1113. [175] Pettigrew W T. Physiological consequences of moisture deficit stress in cotton[J]. Crop Science, 2004, 44(4): 1265-1272. [176] Phan T D, Bo W, West G, Lycett G W, Tucker G A. Silencing of the major salt-dependent isoform of pectinesterase in tomato alters fruit softening[J]. Plant Physiology, 2007, 144(4): 1960-1967. [177] Phyo P, Wang T, Kiemle S N, O'Neill H, Pingali S V, Hong M, Cosgrove D J. Gradients in wall mechanics and polysaccharides along growing inflorescence stems[J]. Plant Physiology, 2017, 175(4): 1593-1607. [178] Pillonel C, Buchala A J, Meier H. Glucan synthesis by intact cotton fibres fed with different precursors at the stages of primary and secondary wall formation[J]. Planta, 1980, 149(3): 306-312. [179] Pinheiro C, Rodrigues A P, de Carvalho I S, Chaves M M, Ricardo C P. Sugar metabolism in developing lupin seeds is affected by a short-term water deficit[J]. Journal of Experimental Botany, 2005, 56(420): 2705-2712. [180] Plaxton W C. The organization and regulation of plant glycolysis[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1996, 47: 185-214. [181] Polko J K, Kieber J J. The regulation of cellulose biosynthesis in plants[J]. The Plant Cell, 2019, 31(2): 282-296. [182] Prozherina N, Freiwald V, Rousi M, Oksanen E. Interactive effect of springtime frost and elevated ozone on early growth, foliar injuries and leaf structure of birch (Betula pendula)[J]. New Phytologist, 2003, 159(3): 623-636. [183] Pugh D A, Offler C E, Talbot M J, Ruan Y L. Evidence for the role of transfer cells in the evolutionary increase in seed and fiber biomass yield in cotton[J]. Molecular Plant, 2010, 3(6): 1075-1086. [184] Qin Y, Sun H R, Hao P B, Wang H T, Wang C C, Ma L, Wei H L, Yu S X. Transcriptome analysis reveals differences in the mechanisms of fiber initiation and elongation between long- and short-fiber cotton (Gossypium hirsutum L.) lines[J]. BMC Genomics, 2019, 20(1): 633. [185] Roig-Oliver M, Fullana-Pericàs M, Bota J, Flexas J. Adjustments in photosynthesis and leaf water relations are related to changes in cell wall composition in Hordeum vulgare and Triticum aestivum subjected to water deficit stress[J]. Plant Science, 2021, 311: 111015. [186] Ruan Y L. Recent advances in understanding cotton fibre and seed development[J]. Seed Science Research, 2005, 15(4): 269-280. [187] Ruan Y L, Chourey P S, Delmer D P, Perezgrau L. The differential expression of sucrose synthase in relation to diverse patterns of carbon partitioning in developing cotton seed[J]. Plant Physiology, 1997, 115(2): 375-385. [188] Ruan Y L, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development[J]. The Plant Cell, 2003, 15(4): 952-964. [189] Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S. Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat[J]. Molecular Plant, 2010, 3(6): 942-955. [190] Ruan Y L, Llewellyn D J, Furbank R T. Pathway and control of sucrose import into initiating cotton fibre cells[J]. Functional Plant Biology, 2000, 27(9): 795-800. [191] Ruan Y L, Llewellyn D J, Furbank R T. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin[J]. The Plant Cell, 2001, 13(1): 47-60. [192] Ruehr N K, Offermann C A, Gessler A, Winkler J B, Ferrio J P, Buchmann N, Barnard R L. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux[J]. New Phytologist, 2009, 184(4): 950-961. [193] Salnikov V V, Grimson M J, Delmer D P, Haigler C H. Sucrose synthase localizes to cellulose synthesis sites in tracheary elements[J]. Phytochemistry, 2001, 57(6): 823-833. [194] Sampedro J, Cosgrove D J. The expansin superfamily[J]. Genome Biology, 2005, 6(12): 242. [195] Sasaki T, Tsuchiya Y, Ariyoshi M, Nakano R, Ushijima K, Kubo Y, Mori I C, Higashiizumi E, Galis I, Yamamoto Y. Two members of the aluminum-activated malate transporter family, SlALMT4 and SlALMT5, are expressed during fruit development, and the overexpression of SlALMT5 alters organic acid contents in seeds in tomato (Solanum lycopersicum)[J]. Plant and Cell Physiology, 2016, 57(11): 2367-2379. [196] Scheible W R, Pauly M. Glycosyltransferases and cell wall biosynthesis: novel players and insights[J]. Current Opinion in Plant Biology, 2004, 7(3): 285-295. [197] Schneider R, Hanak T, Persson S, Voigt C A. Cellulose and callose synthesis and organization in focus, what's new?[J]. Current Opinion in Plant Biology, 2016, 34: 9-16. [198] Schubert A M, Benedict C R, Berlin J D, Kohel R J. Cotton fiber development-kinetics of cell elongation and secondary wall thickening[J]. Crop Science, 1973, 13(6): 704-709. [199] Sebková V, Unger C, Hardegger M, Sturm A. Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota[J]. Plant Physiology, 1995, 108(1): 75-83. [200] Shang X G, Chai Q C, Zhang Q H, Jiang J X, Zhang T Z, Guo W Z, Ruan Y L. Down-regulation of the cotton endo-1,4-β-glucanase gene KOR1 disrupts endosperm cellularization, delays embryo development, and reduces early seedling vigour[J]. Journal of Experimental Botany, 2015, 66(11): 3071-3083. [201] Sharma N K, Gupta S K, Dwivedi V, Chattopadhyay D. Lignin deposition in chickpea root xylem under drought[J]. Plant Signaling & Behavior, 2020, 15(6): 1754621. [202] Shimizu Y, Aotsuka S, Hasegawa O, Kawada T, Sakuno T, Sakai F, Hayashi T. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cells[J]. Plant and Cell Physiology, 1997, 38(3): 375-378. [203] Shu H M, Zhou Z G, Xu N Y, Wang Y H, Zheng M. Sucrose metabolism in cotton (Gossypium hirsutum L.) fibre under low temperature during fibre development[J]. European Journal of Agronomy, 2009, 31(2): 61-68. [204] Smart L B, Maeshima M, Wilkins T A. Genes involved in osmoregulation during turgor-driven cell expansion of developing cotton fibers are differentially regulated[J]. Plant Physiology, 1998, 116(4): 1539-1549. [205] Snowden M C, Ritchie G L, Simao F R, Bordovsky J P. Timing of episodic drought can be critical in cotton[J]. Agronomy Journal, 2014, 106: 452-458. [206] Sterling J D, Atmodjo M A, Inwood S E, Kumar Kolli V S, Quigley H F, Hahn M G, Mohnen D. Functional identification of an Arabidopsis pectin biosynthetic homogalacturonan galacturonosyltransferase[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(13): 5236-5241. [207] Sturm A, Tang G Q. The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning[J]. Trends in Plant Science, 1999, 4(10): 401-407. [208] Sun S C, Xiong X P, Zhang X L, Feng H J, Zhu Q H, Sun J, Li Y J. Characterization of the Gh4CL gene family reveals a role of Gh4CL7 in drought tolerance[J]. BMC Plant Biology, 2020, 20(1): 125. [209] Sun W J, Gao Z Y, Wang J, Huang Y Q, Chen Y, Li J F, Lv M L, Wang J, Luo M, Zuo K J. Cotton fiber elongation requires the transcription factor GhMYB212 to regulate sucrose transportation into expanding fibers[J]. New Phytologist, 2019, 222(2): 864-881. [210] Sun Y, Veerabomma S, Abdelm A H, Fokar M, Asami T, Yoshida S, Allen R. Brassinosteroid regulates fiber development on cultured cotton ovules[J]. Plant and Cell Physiology, 2005, 46: 1384-1391. [211] Tang F Y, Zhu J M, Wang T, Shao D Y. Water deficit effects on carbon metabolism in cotton fibers during fiber elongation phase[J]. Acta Physiologiae Plantarum, 2017, 39(3): 69. [212] Tenhaken R. Cell wall remodeling under abiotic stress[J]. Frontiers in Plant Science, 2014, 5: 771. [213] Tian Y, Zhang T Z. MIXTAs and phytohormones orchestrate cotton fiber development[J]. Current Opinion in Plant Biology, 2021, 59: 101975. [214] Tiika R J, Wei J, Cui G X, Ma Y J, Yang H S, Duan H R. Transcriptome-wide characterization and functional analysis of Xyloglucan endo-transglycosylase/hydrolase (XTH) gene family of Salicornia europaea L. under salinity and drought stress[J]. BMC Plant Biology, 2021, 21(1): 491. [215] Tokumoto H, Wakabayashi K, Kamisaka S, Hoson T. Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development[J]. Plant and Cell Physiology, 2002, 43(4): 411-418. [216] Tsonev T, Velikova V, Yildiz-Aktas L, Gürel A, Edreva A. Effect of water deficit and potassium fertilization on photosynthetic activity in cotton plants[J]. Plant Biosystems, 2011, 145(4): 841-847. [217] Tu M X, Wang X H, Yin W C, Wang Y, Li Y J, Zhang G F, Li Z, Song J Y, Wang X P. Grapevine VlbZIP30 improves drought resistance by directly activating VvNAC17 and promoting lignin biosynthesis through the regulation of three peroxidase genes[J]. Horticulture Research, 2020, 7: 150. [218] Turley R B, Trelease R N. Cottonseed malate synthase: biogenesis in maturing and germinated seeds[J]. Plant Physiology, 1987, 84(4): 1350-1356. [219] Turner N C, Hearn A B, Begg J E, Constable G A. Cotton (Gossypium hirsutum L.): physiological and morphological responses to water deficits and their relationship to yield[J]. Field Crops Research, 1986, 14(2): 153-170. [220] Ullah A, Sun H, Yang X Y, Zhang X L. Drought coping strategies in cotton: increased crop per drop[J]. Plant Biotechnology Journal, 2017, 15(3): 271-284. [221] Updegraff D M. Semimicro determination of cellulose inbiological materials[J]. Analytical Biochemistry, 1969, 32(3): 420-424. [222] Van Iersel M W, Oosterhuis D M. Drought effects on the water relations of cotton fruits, bracts, and leaves during ontogeny[J]. Environmental and Experimental Botany, 1996, 36(1): 51-59. [223] Van Sandt V S T, Suslov D, Verbelen J, Vissenberg K. Xyloglucan endotransglucosylase activity loosens a plant cell wall[J]. Annals of Botany, 2007, 100(7): 1467-1473. [224] Vanholme R, De Meester B, Ralph J, Boerjan W. Lignin biosynthesis and its integration into metabolism[J]. Current Opinion in Biotechnology, 2019, 56: 230-239. [225] Veljovic-Jovanovic S, Kukavica B, Stevanovic B, Navari-Izzo F. Senescence- and drought-related changes in peroxidase and superoxide dismutase isoforms in leaves of Ramonda serbica[J]. Journal of Experimental Botany, 2006, 57(8): 1759-1768. [226] Wang D R, Venturas M D, Mackay D S, Hunsaker D J, Thorp K R, Gore M A, Pauli D. Use of hydraulic traits for modeling genotype-specific acclimation in cotton under drought[J]. New Phytologist, 2020, 228(3): 898-909. [227] Wang H H, Guo Y, Lv F N, Zhu H Y, Wu S J, Jiang Y J, Li F F, Zhou B L, Guo W Z, Zhang T Z. The essential role of GhPEL gene, encoding a pectate lyase, in cell wall loosening by depolymerization of the de-esterified pectin during fiber elongation in cotton[J]. Plant Molecular Biology, 2010, 72(4): 397-406. [228] Wang H M, Chen Y L, Hu W, Wang S S, Snider J L, Zhou Z G. Carbohydrate metabolism in the subtending leaf cross-acclimates to waterlogging and elevated temperature stress and influences boll biomass in cotton (Gossypium hirsutum)[J]. Physiologia Plantarum, 2017, 161(3): 339-354. [229] Wang L, Li X R, Lian H, Ni D A, He Y K, Chen X Y, Ruan Y L. Evidence that high activity of vacuolar invertase is required for cotton fiber and Arabidopsis root elongation through osmotic dependent and independent pathways, respectively[J]. Plant Physiology, 2010, 154(2): 744-756. [230] Wang R, Gao M, Ji S, Wang S S, Meng Y L, Zhou Z G. Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period[J]. Plant Physiology and Biochemistry, 2016b, 107: 137-146. [231] Wang R, Ji S, Zhang P, Meng Y L, Wang Y H, Chen B L, Zhou Z G. Drought effects on cotton yield and fiber quality on different fruiting branches[J]. Crop Science, 2016a, 56(3): 1265-1276. [232] Wang X, Zhuo C L, Xiao X R, Wang X Q, Docampo-Palacios M, Chen F, Dixon R A. Substrate specificity of LACCASE8 facilitates polymerization of caffeyl alcohol for C-lignin biosynthesis in the seed coat of Cleome hassleriana[J]. The Plant Cell, 2020, 32(12): 3825-3845. [233] Wang Y H, Shu H M, Chen B L, Mcgiffen M E, Zhang W J, Xu N Y, Zhou Z G. The rate of cellulose increase is highly related to cotton fibre strength and is significantly determined by its genetic background and boll period temperature[J]. Plant Growth Regulation, 2009, 57(3): 203. [234] Wang Y, Chen Y F, Wu W H. Potassium and phosphorus transport and signaling in plants[J]. Journal of Integrative Plant Biology, 2021, 63(1): 34-52. [235] Wang Y, Wu W H. Regulation of potassium transport and signaling in plants[J]. Current Opinion in Plant Biology, 2017, 39: 123-128. [236] Witt T W, Ulloa M, Schwartz R C, Ritchie G L. Response to deficit irrigation of morphological, yield and fiber quality traits of upland (Gossypium hirsutum L.) and Pima (G. barbadense L.) cotton in the Texas High Plains[J]. Field Crops Research, 2020, 249: 107759. [237] Wolf S, Rausch T, Greiner S. The N-terminal pro region mediates retention of unprocessed type-I PME in the Golgi apparatus[J]. The Plant Journal, 2009, 58(3): 361-375. [238] Xu S M, Brill E, Llewellyn D J, Furbank R T, Ruan Y L. Overexpression of a potato sucrose synthase gene in cotton accelerates leaf expansion, reduces seed abortion, and enhances fiber production[J]. Molecular Plant, 2012, 5(2): 430-441. [239] Xu W Y, Tang W S, Wang C X, Ge L H, Sun J C, Qi X, He Z, Zhou Y B, Chen J, Xu Z S, Ma Y Z, Chen M. SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway[J]. Frontiers in Plant Science, 2020, 11: 785-785. [240] Yamaguchi M, Sharp R E. Complexity and coordination of root growth at low water potentials: recent advances from transcriptomic and proteomic analyses[J]. Plant, Cell & Environment, 2010, 33(4): 590-603. [241] Yan A, Pan J B, An L Z, Gan Y B, Feng H Y. The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana[J]. Journal of Photochemistry and Photobiology B: Biology, 2012, 113: 29-35. [242] Yan J W, Chen W J, Zeng H, Cheng H, Suo J W, Yu C L, Yang B R, Lou H Q, Song L L, Wu J S. Unraveling the malate biosynthesis during development of Torreya grandis nuts[J]. Current Research in Food Science, 2022, 5: 2309-2315. [243] Yan Y, Wang P, Lu Y, Bai Y, Wei Y X, Liu G Y, Shi H T. MeRAV5 promotes drought stress resistance in cassava by modulating hydrogen peroxide and lignin accumulation[J]. The Plant Journal, 2021, 107(3): 847-860. [244] Yang J S, Hu W, Zhao W Q, Chen B L, Wang Y H, Zhou Z G, Meng Y L. Fruiting branch K+ level affects cotton fiber elongation through osmoregulation[J]. Frontiers in Plant Science, 2016a, 7: 13-13. [245] Yang J S, Hu W, Zhao W Q, Meng Y L, Chen B L, Wang Y H, Zhou Z G. Soil potassium deficiency reduces cotton fiber strength by accelerating and shortening fiber development[J]. Scientific Reports, 2016b, 6(1): 28856. [246] Yu D Q, Qanmber G, Lu L, Wang L L, Li J, Yang Z E, Liu Z, Li Y, Chen Q J, Mendu V, Li F G, Yang Z R. Genome-wide analysis of cotton GH3 subfamily II reveals functional divergence in fiber development, hormone response and plant architecture[J]. BMC Plant Biology, 2018, 18(1): 350. [247] Yu L L, Sun J Y, Li L G. PtrCel9A6, an endo-1,4-β-glucanase, is required for cell wall formation during xylem differentiation in Populus[J]. Molecular Plant, 2013, 6(6): 1904-1917. [248] Zabotina O A. Xyloglucan and its biosynthesis[J]. Frontiers in Plant Science, 2012b, 3: 134. [249] Zabotina O A, Avci U, Cavalier D, Pattathil S, Chou Y H, Eberhard S, Danhof L, Keegstra K, Hahn M G. Mutations in multiple XXT genes of Arabidopsis reveal the complexity of xyloglucan biosynthesis[J]. Plant Physiology, 2012a, 159(4): 1367-1384. [250] Zahoor R, Zhao W Q, Abid M, Dong H R, Zhou Z G. Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress[J]. Journal of Plant Physiology, 2017b, 215: 30-38. [251] Zahoor R, Zhao W Q, Dong H R, Snider J L, Abid M, Iqbal B, Zhou Z G. Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.)[J]. Plant Physiology and Biochemistry, 2017a, 119: 21-32. [252] Zavaliev R, Ueki S, Epel B L, Citovsky V. Biology of callose (β-1,3-glucan) turnover at plasmodesmata[J]. Protoplasma, 2011, 248(1): 117-130. [253] Zhang D M, Luo Z, Liu S H, Li W J, Tang W, Dong H Z. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton[J]. Field Crops Research, 2016, 197: 1-9. [254] Zhang J W, Xu L, Wu Y R, Chen X A, Liu Y, Zhu S H, Ding W N, Wu P, Yi K K. OsGLU3, a putative membrane-bound endo-1,4-beta-glucanase, is required for root cell elongation and division in rice (Oryza sativa L.)[J]. Molecular Plant, 2012, 5(1): 176-186. [255] Zhang M L, Ma Y Q, Horst W J, Yang Z B. Spatial–temporal analysis of polyethylene glycol-reduced aluminium accumulation and xyloglucan endotransglucosylase action in root tips of common bean (Phaseolus vulgaris)[J]. Annals of Botany, 2016, 118(1): 1-9. [256] Zhang M, Zheng X L, Song S Q, Zeng Q W, Hou L, Li D M, Zhao J, Wei Y, Li X B, Luo M, Xiao Y H, Luo X Y, Zhang J F, Xiang C B, Pei Y. Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality[J]. Nature Biotechnology, 2011, 29(5): 453-458. [257] Zhang S Y, Jia T T, Zhang Z, Zou X Y, Fan S M, Lei K, Jiang X, Niu D D, Yuan Y L, Shang H H. Insight into the relationship between S-lignin and fiber quality based on multiple research methods[J]. Plant Physiology and Biochemistry, 2020, 147: 251-261. [258] Zhang X N, Xue Y, Guan Z Y, Zhou C, Nie Y F, Men S, Wang Q, Shen C C, Zhang D L, Jin S X, Tu L L, Yin P, Zhang X L. Structural insights into homotrimeric assembly of cellulose synthase CesA7 from Gossypium hirsutum[J]. Plant Biotechnology Journal, 2021, 19(8): 1579-1587. [259] Zhang Y, Yu J Y, Wang X, Durachko D M, Zhang S L, Cosgrove D J. Molecular insights into the complex mechanics of plant epidermal cell walls[J]. Science, 2021, 372(6543): 706-711. [260] Zhang Z Y, Ruan Y L, Zhou N, Wang F, Guan X Y, Fang L, Shang X G, Guo W Z, Zhu S J, Zhang T Z. Suppressing a putative sterol carrier gene reduces plasmodesmal permeability and activates sucrose transporter genes during cotton fiber elongation[J]. The Plant Cell, 2017, 29(8): 2027-2046. [261] Zhang Z, Huang J, Gao Y M, Liu Y, Li J P, Zhou X N, Yao C S, Wang Z M, Sun Z C, Zhang Y H. Suppressed ABA signal transduction in the spike promotes sucrose use in the stem and reduces grain number in wheat under water stress[J]. Journal of Experimental Botany, 2020, 71(22): 7241-7256. [262] Zhao M R, Han Y Y, Feng Y N, Li F, Wang W. Expansins are involved in cell growth mediated by abscisic acid and indole-3-acetic acid under drought stress in wheat[J]. Plant Cell Reports, 2012, 31(4): 671-685. [263] Zhao M R, Li F, Fang Y, Gao Q, Wang W. Expansin-regulated cell elongation is involved in the drought tolerance in wheat[J]. Protoplasma, 2011, 248(2): 313-323. [264] Zhao Q, Nakashima J, Chen F, Yin Y B, Fu C X, Yun J F, Shao H, Wang X Q, Wang Z Y, Dixon R A. LACCASE Is necessary and nonredundant with PEROXIDASE for lignin polymerization during vascular development in Arabidopsis[J]. The Plant Cell, 2013, 25(10): 3976-3987. [265] Zhao W Q, Dong H R, Zahoor R, Zhou Z G, Snider J L, Chen Y L, Siddique K H M, Wang Y H. Ameliorative effects of potassium on drought-induced decreases in fiber length of cotton (Gossypium hirsutum L.) are associated with osmolyte dynamics during fiber development[J]. The Crop Journal, 2019, 7(5): 619-634. [266] Zhao W Q, Dong H R, Zhou Z G, Wang Y H, Hu W. Potassium (K) application alleviates the negative effect of drought on cotton fiber strength by sustaining higher sucrose content and carbohydrates conversion rate[J]. Plant Physiology and Biochemistry, 2020, 157: 105-113. [267] Zhao W Q, Li J, Gao X B, Wang Y H, Meng Y L, Zhou Z G. Nitrogen concentration in subtending cotton leaves in relation to fiber strength in different fruiting branches[J]. Journal of Integrative Agriculture, 2013, 12(10): 1757-1770. [268] Zheng L, Wu H H, Qanmber G, Ali F, Wang L L, Liu Z, Yu D Q, Wang Q, Xu A, Yang Z R. Genome-wide study of the GATL gene family in Gossypium hirsutum L. reveals that GhGATL genes act on pectin synthesis to regulate plant growth and fiber elongation[J]. Genes, 2020, 11(1): 64. [269] Zheng M, Wang Y H, Liu K, Shu H M, Zhou Z G. Protein expression changes during cotton fiber elongation in response to low temperature stress[J]. Journal of Plant Physiology, 2012, 169(4): 399-409. [270] Zhou Y C, Qu H X, Dibley K E, Offler C E, Patrick J W. A suite of sucrose transporters expressed in coats of developing legume seeds includes novel pH-independent facilitators[J]. The Plant Journal, 2007, 49(4): 750-764. [271] Zhu G Z, Hou S, Song X H, Wang X, Wang W, Chen Q J, Guo W Z. Genome-wide association analysis reveals quantitative trait loci and candidate genes involved in yield components under multiple field environments in cotton (Gossypium hirsutum)[J]. BMC Plant Biology, 2021, 21(1): 250. [272] Zhu J, Song S Q, Lian L D, Shi L, Ren A, Zhao M W. Improvement of laccase activity by silencing PacC in Ganoderma lucidum[J]. World Journal of Microbiology and Biotechnology, 2022, 38(2): 32. [273] Zou C S, Lu C Y, Shang H H, Jing X R, Cheng H L, Zhang Y P, Song G L. Genome-wide analysis of the Sus gene family in cotton[J]. Journal of Integrative Plant Biology, 2013, 55(7): 643-653. [274] Zou J, Hu W, Li Y X, He J Q, Zhu H H, Zhou Z G. Screening of drought resistance indices and evaluation of drought resistance in cotton (Gossypium hirsutum L.)[J]. Journal of Integrative Agriculture, 2020, 19(2): 495-508. [275] Zou J, Hu W, Li Y X, Zhu H H, He J Q, Wang Y H, Meng Y L, Chen B L, Zhao W Q, Wang S S, Zhou Z G. Leaf anatomical alterations reduce cotton's mesophyll conductance under dynamic drought stress conditions[J]. The Plant Journal, 2022, 111(2): 391-405. [276] Zwiazek J J. Cell wall changes in white spruce (Picea glauca) needles subjected to repeated drought stress[J]. Physiologia Plantarum, 1991, 82(4): 513-518. |
中图分类号: | S56 |
开放日期: | 2023-06-18 |