- 无标题文档
查看论文信息

中文题名:

 乙虫腈高效降解菌筛选与降解机制研究    

姓名:

 魏文杰    

学号:

 2022102130    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090403    

学科名称:

 农学 - 植物保护 - 农药学(可授农学、理学学位)    

学生类型:

 硕士    

学位:

 理学硕士    

学校:

 南京农业大学    

院系:

 植物保护学院    

专业:

 农药学    

研究方向:

 农药残留与环境毒理    

第一导师姓名:

 王鸣华    

第一导师单位:

 南京农业大学    

完成日期:

 2025-06-13    

答辩日期:

 2025-05-29    

外文题名:

 Study on Screening and Degradation Mechanism of High-Efficiency Degradation Bacteria of Ethiprole    

中文关键词:

 乙虫腈 ; 生物降解 ; 恶臭假单胞菌NC1 ; 代谢途径 ; 氧化还原酶    

外文关键词:

 Ethiprole ; Biodegradation ; Pseudomonas putida NC1 ; Metabolic pathway ; Oxidoreductase    

中文摘要:

乙虫腈是拜耳公司开发的第二代作用于GABA受体的苯基吡唑类杀虫杀螨剂,可有效防治蚜虫、褐飞虱、蓟马和蝽象等害虫,广泛应用于甘蔗、水稻等作物。然而,乙虫腈的过度使用对环境存在较高风险,蜜蜂、鱼类和家蚕会受到影响。因此,有必要寻找能够消减环境中残留乙虫腈的有效策略。微生物降解农药作为自然界中本身存在的农药分解方式,不仅经济高效、靶向性强,而且对环境友好,无二次污染。目前,能够降解乙虫腈的微生物尚未见报道。本研究从土壤中筛选能够高效降解乙虫腈的微生物,研究其种类、生长特性、降解特性、代谢途径和代谢机理,为阐明乙虫腈微生物降解代谢机制提供理论依据,为乙虫腈污染的微生物修复提供技术支持。主要研究结果如下:

1、从江苏土壤中筛选获得了一株能够高效降解乙虫腈的菌株NC1,并通过表型鉴定和16S rRNA鉴定方法,最终确认该菌株归属于恶臭假单胞菌(Pseudomonas putida)。在不同条件下的生长特性研究表明,菌株NC1在温度为37 ℃、pH 7时生长情况最佳,且生长过程需要充足的氧气供应。该菌株具有良好的渗透压耐受性,在含2%以下氯化钠的培养基中仍能正常增殖,表明该菌株具有较强的环境适应能力。

2、通过响应曲面优化分析,对微生物降解的温度、pH和接种量进行优化,发现在温度为25 °C,pH为9,接种量为0.5%时,菌株NC1在24 h对乙虫腈的降解率达到79.7%。同时,研究了菌株NC1对其它苯基吡唑类杀虫剂降解的特异性,发现该菌株能够降解乙虫腈和丁虫腈,但对氟虫腈没有降解能力。

3、通过高分辨质谱分析,鉴定了菌株NC1代谢乙虫腈的中间产物,其中代谢物M1为乙虫腈的腈基被水解成酰胺,代谢物M2为乙虫腈末端亚砜被氧化成砜,初步推测腈水合酶和氧化还原酶参与了乙虫腈的代谢过程。从菌株NC1的基因组文库中筛选出一个新的氧化还原酶基因,该基因大小为1601个碱基对(bp),编码的酶由391个氨基酸组成,G+C含量为63%,将该酶命名为GmcF。GmcF基因的序列比对结果表明,在氨基酸水平上与已知的GMC氧化还原酶家族具有98.06%的最高相似性。GMC家族是一类依赖FAD的氧化还原酶,而GmcF含有FAD的α-β折叠保守结合域,因此确定GmcF属于GMC氧化还原酶家族。

4、构建了gmcF基因的重组表达载体pET28a-gmcF,并在大肠杆菌E.coli BL21(DE3)中实现了该基因的表达。通过Ni-NAT亲和层析柱对重组表达的GmcF酶进行纯化后获得纯酶。酶学特性研究表明,GmcF酶的最适催化温度为30 ℃,在pH 8.0时表现出最高酶活性。热稳定性和pH稳定性试验中,在较宽的温度和pH范围内保持催化活性。GmcF酶以乙虫腈为底物时的酶活为2.66 mmol·mg-1·min-1,显示出对乙虫腈的强效降解能力。

5、初步研究了降解菌NC1在污染土壤和生菜中的实际应用效果。降解菌NC1经过秸秆颗粒固定后,7天能降解土壤中12.1%的30 mg/kg的乙虫腈。在生菜中,添加降解菌NC1的处理组的半衰期比对照组缩短了37.7%,表明添加菌株NC1可显著加快乙虫腈在生菜中的降解速率。

外文摘要:

Ethiprole is the second generation of phenylpyrazole insecticides and acaricides acting on GABA receptors developed by Bayer. It can effectively control pests such as aphids, brown planthoppers, thrips and bugs, and is widely used in sugarcane, rice and other crops. However, excessive use of ethiprole poses a high risk to the environment, affecting bees, fish and silkworms. Therefore, it is necessary to find effective strategies to eliminate residual ethiprole in the environment. Microbially-mediated pesticide decomposition represents a sustainable bioremediation strategy characterized by cost-effectiveness, operational efficiency, and environmental compatibility without secondary contamination. At present, the microorganisms that can degrade ethiprole have not been reported. In this paper, microorganisms capable of efficiently degrading ethiprole were screened from soil, and the microbial species, growth characteristics, degradation characteristics, metabolic pathways and metabolic mechanisms were studied. It provides a theoretical basis for elucidating the metabolic mechanism of microbial degradation of ethiprole, and provides technical support for microbial remediation of ethiprole pollution. The main results are as follows:

1. A strain NC1 with high-efficiency degradation for ethiprole was screened from Jiangsu soil, and it was finally confirmed to belong to Pseudomonas putida by phenotypic identification and 16S rRNA identification. In the study of the growth of strain NC1 under different conditions, it was found that the strain exhibited optimal growth at 37 °C and pH 7, and the growth process required sufficient oxygen supply. The strain has osmotic pressure tolerance and can maintain normal proliferation in medium containing less than 2% NaCl, showing strong environmental adaptability.

2. Response surface optimization analysis was used to optimize the temperature, pH, and inoculation amount for the degradation process. Results showed that at 25 °C, pH 9, and an inoculation amount of 0.5%, strain NC1 degraded ethiprole with a rate of 79.7% within 24 h. Additionally, the degradation specificity of strain NC1 to other phenylpyrazole insecticides was studied. It was found that strain NC1 could degrade ethiprole and flufiprole, but had no degradation ability to fipronil.

3. The intermediate product of strain NC1 metabolizing ethiprole was identified by high resolution mass spectrometry. The nitrile group of the metabolite M1 was hydrolyzed into amide, and the metabolite M2 was oxidized to sulfone by the terminal sulfoxide of ethiprole. It was preliminarily inferred that nitrile hydratase and oxidoreductase were involved in the metabolic process of ethiprole. A new oxidoreductase gene was screened from the genomic library of NC1. The gene was 1601 bp in size, and the enzyme was composed of 391 amino acids. The G+C content was 63%, and the enzyme was named GmcF. The sequence alignment of GmcF gene showed that it had the highest similarity of 98.06% with the known GMC oxidoreductase family at the amino acid level. The GMC family is a class of FAD-dependent oxidoreductases, and GmcF contains the α-β fold conserved binding domain of FAD, so it is determined that GmcF belongs to the GMC oxidoreductase family.

4. The recombinant expression vector pET28a-gmcF was constructed and expressed in E.coli BL21(DE3). The recombinant GmcF enzyme was purified by Ni-NAT column to obtain pure enzyme. The study of enzymatic properties showed that the optimum catalytic temperature of GmcF enzyme was 30 °C, and it showed the highest enzyme activity at pH 8.0. In the thermal stability and pH stability tests, the catalytic activity was maintained over a wide temperature and pH range. The enzyme activity of GmcF was 2.66 mmol mg-1 min-1 when using ethiprole as the substrate, showing a strong ability to degrade ethiprole.

5. The practical application effect of degrading bacteria NC1 in contaminated soil and lettuce was preliminarily explored. The degrading bacteria NC1 could degrade 12.1% of 30 mg/kg ethiprole in the soil after 7 days of straw particle fixation. In lettuce, the half-life of the treatment group added with degrading bacteria NC1 was 37.7% shorter than the control group, indicating that the addition of strain NC1 can effectively accelerate the degradation rate of ethiprole in lettuce.

参考文献:

[1]白小宁, 李友顺, 赵安楠, 等. 2021年及近年我国农药登记情况和特点分析[J]. 农药科学与管理, 2022, 43(1):1-11.

[2]苍涛, 章虎, 王新全, 等. 手性乙虫腈对3种非靶标生物的急性毒性及初步风险评价[J]. 农药学学报, 2016, 18(1):65-70.

[3]曹维强, 吕飞, 余优军, 等. 新型农药丁烯氟虫腈的光降解研究[J]. 环境化学, 2011, 30(5):946-952.

[4]陈星茹, 方诗琦, 万爽, 等. 可降解新烟碱类杀虫剂微生物及其代谢途径的研究进展[J]. 生物工程学报, 2022, 38(12): 4462-4497.

[5]戴青华, 张瑞福, 蒋建东, 等. 一株三唑磷降解菌mp-4的分离鉴定及降解特性的研究[J]. 土壤学报, 2005, 1:111-115.

[6]东秀珠等. 常见细菌系统鉴定手册[M]. 北京:科学出版社, 2001.

[7]韩清, 丁惠, 孙伯文, 等. 乙虫腈高效液相色谱测定方法的研究[J]. 现代农药, 2016, 15(1):28-30.

[8]黄小华, 李树香. 乙虫腈悬浮剂防治稻飞虱田间药效试验[J]. 热带农业科学, 2009, 29(7):17-19.

[9]姜恬, 冯旭东, 李岩, 等. 底物特异性的生物催化与酶设计改造[J]. 化工进展, 2019, 1:606-614.

[10]江希流, 华小梅. 我国农药环境污染与危害的特点及控制对策[J]. 环境科学研究, 2000, 13:3.

[11]靖俊杰, 李莉, 郝莹莹, 等. JMPR农药残留评估方法及重点关注事项[J]. 现代农药, 2025, 24(1):20-26.

[12]孔洁, 樊梅娜, 陶宁, 等. 农药降解菌的筛选及应用评价[J]. 现代农药, 2024, 23(6):58-62+72.

[13]李花, 赵立坤, 包仕钰, 等. 多环芳烃降解菌及其应用研究进展[J]. 环境工程技术学报, 2023, 13(5):1663-1676.

[14]李静华. 固定化微生物强化修复石油污染土壤的研究[D]. 广州:华南理工大学, 2017.

[15]李森, 田晶, 李朝阳, 等. 氯菊酯微生物手性降解的研究[J]. 江苏农业科学, 2017, 45(20):282-284.

[16]李秀璋, 张宗豪, 刘欣, 等. 土壤生物修复技术研究进展[J]. 青海畜牧兽医杂志, 2021, 51(3):52-56.

[17]刘君寒, 王兆守, 何健, 等. 一株氯氰菊酯降解菌的分离和鉴定[J]. 南京农业大学学报, 2007, 3:68-72.

[18]刘少华, 董璞, 位思齐, 等. 吡唑类农药概述[J]. 精细与专用化学品, 2016, 24(10):30-33.

[19]刘祥英, 柏连阳. 土壤微生物降解磺酰脲类除草剂的研究进展[J]. 现代农药, 2006, 5(1):29-32

[20]刘智, 孙建春, 李顺鹏. 甲基对硫磷降解菌DLL-1的分离、鉴定及降解性研究[J]. 应用与环境生物学报, 1999, S1:147-150.

[21]明仁月, 陈可嘉, 李兰英, 等. 农药环境污染对两栖动物蛙类毒性效应研究进展[J]. 现代农药, 2023, 22(6):22-32.

[22]任可心, 陈兰英, 白志勇, 等. 土壤农药微生物降解综述[J]. 农村实用技术, 2020, 11:97-98.

[23]沈德龙, 杨小红, 李俊, 等. 微生物降解农药的研究新进展[J]. 微生物学通报, 2003, 6:93-96.

[24]沈雨佳, 洪源范, 洪青, 等. 辛硫磷降解菌XSP-1的分离、鉴定及其降解特性研究[J]. 环境科学, 2007, 12:2833-2837.

[25]石凯威, 郑尊涛, 赵婷婷, 等. 四种乳酸菌对马拉硫磷的手性选择性降解研究[J]. 农药学学报, 2021, 23(4):817-822.

[26]田发军. 不同环境条件下乙虫腈的降解行为研究[D]. 新乡:河南科技学院, 2016.

[27]王堃, 王志春, 李荣, 等. 乐果降解菌L3的分离、鉴定及降解性能[J]. 中国环境科学, 2008, 11:994-998.

[28]徐晓辉, 吴书平, 马秀玲. 农药的发展与使用综述[J]. 安徽农学通报, 2014, 20(11):89-93.

[29]颜世雷, 陶玉贵, 潘军, 等. 氧化乐果降解菌的分离与初步鉴定[J]. 中国土壤与肥料, 2007, 6:78-80.

[30]杨正义, 陈慧心, 钟国华, 等. 基于细菌生物膜的农药残留微生物降解研究进展[J]. 农药学学报, 2024, 26(4):1-12.

[31]虞云龙, 樊德方, 陈鹤鑫. 农药微生物降解的研究现状与发展策略[J]. 环境科学进展, 1996, 3:28-36.

[32]虞云龙, 宋凤鸣, 郑重, 等. 一株广谱性农药降解菌(Alcaligenes sp.)的分离与鉴定[J]. 浙江农业大学学报, 1997, 2:3-7.

[33]张二琴. 有机磷农药微生物手性降解的研究[D]. 石家庄:河北科技大学, 2015.

[34]赵倩倩. 中国主要粮食作物农药使用现状及问题研究[D]. 北京:北京理工大学, 2015.

[35]郑楚明, 尤伟群, 侯平扬, 等. 锐劲特、乙虫腈、乐斯本对水稻主要害虫的防治效果[J]. 广东农业科学, 2009, 5:120-121.

[36]郑金伟. 丁草胺降解菌株的分离、降解特性及其生物修复效应[D]. 南京:南京农业大学, 2011.

[37]朱福兴, 王沫, 李建洪. 降解农药的微生物[J]. 微生物学通报, 2004, 5:120-123.

[38]王峰, 孟祥鹤, 王菡. 农药氟虫腈与生态保护的研究进展[J]. 农业科学, 2014, 4:99-104

[39]王欢, 王敬敬, 徐松, 等. 有机磷降解菌的筛选及其促生特性[J]. 微生物学报, 2017, 57(5):667-680.

[40]张青. 手性杀虫剂乙虫腈立体选择性降解、活性、毒性和生态毒理效应研究[D]. 南京:南京农业大学, 2017.

[41]赵百萍. 炔苯酰草胺降解菌的分离鉴定及酰胺水解酶基因的克隆与表达[D]. 南京:南京农业大学, 2015.

[42]Abioye P O, Abdul Aziz A, Agamuthu P. Enhanced biodegradation of used engine oil in soil amended with organic wastes[J]. Water, Air, & Soil Pollution, 2010, 209(1):173-179.

[43]Abraham J, Gajendiran A. Biodegradation of fipronil and its metabolite fipronil sulfone by Streptomyces rochei strain AJAG7 and its use in bioremediation of contaminated soil[J]. Pesticide Biochemistry and Physiology, 2019, 155:90-100.

[44]Avena-Bustillos R J, Klausner N, Milczarek R, et al. Evaluation of predrying steps, cadmium, and pesticide residues on dried powders from romaine lettuce outer and heart leaves[J]. ACS Food Science & Technology, 2023, 3(1):41-49.

[45]Bailes G, Lind M, Ely A, et al. Isolation of native soil microorganisms with potential for breaking down biodegradable plastic mulch films used in agriculture[J]. Journal of Visualized Experiments, 2013, e50373.

[46]Baiping Z, Xiude H, Fei W, et al. Biodegradation of propyzamide by Comamonas testosteroni W1 and cloning of the propyzamide hydrolase gene camH[J]. Bioresource Technology, 2015, 179:144-149.

[47]Bhatt P, Bhatt K, Sharma A, et al. Biotechnological basis of microbial consortia for the removal of pesticides from the environment[J]. Critical Reviews in Biotechnology, 2021, 41(3):317-338.

[48]Bhatt P, Gangola S, Ramola S, et al. Insights into the toxicity and biodegradation of fipronil in contaminated environment[J]. Microbiological Research, 2023, 266:127247.

[49]Bhatt P, Huang Y, Rene E R, et al. Mechanism of allethrin biodegradation by a newly isolated Sphingomonas trueperi strain CW3 from wastewater sludge[J]. Bioresource Technology, 2020, 305:123074.

[50]Boone D R, Castenholz R W, Garrity G M. Bergey’s manual of systematic bacteriology[M]. Springer, 2001.

[51]Borges K B, Pupo M T, de Freitas L A P, et al. Box-Behnken design for the optimization of an enantioselective method for the simultaneous analysis of propranolol and 4-hydroxypropranolol by CE[J]. Electrophoresis, 2009, 30(16):2874-2881.

[52]Bose S, Kumar P S, Vo D N, et al. Microbial degradation of recalcitrant pesticides: a review[J]. Environmental Chemistry Letters, 2021, 19(4):3209-3228.

[53]Bumpus J A, Tien M, Wright D, et al. Oxidation of persistent environmental pollutants by a white rot fungus[J]. Science, 1985, 228(4706).

[54]Buscagan T M, Perez K A, Maggiolo A O, et al. Structural characterization of two CO molecules bound to the nitrogenase active site[J]. Angewandte Chemie International Edition, 2021, 60(11):5704-5707.

[55]Caboni P, Sammelson R E, Casida J E. Phenylpyrazole insecticide photochemistry, metabolism, and GABAergic Action: ethiprole compared with fipronil[J]. Journal of Agricultural and Food Chemistry, 2003, 51(24):7055-7061.

[56]Carrão D B, Perovani I S, de Albuquerque N C P, et al. Enantioseparation of pesticides: A critical review[J]. TrAC Trends in Analytical Chemistry, 2020, 122:115719.

[57]Cavener D R. GMC oxidoreductases: A newly defined family of homologous proteins with diverse catalytic activities[J]. Journal of Molecular Biology, 1992, 223(3):811-814.

[58]Chen K, Tian F, Wu C, et al. Degradation products and pathway of ethiprole in water and soil[J]. Water Research, 2019, 161:531-539.

[59]Chen X, Ke Y, Zhu Y, et al. Enrichment of tetracycline-degrading bacterial consortia: Microbial community succession and degradation characteristics and mechanism[J]. Journal of Hazardous Materials, 2023, 448:130984.

[60]Dong B, Hu J. Dissipation, residue distribution, and risk assessment of ethiprole and its metabolites in rice under various open field conditions[J]. Journal of the Science of Food and Agriculture, 2023, 103(13):6510-6520.

[61]Doolotkeldieva T, Konurbaeva M, Bobusheva S. Microbial communities in pesticide-contaminated soils in Kyrgyzstan and bioremediation possibilities[J]. Environmental Science and Pollution Research, 2018, 25(32):31848-31862.

[62]Dsikowitzky L, Schwarzbauer J. Industrial organic contaminants: identification, toxicity and fate in the environment[J]. Environmental Chemistry Letters, 2014, 12(3):371-386.

[63]Eissa F, Mahmoud H, Massoud O, et al. Biodegradation of chlorpyrifos by microbial strains isolated from agricultural wastewater[J]. The Journal of American Science, 2014, 10:98-108.

[64]Emily R, John D, Jake F, et al. Engineering enzymes for environmental sustainability[J]. Angewandte Chemie, 2023, 62:9305.

[65]Faust S D. Pollution of the water environment by organic pesticides[J]. Clinical Pharmacology and Therapeutics, 1964, 5:677-686.

[66]Gao J, Wang F, Cui J, et al. Assessment of toxicity and environmental behavior of chiral ethiprole and its metabolites using zebrafish model[J]. Journal of Hazardous Materials, 2021, 414:125492.

[67]Gao J, Wang F, Wang P, et al. Enantioselective toxic effects and environmental behavior of ethiprole and its metabolites against Chlorella pyrenoidosa[J]. Environmental Pollution, 2018, 244:757-765.

[68]Gita K, Anupriya K. Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil[J]. Biology and Fertility of Soils, 2011, 47:219-225.

[69]Gong T, Xu X, Dang Y, et al. An engineered Pseudomonas putida can simultaneously degrade organophosphates, pyrethroids and carbamates[J]. Science of The Total Environment, 2018, 628-629:1258-1265.

[70]González-Curbelo M Á, Varela-Martínez D A, Riaño-Herrera D A. Pesticide-residue analysis in soils by the QuEChERS method: a review: Molecules[Z]. 2022, 27(13):4323.

[71]Guerrero R, Ibarra M, Balagurusamy N, et al. Microbiology and biochemistry of pesticides biodegradation[J]. International Journal of Molecular Sciences. 2023, 24(21):15969.

[72]Hajieghrari M, Hejazi P. Enhanced biodegradation of n-Hexadecane in solid-phase of soil by employing immobilized Pseudomonas Aeruginosa on size-optimized coconut fibers[J]. Journal of Hazardous Materials, 2020, 389:122134.

[73]Hegde DR, Manoharan T, Sridar R. Identification and characterization of bacterial isolates and their role in the degradation of neonicotinoid insecticide thiamethoxam[J]. Journal of Pure and Applied Microbiology, 2017, 11(1):393-400.

[74]Hu F, Wang P, Li Y, et al. Bioremediation of environmental organic pollutants by Pseudomonas aeruginosa: Mechanisms, methods and challenges[J]. Environmental Research, 2023, 239:117211.

[75]Hu K, Zhou L, Gao Y, et al. Enantioselective endocrine-disrupting effects of the phenylpyrazole chiral insecticides in vitro and in silico[J]. Chemosphere, 2020, 252:126572.

[76]Hu M, Liu X, Wu X, et al. Characterization of the fate and distribution of ethiprole in water-fish-sediment microcosm using a fugacity model[J]. Science of the Total Environment, 2016, 576:696-704.

[77]Huang H, Cui J, Guo Y, et al. Roles of LsCYP4DE1 in wheat adaptation and ethiprole tolerance in Laodelphax striatellus[J]. Insect Biochemistry and Molecular Biology, 2018, 101:14-23.

[78]Huang Y, Xiao L, Li F, et al. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review[J]. Molecules, 2018, 23(9):2313.

[79]Hussain S, Hartley C J, Shettigar M, et al. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems[J]. FEMS Microbiology Letters, 2016, 363:252.

[80]Ishag A E S A, Abdelbagi A O, Hammad A M A, et al. Biodegradation of chlorpyrifos, malathion, and dimethoate by three strains of bacteria isolated from pesticide-polluted soils in Sudan[J]. Journal of Agricultural and Food Chemistry, 2016, 64:8491-8498.

[81]Jaiswal A, Tripathi A, Dubey S K. Biodegradation of fipronil: molecular characterization, degradation kinetics, and metabolites[J]. Environmental Science and Pollution Research, 2023, 30(48):106316-106329.

[82]Jeong J, Choi J. Artificial intelligence-based toxicity prediction of environmental chemicals: future directions for chemical management applications[J]. Environmental Science & Technology, 2022, 56(12):7532-7543.

[83]Ji C, Song Z, Tian Z, et al. Enantioselectivity in the toxicological effects of chiral pesticides: A review[J]. The Science of the Total Environment, 2023, 857( 3):159656.

[84]Jiang H, Wu H, Yuan P, et al. Biodegradation of sulfoxaflor by Pseudomonas stutzeri CGMCC 22915 and characterization of the nitrile hydratase involved[J]. International Biodeterioration & Biodegradation, 2022, 170:105403.

[85]Jing X, Li Q, Qiao X, et al. Effects of accumulated straw residues on sorption of pesticides and antibiotics in soils with maize straw return[J]. Journal of Hazardous Materials, 2021, 418:126213.

[86]Kawabe M, Okabe Onokubo A, Arimoto Y, et al. GMC oxidoreductase, a highly expressed protein in a potent biocontrol agent Fusarium oxysporum Cong:1-2, is dispensable for biocontrol activity[J]. The Journal of General and Applied Microbiology, 2011, 57 4:207-217.

[87]Keshavarz-Tohid V, Vacheron J, Dubost A, et al. Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas alloputida sp. nov., Pseudomonas inefficax sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov[J]. Systematic and Applied Microbiology, 2019, 42(4):468-480.

[88]Khoiruddin K, Boopathy R, Kawi S, et al. Towards next-generation membrane bioreactors: innovations, challenges, and future directions[J]. Current Pollution Reports, 2025, 11:15

[89]Labana S, Pandey G, Paul D, et al. Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100[J]. Environmental Science & Technology, 2005, 39(9):3330-3337.

[90]Laskowski R A, MacArthur M W, Moss D S, et al. PROCHECK: a program to check the stereochemical quality of protein structures[J]. Journal of Applied Crystallography, 1993, 26(2):283-291.

[91]Lee S, Gan J, Kim J, et al. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases[J]. Environmental Toxicology and Chemistry, 2004, 23(1):1-6.

[92]Li C, Zhu H, Li C, et al. The present situation of pesticide residues in China and their removal and transformation during food processing[J]. Food Chemistry, 2021, 354:129552.

[93]Li J, Ou Y, Zhang Y, et al. Viability and distribution of bacteria immobilized on Sawdust@silica: The removal mechanism of phenanthrene in soil[J]. Ecotoxicology and Environmental Safety, 2020, 198:110649.

[94]Lin Z, Pang S, Zhou Z, et al. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation[J]. Journal of Hazardous Materials, 2022, 426:127841.

[95]Liu L, Bilal M, Duan X, et al. 2019. Mitigation of environmental pollution by genetically engineered bacteria—current challenges and future perspectives[J]. Science of the Total Environment, 2019, 667, 444–454.

[96]Liu S, Guo L, Xiang C, et al. Factors of microbial degradation of organic pollutants: Two meta-analyses[J]. Journal of Cleaner Production, 2025, 486:144459.

[97]Liu Y, Chang H, Li Z, et al. Biodegradation of gentamicin by bacterial consortia AMQD4 in synthetic medium and raw gentamicin sewage[J]. Scientific Reports, 2017, 7:11004.

[98]Liu Y, Wang C, Qi S, et al. The sublethal effects of ethiprole on the development, defense mechanisms, and immune pathways of honeybees[J]. Environmental Geochemistry and Health, 2021, 43(1):461-473.

[99]May S W, Padgette S R. Oxidoreductase enzymes in biotechnology: current status and future potential[J]. Nature Biotechnology, 1983, 1(8):677-686.

[100]Miller S A, Dykes D D, Polesky H F. A simple salting out procedure for extracting DNA from human nucleated cells[J]. Nucleic Acids Research, 1988, 16(3):1215.

[101]Mohammed A I. Isolation of pesticide degrading microorganisms from soil[J]. Advances in Bioresearch, 2014, 5:164-168.

[102]Molina, L., Segura, A., Duque, E., et al. The versatility of Pseudomonas putida in the rhizosphere environment[J]. Advances In Applied Microbiology, 2020, 110, 149–180.

[103]Nie Z, Yan B, Xu Y, et al. Characterization of pyridine biodegradation by two Enterobacter sp. strains immobilized on Solidago canadensis L. stem derived biochar[J]. Journal of Hazardous Materials, 2021, 414:125577.

[104]Ortiz-Hernández M L. Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process[M]. Biodegradation-Life of Science, 2013, 10:380.

[105]Paingankar M, Jain M, Deobagkar D. Biodegradation of allethrin, a pyrethroid insecticide, by an acidomonas sp.[J]. Biotechnology Letters, 2005, 27:1909-1913.

[106]Parte S G, Kharat A S. Aerobic degradation of clothianidin to 2-chloro-methyl thiazole and methyl 3-(thiazole-yl) methyl guanidine produced by Pseudomonas stutzeri smk[J]. Journal of Environmental and Public Health, 2019, 2019(1):4807913.

[107]Pizzul L, Castillo M D P, Stenström J. Degradation of glyphosate and other pesticides by ligninolytic enzymes[J]. Biodegradation, 2009, 20(6):751-759.

[108]Priyadharshini V, Ayyasamy R, Kathirvelu C. Bio-efficacy of ethiprole 10.7% + pymetrozine 40% WG against brown planthopper in rice[J]. International Journal of Entomology Research, 2021, 6(4):90-95.

[109]Qu H, Ma R X, Liu D H, et al. Enantioselective toxicity and degradation of the chiral insecticide fipronil in Scenedesmus obliguus suspension system[J]. Environmental Toxicology and Chemistry, 2014, 33(11):2516-2521.

[110]Qu J, Li Z, Wang S, et al. Enhanced degradation of atrazine from soil with recyclable magnetic carbon-based bacterial pellets: performance and mechanism[J]. Chemical Engineering Journal, 2024, 490:151662

[111]Riah W, Laval K, Laroche-Ajzenberg E, et al. Effects of pesticides on soil enzymes: a review[J]. Environmental Chemistry Letters, 2014, 12(2):257-273.

[112]Ruan Z, Chen K, Cao W, et al. Engineering natural microbiomes toward enhanced bioremediation by microbiome modeling[J]. Nature Communications, 2024, 15(1):4694.

[113]Sabourmoghaddam N, Zakaria M P, Omar D. Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands[J]. Journal of the Saudi Society of Agricultural Sciences, 2015, 14:182-188.

[114]Saikia N, Das S K, Patel B K C, et al. Biodegradation of beta-cyfluthrin by Pseudomonas stutzeri strain S1[J]. Biodegradation, 2005, 16(6).

[115]Sampson, N S. Dissection of a flavoenzyme active site: the reaction catalyzed by cholesterol oxidase. antioxid. redox[J]. Signal, 2001, 3(5):839-46. 579.

[116]Saravanan A, Kumar P S, Vo D N, et al. A review on catalytic-enzyme degradation of toxic environmental pollutants: Microbial enzymes[J]. Journal of Hazardous Materials, 2021, 419:126451.

[117]Sariwati A, Purnomo A S, Kamei I. Abilities of co-cultures of brown-rot fungus Fomitopsis pinicola and Bacillus subtilis on biodegradation of DDT[J]. Current Microbiology, 2017, 74(9):1068-1075.

[118]Sethunathan N, Yoshida T. Degradation of chlorinated hydrocarbons by Clostridium sp. isolated from lindane-amended, flooded soil[J]. Plant and Soil, 1973, 38:663-666.

[119]Sheng C, Casida J E, Durkin K A, et al. Fiprole insecticide resistance of Laodelphax striatellus: electrophysiological and molecular docking characterization of A2'N RDL GABA receptors[J]. Pest Management Science, 2018, 74:2645-2651.

[120]Sun S, Yang W, Guo J, et al. Biodegradation of the neonicotinoid insecticide acetamiprid in surface water by the bacterium Variovorax boronicumulans CGMCC 4969 and its enzymatic mechanism[J]. RSC Advances, 2017, 7(41):25387-25397.

[121]Sützl L, Foley G, Gillam E M J, et al. The GMC superfamily of oxidoreductases revisited: analysis and evolution of fungal GMC oxidoreductases[J]. Biotechnology for Biofuels, 2019, 12(1):118.

[122]Tang F, Zhang H, Cheng H, et al. New insights of crude oil biodegradation construction by microbial consortium B10: Responded substrates, genomics, biodegradation mechanism and pathways[J]. Chemical Engineering Journal, 2023, 478:147143.

[123]Tania H, Nicola V S, Heinrich J. Resistance to bipyridyls mediated by the TtgABC efflux system in Pseudomonas putida KT2440[J]. Frontiers in Microbiology, 2020, 11:1974.

[124]Toropov A A, Toropova A P, Raska I, et al. Comprehension of drug toxicity: Software and databases[J]. Computers in Biology and Medicine, 2014, 45:20-25.

[125]Torres J B, Rolim G G, Potin D M, et al. Susceptibility of boll weevil (Coleoptera: Curculionidae) to ethiprole, differential toxicity against selected natural enemies, and diagnostic concentrations for resistance monitoring[J]. Journal of Ecomomic Entomology, 2021, 114(6):2381-2389.

[126]Tyagi B, Kumar N. Chapter 1 - Bioremediation: principles and applications in environmental management[M]. Bioremediation for Environmental Sustainability. Elsevier, 2021:3-28.

[127]Verma J P, Jaiswal D K, Sagar R. Pesticide relevance and their microbial degradation: a-state-of-art[J]. Reviews in Environmental Science and Bio/Technology, 2014, 13(4):429-466.

[128]Volke D C, Calero P, Nikel P I. Pseudomonas putida[J]. Trends in Microbiology, 2020, 28(6):512-513.

[129]Wang M, Hao Q, Chu W, et al. Pseudomonas putida HE alleviates glyphosate-induced toxicity in earthworm: Insights from the neurological, reproductive and immunological status[J]. Environmental Pollution, 2024, 359:124554

[130]Wang Y, Liu P, Yang G, et al. Exploring the dynamic behaviors of five pesticides in lettuce: Implications for consumer health through field and modeling experiments[J]. Food Chemistry, 2024, 452:139510.

[131]Wolfand J M, LeFevre G H, Luthy R G. Metabolization and degradation kinetics of the urban-use pesticide fipronil by white rot fungus Trametes versicolor[J]. Environmental Science: Processes & Impacts, 2016, 18(10):1256-1265.

[132]Wongnate T, Chaiyen P. The substrate oxidation mechanism of pyranose 2‐oxidase and other related enzymes in the glucose–methanol–choline superfamily[J]. FEBS Journal, 2013, 280(13):3009-27.

[133]Wu T, Wang Y, Zhang N, et al. Reshaping substrate-binding pocket of leucine dehydrogenase for bidirectionally accessing structurally diverse substrates[J]. ACS Catalysis, 2022, 13:1

[134]Xiaoli Z, Bingxin L, Xiaoqing S, et al. The immobilization effects on Pb, Cd and Cu by the inoculation of organic phosphorus-degrading bacteria (OPDB) with rapeseed dregs in acidic soil[J]. Geoderma, 2019, 350:1-10.

[135]Xu A, Zhang X, Wu S, et al. Pollutant degrading enzyme: catalytic mechanisms and their expanded applications[J]. Molecules, 2021, 26:4751.

[136]Yang W, Dai Z, Cheng X, et al. Sulfoxaflor degraded by Aminobacter sp. CGMCC 1.17253 through hydration pathway mediated by nitrile hydratase[J]. Journal of Agricultural and Food Chemistry, 2020, 68(16):4579-4587.

[137]Yao X, Min H. Isolation, characterization and phylogenetic analysis of a bacterial strain capable of degrading acetamiprid[J]. Journal of Environmental Sciences, 2006, 18:141-146.

[138]Yao X, Wang J, He M, et al. Methane-dependent complete denitrification by a single Methylomirabilis bacterium[J]. Nature Microbiology, 2024, 9(2):464-476.

[139]You X, Suo F, Yin S, et al. Biochar decreased enantioselective uptake of chiral pesticide metalaxyl by lettuce and shifted bacterial community in agricultural soil[J]. Journal of Hazardous Materials, 2021, 417:126047.

[140]Zhang Q, Shi H, Gao B, et al. Enantioseparation and determination of the chiral phenylpyrazole insecticide ethiprole in agricultural and environmental samples and its enantioselective degradation in soil[J]. Science of the Total Environment, 2015, 542:845-853.

[141]Zhang Q, Xiong W, Gao B, et al. Enantioselectivity in degradation and ecological risk of the chiral pesticide ethiprole[J]. Land Degradation & Development, 2018, 29:4242-4251.

[142]Zhao G, Zhang R, Zhong F, et al. Development of multifunctional immobilized bacterial agents for multi-pesticides degradation and environment remediation[J]. Environmental Pollution, 2025, 367:125548.

[143]Zhao Y, Jiang H, Cheng X, et al. Neonicotinoid thiacloprid transformation by the N2-fixing bacterium Microvirga flocculans CGMCC 1.16731 and toxicity of the amide metabolite[J]. International Biodeterioration & Biodegradation, 2019, 145:104806.

[144]Zhou Z, Wu X, Lin Z, et al. Biodegradation of fipronil: current state of mechanisms of biodegradation and future perspectives[J]. Applied Microbiology and Biotechnology, 2021, 105(20):7695-7708.

中图分类号:

 S48    

开放日期:

 2025-06-14    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式