- 无标题文档
查看论文信息

中文题名:

 食微线虫及物料对土壤生态功能稳定性的影响    

姓名:

 陈石    

学号:

 2006103079    

保密级别:

 公开    

论文语种:

 chi    

学科代码:

 090301    

学科名称:

 土壤学    

学生类型:

 硕士    

学位:

 农学硕士    

学校:

 南京农业大学    

院系:

 资源与环境科学学院    

专业:

 土壤学    

研究方向:

 土壤生态    

第一导师姓名:

 李辉信    

第一导师单位:

 南京农业大学资源与环境科学学院    

完成日期:

 2009-06-16    

答辩日期:

 2009-06-16    

外文题名:

 EFFECT OF MICROBIAL-FEEDING NEMATODES AND AMENDMENTS ON SOIL ECOSYSTEM FUNCTIONAL STABILITY UNDER STRESSES    

中文关键词:

 食细菌线虫 ; 食真菌线虫 ; 生物相互作用 ; 胁迫 ; 生态功能稳定性 ; 有机物料    

外文关键词:

 Bacterial-feeding nematodes ; fungi-feeding nematodes ; biological interaction ; stress ; ecosystem functional stability ; amendment    

中文摘要:
随着自然环境波动和人类活动干扰的加剧,维持和提高土壤生态功能具有极其重要的意义。近年来,土壤微生物群落对干扰条件的响应及其对土壤生态功能稳定性的贡献引起了广泛的关注,而关于土壤食物网内的生物相互作用对土壤生态功能稳定性的研究非常少。食微线虫是土壤食物网中重要的功能类群,数量多,代谢活性高,特别是对微生物的传播及活性的促进,可能会间接影响土壤生态功能稳定性。 本文采用施加模拟胁迫(加热40 ℃和加重金属铜640 mg Cu•kg-1<上标!>干土)后测定土壤生态功能稳定性的研究方法,以有机物料的分解过程代表典型土壤生态功能。首先,研究了单种食微线虫与微生物的相互作用对加热或铜胁迫下土壤生态功能稳定性的影响;其次,采用原位富集线虫的方法,研究原位富集线虫群落对加热胁迫下土壤生态功能稳定性的影响;最后研究了添加不同物料对加热胁迫下土壤生态功能稳定性的作用。 研究结果表明: (1). 重金属铜胁迫抑制食真菌线虫的数量,而对食细菌线虫和食细菌/食真菌混合线虫数量影响不明显。在重金属铜胁迫下,与未接种线虫土壤相比,接种食真菌线虫以及食细菌/食真菌混合线虫土壤在培养第8至29天,显著提高土壤基础呼吸(p<0.05)。在加热胁迫下,与未接种线虫土壤相比,接种食真菌线虫土壤在培养第8天,接种食细菌/食真菌混合线虫土壤在除培养第15天的其它采样时间,显著提高土壤基础呼吸(p<0.05)。食真菌线虫促进加热胁迫下以大麦叶粉短期分解为代表的土壤生态功能恢复力,而食细菌线虫能够促进铜胁迫下土壤生态功能抗性。 (2). 到培养第35天,加热胁迫下添加水稻秸秆原位富集的线虫数量恢复到未施加胁迫水平。在培养末期,与阻止线虫迁移土壤以及未富集线虫土壤相比,原位富集线虫能够显著提高加热胁迫下大麦叶粉分解速率,而在未施加胁迫下无显著作用,说明原位富集线虫在胁迫条件下发挥更重要功能。与未富集线虫对照土壤相比,原位富集线虫土壤生态功能恢复力未达到显著差异。 (3). 水稻秸秆与氮肥共同施用能够调节土壤碳氮比,从而刺激微生物群落的发展,例如提高微生物生物量及活性。同时,水稻秸秆与氮肥共同施用能够提高加热胁迫下以水稻秸秆分解为代表的土壤生态功能恢复力,在培养第14天,与未施加物料的对照相比,增幅达24.05 %。 总之,本研究进一步明确了土壤食微线虫与微生物的相互作用对土壤生态功能稳定性的影响,即食真菌线虫能够促进加热胁迫下土壤生态功能恢复力,食细菌线虫能促进铜胁迫下土壤生态功能抗性;原位富化以食细菌线虫为主的线虫群落能够促进加热胁迫下大麦叶粉分解速率,说明土壤食物网的生物相互作用对于土壤生态功能的维持具有重要意义。研究结果同时表明,相比不施加物料、单施氮肥以及单施水稻秸秆土壤相比,水稻秸秆与氮肥共同施用能够促进微生物群落的发展,提高土壤生态功能恢复力。
外文摘要:
With the aggravation of environment fluctuation and disturbance of human activity, the capability of soil maintaining ecological function is attracting more attention. Currently, the response of soil microbial community to disturbance and their contribution to soil ecosystem functional stability following disturbance has caused extensive concern. Research on the effect of biological interaction in soil food web on soil ecosystem functional stability, however, is much limited. Microbial-feeding nematode is one of the most important functional groups in soil. They are characterized by high abundance and high metabolic activity. Evidence accumulates that microbial-feeding nematodes can promote the dispersal and activity of microorganism, which is the foundation of indirectly enhanced the soil ecosystem functional stability. Here, we imposed two individual stress (heating or addition of CuSO4<下标!>•5H2<下标!>O solution) to investigate soil ecosystem functional stability. First, we studied the effects of inoculation of bacterial-feeding nematode, fungi-feeding nematode or both bacterial-feeding nematodes and fungi-feeding nematodes inoculated simultaneously on soil ecosystem functional stability under heat or copper stress. Then, we clarified the effect of native nematode community (mainly bacterial-feeding nematodes), enriched in situ with organic amendments, on soil ecosystem functional stability under heat stress. Finally, we futher investigated the effect of different amendments, such as inorganic fertilizer, rice straw or both, on soil ecosystem functional stability under heat stress. The main results were as follows: (1) The copper stress decreased the abundance of fungi-feeding nematodes, but had no significant effects on the abuandance when bacterial-feeding nematodes inoculated or both bacterial-feeding nematodes and fungi-feeding nematodes inoculated simultaneously. Under copper stress, compared with control treatment, the inoculation of the fungi-feeding nematodes or both bacterial-feeding nematodes and fungi-feeding nematodes significantly enhanced soil basal respiration from day 8 to day 29 (p<0.05). But under heat stress, compared with control treatment, the inoculation of the fungi-feeding nematodes in day 8 and the inoculation of both bacterial-feeding nematodes and fungi-feeding nematodes in day 1 to day 8 and day 29 significantly enhanced soil basal respiration (p<0.05). Soil inoculated with fungi-feeding nematodes has relatively strong ecosystem functional resilience under heat stress than the control without inoculation of nematodes. Following copper stress, soil inoculated with single bacterial-feeding nematode has relatively strong ecosystem functional resistance. (2) At the end of the incubation (day 35), nematode number under heat stress can recover to the level of unstress soil. At the end of the incubation (day 35), compared to the soils prevented nematodes moving and the control soils without riching nematodes, the soils with enriching nematodes can significantly enhance short-term decomposition of added grass powder under heat stress. While there is no stress, the soils with enriching nematodes can not promote the short-term decomposition of added grass powder, indicating that enriching nematodes play more important roles under heat stress. The soils with enriching nematoedes have the highest ecosystem functional resilience, but not achieving significant difference. (3) The soils with both rice straw and urea could stimulate the development of microbial community, for example, increasing microbial biomass and microbial activity, possibly because the urea regulated the ratio of carbon and nitrogen. Meanwhile, the soils with both rice straw and urea can improve soil ecosystem functional resilience under heat stress. In day 14, compared to the soils without amendments, this treatment can increase soil ecosystem functional resilience by 24.05 %. To summarize, the research clarified that biological interactions between soil microbial-feeding nematodes and microorganism could have impacted on soil ecosystem functional stability. Inoculating single fungi-feeding nematode can promote soil ecosystem functional resilience under heat stress, while inoculating single bacteria-feeding nematode can promote soil ecosystem functional resistance under copper stresss. Nematode enriched culturing in situ significantly promoted short-term decomposition of added grass powder under heat stress. Indicating that the biological interaction in soil food web ars important in maintain soil ecological function. Our results also showed that, compared with the treatments adding no amendments, adding urea or adding rice straw, the treatment mixing rice straw and urea can promote the development of microbial community and improve soil ecosystem functional resilience under heat stress.
中图分类号:

 S154.1    

馆藏号:

 2006103079    

开放日期:

 2020-06-30    

无标题文档

   建议浏览器: 谷歌 火狐 360请用极速模式,双核浏览器请用极速模式