中文题名: | 草木樨对湖羊生长性能的影响及其香豆素降解机制研究 |
姓名: | |
学号: | 2022105064 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090502 |
学科名称: | 农学 - 畜牧学 - 动物营养与饲料科学 |
学生类型: | 硕士 |
学位: | 农学硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 消化道微生物 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-05-08 |
答辩日期: | 2025-05-19 |
外文题名: | Study on the Effect of Melilotus albus on the Growth Performance of Hu Sheep and its Coumarin Degradation Mechanism |
中文关键词: | |
外文关键词: | Hu sheep ; Melilotus albus ; Rumen ; Fungi ; Bacteria |
中文摘要: |
为确保我国牛羊肉和奶源自给率目标的实现,优质饲草年产量需达到1.2亿吨以上,但目前仍有近5000万吨的缺口。苜蓿作为国内重要的优质饲草,被誉为“牧草之王”,尽管其产量逐年提高,但仍无法满足国内市场需求。在此背景下,草木樨作为一种适应性强、饲用成本低且营养价值高的牧草,展现出良好的潜力。然而,草木樨中含有较高水平的抗营养因子——香豆素,这一成分会影响草木樨适口性,家畜过量食用易引起皮下出血等症状,进而影响了草木樨的饲用价值。因此,本研究旨在研究草木樨替代苜蓿喂养湖羊的可行性,研究草木樨对湖羊的生长产性能、肉品质、瘤胃微生物区系及瘤胃上皮的影响。同时,本研究还将挖掘草木樨在湖羊体内的降解过程,并探讨瘤胃微生物对其香豆素的降解作用及机制。将进一步验证预处理草木樨对香豆素降解效率的影响,为香豆素的有效降解提供技术方案。这将为草木樨作为优质饲草的广泛应用提供理论支持和技术保障。 草木樨对湖羊生产性能、肉品质的影响及瘤胃香豆素降解与代谢分析 试验旨在研究草木樨干草对湖羊生产性能、肉品质的影响及瘤胃香豆素降解与代谢分析。选取4月龄体重为30 ± 3.30 kg湖羊20只,随机分为2组(n=10),分别饲喂含苜蓿干草和草木樨干草的全混合日粮,精粗比均为5:5,预饲期为7 d,试验期80 d。结果表明:与苜蓿组相比,饲喂草木樨显著降低了湖羊的终末体重、体增重、平均日采食量和总采食量(P < 0.05);草木樨组的胴体重和屠宰率显著低于苜蓿组(P < 0.05);且草木樨组的粗蛋白、中性洗涤纤维和酸性洗涤纤维的表观消化率显著低于苜蓿组(P < 0.05)。在肉品质方面,结果显示草木樨组的湖羊背最长肌、腿肌和臀中肌的剪切力均显著高于苜蓿组(P < 0.05);通过测定肌肉脂肪酸含量发现,草木樨组的花生四烯酸和饱和脂肪酸显著低于苜蓿组,油酸和单不饱和脂肪酸显著高于苜蓿组(P < 0.05)。在瘤胃发酵特征方面,饲喂草木樨显著增加了氨态氮、总挥发性脂肪酸和丁酸摩尔百分比(P < 0.05)。通过瘤胃乳头相关参数及瘤胃上皮组织形态学的测定,草木樨组的乳头密度、乳头单位面积和乳头总面积显著低于苜蓿组(P < 0.05);草木樨组的瘤胃乳头角质层显著高于苜蓿组(P < 0.05),HE切片中可观察到草木樨组角质层内存在有核细胞,表明瘤胃上皮角化不全。β多样性结果显示,饲喂草木樨对β多样性有影响(P < 0.05)。LEfSe分析结果表明,在门水平上草木樨组中厚壁菌门(Firmicutes)的相对丰度显著高于苜蓿组,变形菌门(Proteobacteria)的相对丰度显著低于苜蓿组(P < 0.05)。属水平上瘤胃球菌(Ruminococcus)、NK4A214 group、Candidatus Saccharimonas和Christensenellaceae_R-7_group的相对丰度显著高于苜蓿组(P < 0.05)。此外,该研究还发现,香豆素在瘤胃液中被降解。通过比对草木樨组和苜蓿组的差异代谢产物,香豆素的潜在代谢产物有6种:2-甲氧基苯甲酸、对羟基苯甲醛、2-甲氧基苯乙酸、反式肉桂酸、2-甲氧基-4-乙烯基苯酚和间甲基苯酚。综上,草木樨对湖羊生长有负面影响,但有助于改善其肌肉脂肪酸组成,从而影响肉质的口感和营养价值,香豆素在瘤胃中被有效降解。 比较研究瘤胃真菌与细菌对草木樨香豆素的降解效果 本章旨在深入比较瘤胃真菌与细菌对草木樨香豆素的降解效果,探讨不同微生物群落在香豆素降解中的作用及机制。通过比较这两类微生物群落的降解效果,分析其对草木樨香豆素的降解机制。在本研究中,通过对完整瘤胃微生物群和富集瘤胃真菌的降解能力进行比较,发现完整瘤胃微生物群的香豆素降解比例显著高于富集瘤胃真菌组(P < 0.05)。尽管如此,二者的香豆素降解率/干物质降解率比值却相近。同时比较了富集瘤胃真菌与富集瘤胃细菌的体外培养实验结果。结果表明,富集瘤胃细菌的总产气量、底物消失率及香豆素降解率均显著高于富集瘤胃真菌组(P < 0.05)。考虑到完整瘤胃微生物群中细菌数量高出富集真菌3个数量级,表明瘤胃真菌对草木樨香豆素的降解效率较高。当调整到相同数量的微生物数量水平后,瘤胃真菌在香豆素降解中的表现显著优于细菌组(P < 0.05),证实了真菌群落对香豆素降解能力更强。进一步采用Pecoramyces sp. F1真菌进行体外培养,研究其在不同浓度香豆素(0 mmol/L和3 mmol/L)处理下的转录组和代谢途径的变化。结果表明,香豆素处理后,瘤胃真菌的转录组发生了显著变化。共有390个基因显著上调,表明该真菌在香豆素降解过程中发生了基因表达的变化,这些基因与碳水化合物代谢、次生代谢物的生物合成以及核糖体生物发生等过程密切相关。UPLC-MS分析进一步显示,邻香豆酸在发酵的第3天达到高峰,随后逐步转化为草木樨酸。基于这些代谢产物的变化,可以推测香豆素的降解过程是通过真菌中的水解酶将香豆素转化为邻香豆酸,并通过NAD(P)H氧化还原酶进一步转化为草木樨酸。这一发现不仅首次揭示了瘤胃真菌在香豆素降解中的作用,还深入阐明了香豆素降解的关键酶类和代谢途径。 瘤胃真菌发酵液青贮对草木樨饲用价值的影响 本章聚焦于瘤胃真菌发酵液对草木樨青贮效果及体外发酵特性的影响,香豆素降解与营养成分变化。结果表明,随时间延长,各组香豆素降解率渐升,瘤胃真菌组从青贮第1天起显著高于对照组(P < 0.05),60 d时瘤胃真菌组降解率达78.67%,较对照组提高15.99%。草木樨干物质、粗蛋白、可溶性碳水化合物和淀粉含量随处理时间降低,瘤胃真菌组在不同时间点的干物质、粗蛋白、可溶性碳水化合物和淀粉含量与对照组有显著差异(P < 0.05)。而瘤胃真菌组与对照组在青贮过程中的中性洗涤纤维与酸性洗涤纤维含量的变化较小。同时,营养成分保留率随时间递减,瘤胃真菌组在多个时间点的干物质回收率、粗蛋白、可溶性碳水化合物和淀粉保留率显著高于对照组(P < 0.05)。由青贮发酵品质的结果可知,处理组发酵液与对照组在pH、氨态氮和乳酸含量上差异显著(P < 0.05)。感官评价方面,对照组总评12分,等级良好;瘤胃真菌组总评20分,等级优秀。体外瘤胃发酵中,处理组与对照组在pH值、干物质降解率、氨态氮和微生物蛋白浓度方面差异显著(P < 0.05),瘤胃真菌组表现更佳。处理组总挥发性脂肪酸显著高于对照组(P < 0.05),瘤胃真菌组最高。瘤胃真菌组产气量显著高于其他组,处理组产甲烷量高于对照组,但瘤胃真菌组48 h甲烷累计占比量显著低于其他组(P < 0.05)。综上,瘤胃真菌能有效降解草木樨香豆素,改善营养成分保留率、发酵品质和体外发酵特性,降低甲烷占比,具有良好应用前景。 综上所述,香豆素通过影响瘤胃上皮吸收,限制了湖羊的生长,但改善了肉品质(如肌肉脂肪酸组成)。瘤胃液能降解香豆素,其中瘤胃真菌降解效率更高,选用Pecoramyces sp. F1深入研究,发现其通过水解酶和NAD(P)H氧化还原酶降解香豆素。用瘤胃真菌发酵液青贮草木樨,可有效降解香豆素,提升青贮效果与体外发酵特性,为草木樨作为饲草的应用提供理论依据。 |
外文摘要: |
In order to ensure the realization of the self-sufficiency rate of beef, mutton and milk in China, the annual output of high-quality forage grass needs to reach more than 120 million tons, but there is still a gap of nearly 50 million tons. As an important forage in China, alfalfa is known as the "king of forage". Although its output increases year by year, it still cannot meet the demand of the domestic market. In this context, Melilotus albus showed good potential as a kind of forage with strong adaptability, low feeding cost and high nutritional value. However, Melilotus albus contains a high level of anti-nutrient factor, coumarin, which will affect the palatability of Melilotus albus, and cause symptoms such as subcutaneous bleeding in livestock, which will affect the feeding value of Melilotus albus. Therefore, the purpose of this study was to explore the feasibility of Melilotus albus instead of alfalfa feeding Hu sheep, and to study the effects of coumarin on the growth performance, meat quality, rumen microflora and rumen epithelium of Hu sheep. At the same time, this study will also explore the degradation process of Melilotus albus in Hu sheep, and explore the effect and mechanism of rumen microorganisms on its coumarin degradation. The effect of pretreatment of Melilotus albus on the degradation efficiency of coumarin will be further verified, and a technical scheme will be provided for the effective degradation of coumarin. This will provide theoretical support and technical guarantee for the wide application of Melilotus albus as a high quality forage. Effects of Melilotus albus on growth performance, meat quality and rumen coumarin degradation and metabolism of Hu sheep The experiment was conducted to study the effects of Melilotus albus on growth performance, meat quality and rumen coumarin degradation and metabolism of Hu sheep. Twenty 4-month-old Hu sheep with a body weight of 30 ± 3.30 kg were randomly divided into 2 groups (n = 10) and fed with mixed diets containing alfalfa hay and Melilotus albus hay, respectively, with a ratio of concentrate to crude of 5: 5. The pre-feeding period lasted for 7 days, and the experimental period lasted for 80 days. The results showed as follows: Compared with alfalfa hay group, feeding Melilotus albus significantly decreased the final body weight, body gain, average daily feed intake and total feed intake of Hu sheep (P < 0.05). The carcass weight and slaughter rate of Melilotus albus group were significantly increased (P < 0.05). The apparent digestibility of crude protein, neutral detergent fiber and acid detergent fiber in Melilotus albus group was significantly decreased (P < 0.05). In terms of meat quality, the results showed that the shear force of longissimus dorsi muscle, leg muscle and gluteus media muscle of Hu sheep in Melilotus albus group was significantly increased (P < 0.05). Through the determination of muscle fatty acid content, it was found that arachidonic acid and saturated fatty acid in Melilotus albus group were significantly decreased, oleic acid and monounsaturated fatty acid were significantly increased (P < 0.05). In terms of rumen fermentation characteristics, feeding Melilotus albus significantly increased the percentage of ammonia nitrogen, total volatile fatty acids and butyric acid molar was decreased (P < 0.05). According to rumen papillary-related parameters and rumen epithelial histomorphology, the nipple density, nipple unit area and total nipple area of Melilotus albus group were significantly increased (P < 0.05). Moreover, compared with the control group, the stratum corneum of the rumen papilla in the osmanthus group was significantly decreased (P < 0.05). HE sections observed that nuclear cells were present in the stratum corneum of the osmanthus group, indicating incomplete keratinization of the rumen epithelium. β diversity results showed that feeding Melilotus albus had an effect on β diversity (P < 0.05). The results of LEfSe analysis showed that at the phylum level, the relative abundance of Firmicutes in the alfalfa group was significantly increased, and the relative abundance of Proteobacteria was significantly deceased (P < 0.05). At the genus level, the relative abundances of Ruminococcus, NK4A214 group, Candidatus Saccharimonas and Christensenellace_R7_group were significantly increased(P < 0.05). In addition, the study found that coumarin was degraded in rumen fluid. By comparing the metabolites of Melilotus albus group and alfalfa group, there were 6 potential metabolites of coumarin: p-hydroxybenzaldehyde, 2-methoxyphenylacetic acid, m-methylphenol, trans-cinnamic acid, 2-methoxy4-vinylphenol and 2-methoxybenzoic acid . In conclusion, Melilotus albus has a negative effect on the growth of Hu sheep, but helps to improve the fatty acid composition of muscle, thus affecting the taste and nutritional value of meat, and coumarin is effectively degraded in the rumen.
The degradation effects of rumen fungi and bacteria on Melilotus albus were compared The purpose of this chapter is to compare the degradation effects of rumen fungi and bacteria on Melilotus albus, and to explore the role and mechanism of different microbial communities in the degradation of Melilotus albus. By comparing the degradation effect of these two microbial communities, the degradation mechanism of melilotus coumarin was analyzed. In this study, by comparing the degradation ability of intact rumen microflora and enriched rumen fungi, it was found that the proportion of coumarin degradation of intact rumen microflora was significantly increased compare to rumen fungi group (P < 0.05). Nevertheless, the coumarin/dry matter degradation ratio of the two was similar. The results of in vitro culture of enriched rumen fungi and enriched rumen bacteria were compared. The results showed that the total gas production, substrate loss rate and coumarin degradation rate of enriched rumen bacteria were significantly increased (P < 0.05). Considering that the number of bacteria in the complete rumen microflora was 3 orders of magnitude decreased , it indicated that rumen fungi had a higher degradation efficiency of coumarin. When adjusted to the same number of microorganisms, the performance of anaerobic fungi in the degradation of coumarin was significantly increased (P < 0.05), which confirmed that the fungal community had a stronger ability to degrade coumarin.Further, rumen fungi was cultured in vitro to study the transcriptomic and metabolic pathway changes of the fungi treated with different concentrations of coumarin (0 mmol/L and 3 mmol/L). The results showed that the transcriptome of rumen fungi was significantly changed after coumarin treatment. A total of 390 genes were significantly upregated, indicating that the gene expression of the fungus was changed during coumarin degradation, and these genes were closely related to carbohydrate metabolism, biosynthesis of secondary metabolites and ribosome biogenesis. UPLC-MS analysis further showed that o-coumaric acid reached its peak on the third day of fermentation, and then gradually converted to melilotic acid. Based on the changes of these metabolites, it can be inferred that the degradation process of coumarin is the conversion of coumarin to o-coumaric acid by hydrolase in fungi, and further conversion to melilotic acid by NAD(P)H oxidoreductase. This discovery not only revealed the role of rumen fungi in coumarin degradation for the
first time, but also clarified the key enzymes and metabolic pathways of coumarin degradation. Effects of rumen fungi fermentation broth silage on feeding value of Melilotus albus This chapter focuses on the effects of rumen fungi on the silage effect and in vitro fermentation characteristics, coumarin degradation and nutrient composition changes: The degradation rate of coumarin in rumen fungi group was significantly increased (P < 0.05), and the degradation rate of rumen fungi group was 78.67% at 60 days, which was 15.99% increased. The contents of dry matter, crude protein, soluble carbohydrate and starch in Melilotus albus decreased with the treatment time, and the contents of dry matter, crude protein, soluble carbohydrate and starch in rumen fungi group were significantly different from those in control group at different time points (P < 0.05). The contents of neutral and acid detergent fibers in rumen fungi group and control group changed little during silage. At the same time, the nutrient retention rate decreased with time, and the dry matter recovery, crude protein, soluble carbohydrate and starch retention rates in rumen fungi group were significantly increased compare to control group at multiple time points (P < 0.05). The results of silage fermentation quality showed that there were significant differences in pH, ammonia nitrogen and lactic acid contents between the treatment group and the control group (P < 0.05). In terms of sensory evaluation, the control group scored 12 points, the grade was good; The total score of rumen fungi group was 20 points, and the grade was excellent. In vitro rumen fermentation, there were significant differences in pH value, dry matter degradation rate, ammonia nitrogen and microbial protein concentration between the treatment group and the control group (P < 0.05), and the performance of rumen fungi group was better. Total volatile fatty acids in treatment group was significantly increased (P < 0.05), and the highest value was found in rumen fungi group. The gas production of rumen fungi group was significantly increased, and the methane production of treatment group was increased, but the cumulative methane fraction of rumen fungi group at 48 h was significantly increased (P < 0.05). In conclusion, rumen fungi can effectively degrade Melilotus albus, improve nutrient retention, fermentation quality and in vitro fermentation characteristics, and reduce the proportion of methane, which has a good application prospect.
In summary, coumarin limited the growth of Hu sheep by affecting rumen epithelial absorption, but improved meat quality (such as muscle fatty acid composition). Rumen fluid can degrade coumarin, and rumen fungi have higher degradation efficiency.Rumen fungi was selected for further study, and it was found that coumarin was degraded by hydrolase and NAD(P)H oxidoreductase. Using rumen fungi to silage Melilotus albus can effectively degrade coumarin, improve silage effect and in vitro fermentation characteristics, and provide theoretical basis for the application of Melilotus albus as forage.
|
参考文献: |
[1]丛建民, 陈凤清, 孙春玲. 草木樨综合开发研究[J]. 安徽农业科学, 2012, 40(5): 2962-2963. [2]高成富, 张海峰. 草木樨提取物中香豆素、总多酚、黄酮的测定[J]. 科协论坛(下半月), 2008, 7: 58-59. [3]高睿. 动物香豆素类及相关化合物中毒的诊治[J]. 畜牧兽医科技信息, 2016, 1: 21-22. [4]格根图, 刘燕, 贾玉山. 草木樨干草营养价值及饲喂绒山羊的效果研究[J]. 草地学报, 2013, 21(2): 401-405. [5]韩正康. 异黄酮植物雌激素——大豆黄酮对雄性动物生长及其有关内分泌的研究[J]. 畜牧与兽医,1999, 1: 3-4. [6]江舟. 植物香豆素生物合成途径及关键酶基因的研究现状[J]. 现代园艺, 2022, 45(12): 189-191. [7]景春梅, 刘慧, 杨浩宏, 等. 不同草木樨生产性能与营养品质的比较[J]. 黑龙江畜牧兽医, 2015(9): 114-118. [8]兰月冬. 青贮饲料品质鉴定方法及技术要点研究[J]. 畜牧业环境, 2023, 5: 15-16. [9]李百慧, 拜彬强, 赵国君, 等. 四类非常规饲料研究现状及展望[J]. 饲料工业, 2024, 45(22): 140-144. [10]李国文. 草木樨的饲用价值和栽培管理技术[J]. 现代畜牧科技, 2017, 3: 44. [11]李树成, 黄晓辉, 王静, 等. 白花草木樨与玉米秸秆混合青贮的发酵品质及有毒成分分析[J]. 草业科学, 2014, 2(31): 321-327. [12]李勇, 何振东, 汪鸿儒. 脱毒草木樨粉饲喂生长肥育猪效果的研究[J]. 中国动物营养学报, 1990, 2: 56. [13]梁琼, 周明旭, 罗皎兰, 等. 水分含量对桂闽引象草青贮品质及体外消化率的影响[J]. 饲料研究, 2024, 47(24): 113-117. [14]林年丰. 俄罗斯黄花草木樨生理活性成分原料的开发与利用[J]. 湖北农业科学, 2016, 55(18): 4758-4762. [15]林雪. 草食家畜草木樨中毒的诊治措施[J]. 畜牧兽医科技信息, 2020, 10: 93. [16]龙雪芬, 孙雨萌, 张浩, 等. 我国苜蓿进口依赖性分析及中西苜蓿贸易展望[J]. 中国饲料, 2025, 5: 138-148. [17]马丽. 浅谈草木樨的综合利用[J]. 新疆畜牧业, 2005, 4: 56-57. [18]马素洁, 彭艳, 魏学红. 林芝野生白花草木樨草产量性状及栽培管理技术[J]. 农业与技术, 2019, 39(9): 1-3. [19]毛雨. 粮食消费结构演变背景下价格对饲料粮品种替代的影响机制[D]. 西南财经大学, 2023. [20]潘建斌, 廖时余, 谌理波, 等. 草木犀有机酸类化合物的成分研究[J]. 湖北中医杂志, 2009, 31(7): 58-59. [21]宋强, 王永辉, 冯前进. 黄芪冰冻微粉增强免疫力和抗疲劳作用的实验研究[J]. 世界中西医结合杂志, 2007, 6: 335-337. [22]孙红华. 饲草青贮技术在奶牛养殖中的应用[J]. 中国动物保健, 2024, 26(11): 133-134. [23]汤春妮, 樊君. 草木樨中香豆素类化合物的研究进展[J]. 化学与生物工程, 2012, 29(5): 4-7. [24]汤春妮. 黄花草木樨中总黄酮的提取工艺研究[J]. 安徽农业科学, 2012, 40(5): 2661-2663. [25]汤仁恒, 潘国兵. 提高优质牧草和饲料开发,促进信阳地区经济发展[J]. 中国饲料, 2020, 18: 67-70. [26]陶海腾, 董宇晴, 张春江, 等. 黄酮化合物的抑菌性及在畜禽水产防腐保鲜中的应用[J]. 食品研究与开发, 2020, 41(16): 203-207. [27]王金平. 饲料抗营养因子的分类、作用机理及其钝化消除方法[J]. 当代水产, 2022, 47(5): 72-73. [28]王喜军, 李廷利, 孙晖. 茵陈蒿汤及其血中移行成分6,7-二甲氧基香豆素的肝保护作用[J]. 中国药理学通报, 2004, 2: 239-240. [29]王欣, 董宽虎, 王保平, 等. 黄花草木犀与赖草混合青贮草的发酵品质研究[J]. 草原与草坪, 2017, 2(37): 1-6. [30]王悦. 三种药饲兼用植物不同生育期营养品质和抗营养因子研究[D]. 内蒙古农业大学, 2024. [31]尉忠贤, 严铭铭, 邵帅, 等. 草木犀化学成分及药理作用的研究进展[J]. 中国药房, 2016, 27(16): 2282-2285. [32]吴琪, 张晓琳, 刘朝霞, 等. 重要黄酮类物质药理作用及在畜禽养殖应用的研究进展[J]. 广东畜牧兽医科技, 2022, 47(4): 42-46. [33]吴秋敏. 黄秋葵花总黄酮的微胶囊化及其应用在冷鲜肉保鲜上的研究[D]. 浙江大学, 2015. [34]新华. 国务院办公厅印发《关于促进畜牧业高质量发展的意见》[J]. 农业知识, 2020, 22: 48-49. [35]徐洪宇, 詹壮壮, 高永悦, 等. 甘薯叶提取物中酚类物质测定及在冷却肉保鲜中的应用[J]. 现代食品科技, 2018, 34(6): 149-156. [36]许广人, 陈志刚. 植物皂苷抑制动物炎症作用与机制及用于畜禽养殖的可行性探讨[J]. 畜牧与饲料科学, 2017, 38(9): 51-54. [37]杨富裕, 周禾韩, 建国. 添加甲酸对白花草木樨青贮品质的影响[J]. 草地学报, 2004, 1: 12-16. [38]杨富裕, 周禾, 韩建国, 等. 添加甲酸+甲醛对草木樨青贮品质的影响[J]. 草业学报, 2004, 1: 74-78. [39]杨淑芬. 湖南省主要饲料资源分析与评价[D]. 湖南农业大学, 2017. [40]印遇龙, 杨哲. 非常规饲料的开发与高效利用[J]. 饲料工业, 2025, 46(1): 2-10. [41]翟德丽. 低抗营养因子桑叶饲料发酵菌剂筛选及发酵工艺研究[D]. 江苏科技大学, 2024. [42]张军英. 全基因组关联分析的研究现状及对数据科学的挑战[J]. 广州大学学报(自然科学版), 2019, 18(1): 1-9. [43]朱宏, 樊君. HPLC法测定草木樨中香豆素的含量[J]. 药物分析杂志, 2008, 28(12): 2111-2113. [44]Abdelatty A M, Mandouh M I, Mousa M R, et al. Sun-dried Azolla leaf meal at 10% dietary inclusion improved growth, meat quality, and increased skeletal muscle Ribosomal protein S6 kinase β1 abundance in growing rabbit[J]. Animal, 2021, 15(10): 100348. [45]Abraham K, Wöhrlin F, Lindtner O, et al. Toxicology and risk assessment of coumarin: focus on human data[J]. Molecular Nutrition & Food Research, 2010, 54(2): 228-239. [46]Al-Jebory H E M S K. Impact of aqueous extracts of Borage and Melilotus plants on some egg quality traits for laying hen[J]. Archives of Agriculture Sciences Journal, 2023, 3(6): 73-81. [47]An X, Zhang L, Luo J, et al. Effects of oat hay content in diets on nutrient metabolism and the rumen microflora in sheep[J]. Animals, 2020, 10(12): 2341. [48]Anwer M S, Mohtasheem M, Azhar I. Chemical constituents from Melilotus officinalis[J]. Journal of Basic and Applied Sciences, 2008, 8(42): 9. [49]Asres K, Eder U, Bucar F. Studies on the antiinflammatory activity of extracts and compounds from the leaves of Melilotus elegans[J]. Ethiopian Pharmaceutical Journal, 2000, 18: 15-24. [50]Barot K, Jain S, Kremer L, et al. Recent advances and therapeutic journey of coumarins: current status and perspectives[J]. Medicinal Chemistry Research, 2015, 24(7): 2771-2798. [51]Borreani G, Tabacco E, Schmidt R J, et al. Silage review: Factors affecting dry matter and quality losses in silages[J]. Journal of Dairy Science, 2018, 101(5): 3952-3979. [52]Boxma B, Voncken F, Jannink S, et al. The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E[J]. Molecular Microbiology, 2004, 51(5): 1389-1399. [53]Broderick G A, Kang J H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media[J]. Journal of Dairy Science, 1980, 63(1): 64-75. [54]Cansunar E, Richardson A J, Wallace G, et al. Effect of coumarin on glucose uptake by anaerobic rumen fungi in the presence and absence of Methanobrevibacter smithii[J]. FEMS Microbiology Letters, 1990, 58(2): 157-160. [55]Chen H, Singh H, Bhardwaj N, et al. An exploration on the toxicity mechanisms of phytotoxins and their potential utilities[J]. Critical Reviews in Environmental Science and Technology, 2022, 52(3): 42. [56]Chen L, Wang P, Cheng X, et al. Recurrent selection of new breeding lines and yield potential, nutrient profile and in vitro rumen characteristics of Melilotus officinalis[J]. Field Crops Research. 2022, 287: 108657. [57]Chen Y, Chen Y, Shi C, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data[J]. GigaScience, 2018, 7(1): 1-6. [58]Cheng Y F, Edwards J E, Allison G G, et al. Diversity and activity of enriched ruminal cultures of anaerobic fungi and methanogens grown together on lignocellulose in consecutive batch culture[J]. Bioresource Technology, 2009, 100(20): 4821-4828. [59]Chorepsima S, Tentolouris K, Dimitroulis D, et al. Melilotus: Contribution to wound healing in the diabetic foot[J]. Journal of Herbal Medicine, 2013, 3(3): 81-86. [60]D. G. Masters G M C K. Effects of Prima gland clover (Trifolium glanduliferum Boiss cv. Prima) consumption on sheep production and meat quality[J]. Australian Journal of Experimental Agriculture, 2006, 3(46): 291-297. [61]Datsomor O, Gou-Qi Z, Miao L. Effect of ligninolytic axenic and coculture white-rot fungi on rice straw chemical composition and in vitro fermentation characteristics[J]. Scientific Reports, 2022, 12(1): 1129. [62]Davies D R, Theodorou M K, Lawrence M I, et al. Distribution of anaerobic fungi in the digestive tract of cattle and their survival in faeces.[J]. Journal of General Microbiology, 1993, 139(6): 1395-1400. [63]Denman S E, McSweeney C S. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen[J]. FEMS Microbiology Ecology, 2006, 58(3): 572-582. [64]Dere Ş, Dalkiran N, Karacaoğlu D, et al. The determination of total protein, total soluble carbohydrate and pigment contents of some macroalgae collected from Gemlik-Karacaali (Bursa) and Erdek-Ormanlı (Balikesir) in the Sea of Marmara, Turkey[J]. Oceanologia, 2003, 45(3): 453-471. [65]Duskaev G, Rakhmatullin S, Kvan O. Effects of Bacillus cereus and coumarin on growth performance, blood biochemical parameters, and meat quality in broilers[J]. Veterinary World, 2020, 13(11): 2484-2492. [66]Falcone D B, Maysonnave G S, Silva S S, et al. Economic analysis of banana peel and sweet potato vines in diets for rabbits[J]. Tropical Animal Health and Production, 2024, 56(3): 114. [67]Farghaly M M, Youssef I M I, Radwan M A, et al. Effect of feeding Sesbania sesban and reed grass on growth performance, blood parameters, and meat quality of growing lambs[J]. Tropical Animal Health and Production, 2021, 54(1): 3. [68]Freitas C E S, Duarte E R, Alves D D, et al. Sheep fed with banana leaf hay reduce ruminal protozoa population.[J]. Tropical Animal Health and Production, 2017, 49(4): 807-812. [69]Gao T, Chen X, Liu Z, et al. Effects of soybean hulls and corn stalk on the performance, colostrum composition and faecal microflora of pregnant sows[J]. Journal of Animal Physiology and Animal Nutrition, 2023, 107(2): 485-494. [70]Gebre-Mariam T, Asres K, Getie M, et al. In vitro availability of kaempferol glycosides from cream formulations of methanolic extract of the leaves of Melilotus elegans[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2005, 60(1): 31-38. [71]Görmez Ö, Akay S, Gözmen B, et al. Degradation of emerging contaminant coumarin based on anodic oxidation, electro-Fenton and subcritical water oxidation processes[J]. Environmental Research, 2022, 208: 112736. [72]Guilloteau P, Martin L, Eeckhaut V, et al. From the gut to the peripheral tissues: the multiple effects of butyrate[J]. Nutrition Research Reviews, 2010, 23(2): 366-384. [73]Guo C, Xue Y, Seddik H, et al. Dynamic changes of plasma metabolome in response to severe feed restriction in pregnant ewes[J]. Metabolites, 2019, 9(6): 112. [74]Gu Y, Li T, Yin C, et al. Elucidation of the coumarin degradation by Pseudomonas sp. strain NyZ480[J]. Journal of Hazardous Materials, 2023, 457: 131802. [75]Haas B J, Papanicolaou A, Yassour M, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis[J]. Nature Protocols, 2013, 8(8): 1494-1512. [76]Habibi H G N. Effect of Melilotus officinalis, Oliveria decumbens Vent and Aloe vera L on production performance, biochemistry characteristics and meat microbial count in Japanese quail[J]. Iranian Journal of Animal Science Research, 2020, 2(12): 211-222. [77]Hamdi H, Majdoub-Mathlouthi L, Picard B, et al. Carcass traits, contractile muscle properties and meat quality of grazing and feedlot Barbarine lamb receiving or not olive cake[J]. Small Ruminant Research, 2016, 145: 85-93. [78]Hanafy R A, Elshahed M S, Liggenstoffer A S, et al. Pecoramyces ruminantium, gen. nov., sp. nov., an anaerobic gut fungus from the feces of cattle and sheep[J]. Mycologia, 2017, 109(2): 231-243. [79]Hao Y, Huang S, Si J, et al. Effects of paper mulberry silage on the milk production, apparent digestibility, antioxidant capacity, and fecal bacteria composition in holstein dairy cows[J]. Animals, 2020, 10(7): 1152. [80]Hartinger T, Fliegerová K, Zebeli Q. Suitability of anaerobic fungi culture supernatant or mixed ruminal fluid as novel silage additives[J]. Applied Microbiology and Biotechnology, 2022, 106(19-20): 6819-6832. [81]Hassan A A, Abu Hafsa S H, Elghandour M M M Y, et al. Dietary supplementation with sodium bentonite and coumarin alleviates the toxicity of aflatoxin B1 in rabbits[J]. Toxicon, 2019, 171: 35-42. [82]Hua B, Dai J, Liu B, et al. Pretreatment of non-sterile, rotted silage maize straw by the microbial community MC1 increases biogas production[J]. Bioresource Technology, 2016, 216: 699-705. [83]Jin W, Cheng Y, Mao S, et al. Isolation of natural cultures of anaerobic fungi and indigenously associated methanogens from herbivores and their bioconversion of lignocellulosic materials to methane[J]. Bioresource Technology, 2011, 102(17): 7925-7931. [84]Jin W, Meng Z, Wang J, et al. Effect of nitrooxy compounds with different molecular structures on the rumen methanogenesis, metabolic profile, and methanogenic community[J]. Current Microbiology, 2017, 74(8): 891-898. [85]Jing X, Han Z, Jinfang Z, et al. eCAMI: simultaneous classification and motif identification for enzyme annotation[J]. Bioinformatics, 2020, 36(7): 2068-2075. [86]Jones K R, Sivakumar K, Sundaram V. Unconventional plant sources as alternative feedstuffs in broiler rabbit nutrition:a scoping review[J]. Tropical Animal Health and Production, 2025, 57(3): 135. [87]Kara K. Nutrient matter, fatty acids, in vitro gas production and digestion of herbage and silage quality of yellow sweet clover (Melilotus officinalis L.) at different phenological stages[J]. Journal of Animal and Feed Sciences, 2021, 30(2): 128-140. [88]Kosuge T, Conn E E. The metabolism of aromatic compounds in higher plants. V. Purification and properties of dihydrocoumarin hydrolase of Melilotus alba[J]. Journal of Biological Chemistry, 1962, 237(5): 1653-1656. [89]Kovách A G, Hamar J, Dora O, et al. Effect of coumarin from Melilotus officinalis on the blood circulation of the dog[J]. Arzneimittel-Forschung, 1970, 20(11): 1627-1630. [90]Krause D O, Smith W J M, Brooker J D, et al. Tolerance mechanisms of streptococci to hydrolysable and condensed tannins[J]. Animal Feed Science & Technology, 2005, 121(1-2): 59-75. [91]Lake B G. Coumarin metabolism, toxicity and carcinogenicity: relevance for human risk assessment[J]. Food and Chemical Toxicology, 1999, 37(4): 423-453. [92]Lankiewicz T S, Lillington S P, O'Malley M A. Enzyme discovery in anaerobic fungi (Neocallimastigomycetes) enables lignocellulosic biorefinery innovation[J]. Microbiology and Molecular Biology Reviews : MMBR, 2022, 86(4): 4122. [93]Lee S S, Ha J K, Cheng K J. Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion[J]. Animal Feed Science and Technology, 2000, 88(3): 201-217. [94]Leonart L, Gasparetto J, Pontes F, et al. New metabolites of coumarin detected in human urine using ultra performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry[J]. Molecules, 2017, 22(11): 2031. [95]Li R, Zheng M, Jiang D, et al. Replacing alfalfa with paper mulberry in total mixed ration silages: Effects on ensiling characteristics, protein degradation, and in vitro digestibility[J]. Animals, 2021, 11(5): 1273. [96]Li Y, Jin W, Cheng Y, et al. Effect of the associated methanogen Methanobrevibacter thaueri on the dynamic profile of end and intermediate metabolites of anaerobic fungus Piromyces sp. F1[J]. Current Microbiology, 2016, 73(3): 434-441. [97]Li Y, Li Y, Jin W, et al. Combined genomic, transcriptomic, proteomic, and physiological characterization of the growth of Pecoramyces sp. F1 in monoculture and co-culture with a syntrophic methanogen[J]. Frontiers in Microbiology, 2019, 10: 435. [98]Litvinov Y N, Semenyutin V V, Manokhin A A. Study of the biological characteristics of the disintegration of dry matter and yellow melilot protein in the rumen of cows[J]. AIP Conference Proceedings, 2022, 2467(1): 70027. [99]Liu B, Fang S, Zhou K, et al. Unveiling hepatotoxicity distinction of coumarin-related compounds from glycosides to aglycones in Fructus Psoraleae by integrating UPLC-Q-TOF-MS and high content analysis[J]. Journal of Ethnopharmacology, 2023, 315: 116664. [100]Liu B, Raeth T, Beuerle T, et al. A novel 4-hydroxycoumarin biosynthetic pathway[J]. Plant Molecular Biology, 2010, 72(1-2): 17-25. [101]Loh Z H, Ouwerkerk D, Klieve A V, et al. Toxin degradation by rumen microorganisms: A review[J]. Toxins, 2020, 12(10): 664. [102]Luo K, Jahufer M Z Z, Wu F, et al. Genotypic variation in a breeding population of Yellow sweet clover (Melilotus officinalis)[J]. Frontiers in Plant Science, 2016, 7: 972. [103]Luo K, Jahufer M Z Z, Zhao H, et al. Genetic improvement of key agronomic traits in Melilotus albus[J]. Crop Science, 2018, 1(48): 1-10. [104]Ma J, Fan X, Ma Z, et al. Silage additives improve fermentation quality, aerobic stability and rumen degradation in mixed silage composed of amaranth and corn straw[J]. Frontiers in Plant Science, 2023, 14: 1189747. [105]Mekuriaw S, Tegegne F, Tsunekawa A, et al. Effects of substituting concentrate mix with water hyacinth (Eichhornia crassipes) leaves on feed intake, digestibility and growth performance of Washera sheep fed rice straw-based diet[J]. Tropical Animal Health and Production, 2018, 50(5): 965-972. [106]Menke K H, Steingass H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid[J]. Anim Res Dev, 1988, 2(64): 113-119. [107]Merighi S, Travagli A, Tedeschi P, et al. Antioxidant and antiinflammatory effects of epilobium parviflorum, Melilotus officinalis and cardiospermum halicacabum plant extracts in macrophage and microglial cells[J]. Cells, 2021, 10(10): 2691. [108]Metzler-Zebeli B U, Schmitz-Esser S, Klevenhusen F, et al. Grain-rich diets differently alter ruminal and colonic abundance of microbial populations and lipopolysaccharide in goats[J]. Anaerobe, 2013, 20: 65-73. [109]Mikhailova S I, Andreeva V Y, Zinner N S, et al. Toxic properties and allelopathic activity of Melilotus officinalis (L.) Pall[J]. Acta Biologica Sibirica, 2022, 8: 89-99. [110]Mouad L B, Ahmed A, Abdelaziz J, et al. Effect of yellow sweet clover (Melilotus officinalis) hay compared with Lucerne (Medicago sativa) hay on carcass characteristics and meat quality of male goat kids[J]. Journal of Advanced Veterinary and Animal Research, 2022, 9(4): 617-624. [111]Muck R E, Nadeau E M G, McAllister T A, et al. Silage review: Recent advances and future uses of silage additives[J]. Journal of Dairy Science, 2018, 101(5): 3980-4000. [112]Ni K, Wang F, Zhu B, et al. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage[J]. Bioresource Technology, 2017, 238: 706-715. [113]Ni K, Zhao J, Zhu B, et al. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum[J]. Bioresource Technology, 2018, 265: 563-567. [114]Niro E, Marzaioli R, De Crescenzo S, et al. Effects of the allelochemical coumarin on plants and soil microbial community[J]. Soil Biology and Biochemistry, 2016, 95: 30-39. [115]Niu D, Zuo S, Jiang D, et al. Treatment using white rot fungi changed the chemical composition of wheat straw and enhanced digestion by rumen microbiota in vitro[J]. Animal Feed Science and Technology, 2018, 237: 46-54. [116]Nsanganwimana F, Marchand L, Douay F, et al. Arundo donax L., a candidate for phytomanaging water and soils contaminated by trace elements and producing plant-based feedstock. A review[J]. International Journal of Phytoremediation, 2014, 16(7-12): 982-1017. [117]Odongo N, AlZahal O, Lindinger M, et al. Effects of mild heat stress and grain challenge on acid-base balance and rumen tissue histology in lambs[J]. Journal of Animal Science, 2006, 84(2): 447-455. [118]Omondi V O, Bosire G O, Onyari J M, et al. Multi-omics analyses reveal rumen microbes and secondary metabolites that are unique to livestock species[J]. mSystems, 2024, 9(2): 122823. [119]Partovi E, Rouzbehan Y, Fazaeli H, et al. Broccoli byproduct-wheat straw silage as a feed resource for fattening lambs[J]. Translational Animal Science, 2020, 4(3): 78. [120]Paul S S, Kamra D N, Sastry V R B, et al. Effect of phenolic monomers on biomass and hydrolytic enzyme activities of an anaerobic fungus isolated from wild nil gai (Baselophus tragocamelus)[J]. Letters in Applied Microbiology, 2003, 36(6): 377-381. [121]Pearce R, Greenway D, Parkinson A. Species differences and interindividual variation in liver microsomal cytochrome P450 2A enzymes: effects on coumarin, dicumarol, and testosterone oxidation[J]. Archives of Biochemistry and Biophysics, 1992, 298(1): 211-225. [122]Peng X, Wilken S E, Lankiewicz T S, et al. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes[J]. Nature Microbiology, 2021, 6(4): 499-511. [123]Perea K, Perz K, Olivo S K, et al. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota[J]. Journal of Animal Science, 2017, 95(6): 2585-2592. [124]Pleşca-Manea L, Pârvu A E, Pârvu M, et al. Effects of Melilotus officinalis on acute inflammation[J]. Phytotherapy Research : PTR, 2002, 16(4): 316-319. [125]Podkolzin A A, Dontsov V I, Sychev I A, et al. Immunocorrecting, antianemia, and adaptogenic effects of polysaccharides from Melilotus officinalis[J]. Bulletin of Experimental Biology and Medicine, 1996, 121(6): 597-599. [126]Popp D, Schrader S, Kleinsteuber S, et al. Biogas production from coumarin-rich plants-inhibition by coumarin and recovery by adaptation of the bacterial community[J]. FEMS Microbiology Ecology, 2015, 91(9): 103. [127]Purushe J, Fouts D E, Morrison M, et al. Comparative genome analysis of Prevotella ruminicola and Prevotella bryantii: insights into their environmental niche[J]. Microbial Ecology, 2010, 60(4): 721-729. [128]Ribbenstedt A, Ziarrusta H, Benskin JP. Development, characterization and comparisons of targeted and non-targeted metabolomics methods[J]. Public Library of Science. 2018, 13(11): 207. [129]Rio D C, Ares M J, Hannon G J, et al. Enrichment of poly(A)+ mRNA using immobilized oligo(dT)[J]. Cold Spring Harbor protocols, 2010, 2010(7): 5454. [130]Ritschel W A, Brady M E, Tan H S I, et al. Pharmacokinetics of coumarin and its 7-hydroxy-metabolites upon intravenous and peroral administration of coumarin in man[J]. European Journal of Clinical Pharmacology, 1977, 12(6): 457. [131]Rosselli S, Maggio A, Bellone G, et al. Antibacterial and anticoagulant activities of coumarins isolated from the flowers of Magydaris tomentosa.[J]. Planta Medica, 2007, 73(2): 116-120. [132]Salami S, Luciano G, O'Grady M, et al. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production[J]. Animal Feed Science and Technology, 2019, 251: 37-55. [133]Samanta A K, Walli T K, Singh K K. Role of different groups of microbes on fibre utilization[J]. Indian Journal of Animal Sciences, 2001, 71: 497-498. [134]Sandri M, Manfrin C, Pallavicini A, et al. Microbial biodiversity of the liquid fraction of rumen content from lactating cows[J]. Animal, 2014, 8(4): 572-579. [135]Singh R, Pal D B, Alkhanani M F, et al. Prospects of soil microbiome application for lignocellulosic biomass degradation: An overview[J]. The Science of the Total Environment, 2022, 838(1): 155966. [136]Sudarman A, Hayashida M, Puspitaning I R, et al. The use of cassava leaf silage as a substitute for concentrate feed in sheep[J]. Tropical Animal Health and Production, 2016, 48(7): 1509-1512. [137]Spears J W, Schlegel P, Seal M C, et al. Bioavailability of zinc from zinc sulfate and different organic zinc sources and their effects on ruminal volatile fatty acid proportions[J]. Livestock Production Science, 2004, 90(2-3): 211-217. [138]Stahl M J A A. Synergistes jonesii, gen. nov., sp.nov.: A rumen bacterium that degrades toxic pyridinediols[J]. Systematic and Applied Microbiology, 1992, 15(4): 522-529. [139]Steliga T, Kluk D. Assessment of the suitability of Melilotus officinalis for phytore-mediation of soil contaminated with petroleum hydrocarbons (TPH and PAH), Zn, Pb and Cd based on toxicological tests[J]. Toxics, 2021, 9(7): 148. [140]Tang X, Chen L, Xiong K, et al. Effects of corn distillers dried grain with solubles on growth performance and economic benefit of meat ducks[J]. Pakistan Journal of Zoology, 2021, 53(3): 821-826. [141]Tedeschi LO, Muir JP, Naumann HD, et al. Nutritional Aspects of Ecologically Relevant Phytochemicals in Ruminant Production[J]. Frontiers in Veterinary Science, 2021, 8:628445. [142]Teunissen M J, Op den Camp H J, Orpin C G, et al. Comparison of growth characteristics of anaerobic fungi isolated from ruminant and non-ruminant herbivores during cultivation in a defined medium[J]. Journal of General Microbiology, 1991, 137(6): 1401-1408. [143]Theodorou M, Williams B, Dhanoa M, et al. A Simple gas-production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds[J]. Animal Feed Science and Technology, 1994, 48(3-4):185-197. [144]Van Soest P J, Robertson J B, Lewis B A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition[J]. Journal of Dairy Science, 1991, 74(10): 3583-3597. [145]Varet H, Brillet-Guéguen L, Coppée JY, et al. SARTools: a DESeq2- and edgeR-based R pipeline for comprehensive differential analysis of RNA-Seq data[J]. Public Library of Science. 2016, 11(6): 157022. [146]Vargas-Bello-Pérez E, Larraín R E. Impacts of fat from ruminants' meat on cardiovascular health and possible strategies to alter its lipid composition[J]. Journal of the Science of Food and Agriculture, 2017, 97(7): 1969-1978. [147]Wang S, Yin C, Li F, et al. Innovative incentives can sustainably enhance the achievement of straw burning control in China[J]. The Science of the Total Environment, 2023,857(Pt 2):159498. [148]Wang Y, Zhao Y, Xue F, et al. Nutritional value, bioactivity, and application potential of Jerusalem artichoke (Helianthus tuberosus L.) as a neotype feed resource[J]. Animal Nutrition, 2020, 6(4): 429-437. [149]Wemheuer F, Taylor J A, Daniel R, et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences[J]. Environmental Microbiome, 2020, 15(1): 11. [150]Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data[J]. Innovation. 2021;2(3): 100141. [151]Xue Y F, Guo C Z, Hu F, et al. Hepatic metabolic profile reveals the adaptive mechanisms of ewes to severe undernutrition during late gestation [J]. Metabolites, 2018, 8(4): 85. [152]XZ W, SA J, FF Z, et al. Fermentation quality and microbial quantity during aerobic storage of corn silage[J]. Acta Prataculturae Sinica, 2017, 9(26): 156-166. [153]Yaashikaa P R, Kumar P S. Bioremediation of hazardous pollutants from agricultural soils: A sustainable approach for waste management towards urban sustainability[J]. Environmental Pollution, 2022, 312: 120031. [154]Yang K, Qing Y, Yu Q, et al. By-product feeds: Current understanding and future perspectives[J]. Agriculture-Basel, 2021, 11(3): 207. [155]Yang L, Wen K, Ruan X, et al. Response of plant secondary metabolites to environmental factors[J]. Molecules, 2018, 23(4): 762. [156]Zhang H, Yohe T, Huang L, et al. dbCAN2: a meta server for automated carbohydrate -active enzyme annotation[J]. Nucleic Acids Research. 2018, 46(1): 95-101. [157]Zhang K, Yan Y, Zhao R, et al. Effects of substitution of wheat straw by giant reed on growth performance, serum biochemical parameters, nutrient digestibility, and antioxidant properties of sheep[J]. Animals, 2024, 14(24): 3678. [158]Zhang K, Zhang Y, Qin J, et al. Early concentrate starter introduction induces rumen epithelial parakeratosis by blocking keratinocyte differentiation with excessive ruminal butyrate accumulation[J]. Journal of Advanced Research, 2024, 66: 71-86. [159]Zhang Q, Gu J, Su T, et al. Generation and characterization of a transgenic mouse model with hepatic expression of human CYP2A6[J]. Biochemical and Biophysical Research Communications, 2005, 338(1): 318-324. [160]Zhang Y, Yang H, Huang R, et al. Effects of Lactiplantibacillus plantarum and Lactiplantibacillus brevis on fermentation, aerobic stability, and the bacterial community of paper mulberry silage[J]. Frontiers in Microbiology, 2022, 13: 1063914. [161]Zhao Z, Liu C, Xu Q, et al. Pathway for biodegrading coumarin by a newly isolated Pseudomonas sp. USTB-Z[J]. World Journal of Microbiology & Biotechnology, 2021, 37(5): 89. [162]Zoetendal E G, Akkermans A D, De Vos W M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria[J]. Applied and Environmental Microbiology, 1998, 64(10): 3854-3859. |
中图分类号: | S82 |
开放日期: | 2025-06-15 |