中文题名: | T3SS1效应蛋白VopR在副溶血性弧菌感染中的功能研究 |
姓名: | |
学号: | 2021207030 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 090602 |
学科名称: | 农学 - 兽医学 - 预防兽医学 |
学生类型: | 博士 |
学位: | 兽医博士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 兽医微生物学 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2025-06-13 |
答辩日期: | 2025-05-29 |
外文题名: | Functional Characterization of the T3SS1 Effector VopR in Vibrio parahaemolyticus Infection |
中文关键词: | |
外文关键词: | Vibrio parahaemolyticus ; T3SS1 ; VopR ; Host-pathogen interaction ; Molecular pathogenic mechanism |
中文摘要: |
副溶血性弧菌(Vibrio parahaemolyticus,V.parahaemolyticus)是一种重要的食源性致病菌,在全球范围内流行,属于革兰氏阴性细菌。副溶血性弧菌在胃肠道中的感染通常会引起腹泻、发热、呕吐等临床症状,严重时可导致败血症的发生。细菌的Ⅲ型分泌系统(Type Ⅲ secretion system,T3SS)横跨三种生物膜,是一种将细菌中的效应蛋白递送到宿主细胞中从而产生作用的精密菌体结构,在细菌的致病过程中占据重要地位。副溶血性弧菌中具有两套T3SS(T3SS1与T3SS2),其中T3SS1主要介导副溶血性弧菌感染中细胞毒性的产生,T3SS1也是副溶血性弧菌引发败血症的原因之一。鉴于副溶血性弧菌危害的广泛程度,研究其毒力因子及其作用机制有助于开发更有效的检测靶点并制定相关的防控策略。此前研究表明,副溶血性弧菌至少存在四种能够通过T3SS1易位至宿主细胞中的蛋白,分别是VopQ、VopS、VpA0450以及VopR。有研究发现VopR通过自身存在的细菌磷酸肌醇结构域(Bacterial phosphoinositide domain, BPD),在易位到宿主细胞后定位在宿主细胞膜上,但是VopR作为T3SS1效应蛋白,在副溶血性弧菌感染过程中的存在的具体功能仍待解析。 |
外文摘要: |
Vibrio parahaemolyticus (V.parahaemolyticus) is an important foodborne pathogen, which is prevalent worldwide and belongs to gram-negative bacteria. The infection of Vibrio parahaemolyticus in the gastrointestinal tract usually causes diarrhea, fever, vomiting, and other clinical symptoms, which can lead to sepsis in severe cases. The type III secretion system (T3SS) of bacteria spans three kinds of biofilms. It is a precise "nanomachine" that delivers effector proteins in bacteria to host cells to produce effects. It plays an important role in the pathogenic process of bacteria. There are two sets of T3SS (T3SS1 and T3SS2) in Vibrio parahaemolyticus, of which T3SS1 mainly mediates the generation of cytotoxicity and sepsis during infection. Given the extensive harm of Vibrio parahaemolyticus, studying its virulence factors and its action mechanism will help develop more effective detection targets and formulate relevant prevention and control strategies. Previous studies have shown that Vibrio parahaemolyticus has at least four effectors that can translocate to host cells through T3SS1, namely VopQ, VopS, VpA0450, and VopR. Studies have found that VopR is localized on the host cell membrane after translocation to the host cell through its bacterial phosphoinositide domain (BPD). However, the specific function of VopR as a putative T3SS1 effector protein in the process of Vibrio parahaemolyticus infection remains to be resolved. 1. Analysis of biological characteristics of VopR in Vibrio parahaemolyticus infection in cells Using homologous recombination technology, POR3-ΔvopR and POR3-CvopR were constructed in POR3 (T3SS2-, tdh-), a derivative strain of Vibrio parahaemolyticus RIMD. At the same time, to rule out the functional redundancy of other T3SS1 effector proteins, POR3-ΔE4 and POR3-ΔE4-CvopR, which were both deleted by vopQ, vopS, vpa0450 and vopR, and POR3-ΔE4-CvopR, which was complemented by vopR gene, were also constructed in this study. Through PCR and RT-qPCR tests, it was verified that the strains needed for this study were successfully constructed; At the same time, the transcription of the upstream and downstream genes of vopR in the genome was detected. The results showed that the deletion of vopR gene did not significantly affect the expression of its upstream and downstream genes. In addition, the growth curve showed that there was no significant difference in the growth rate between POR3-ΔvopR and the wild strain, which proved that the phenotypic changes of the constructed strains mainly originated from the functional performance of VopR. These strains can be used for the functional study of vopR. Subsequently, to further explore the influence of VopR on V.parahaemolyticus cytotoxicity, LDH release during V.parahaemolyticus infection was detected by in-cell infection. The results showed that VopR could significantly inhibit the release of LDH after V.parahaemolyticus infection for 90 min. Apoptosis/necrosis staining showed that VopR could significantly reduce the proportion of necrotic and apoptosis-related cells in infected HeLa cells at 90 min after V.parahaemolyticus infection. At the same time, through the translocation detection of vopR, it was found that VopR had produced obvious translocation at 90 min of bacterial infection. In conclusion, VopR can significantly inhibit the generation of cytotoxicity during V.parahaemolyticus infection after translocation into host cells. 2. regulation of VopR on host cell gene transcription in Vibrio parahaemolyticus infection To further understand the specific impact of VopR on the host in Vibrio parahaemolyticus infection, this study used HeLa cells that can rapidly produce cytotoxic differences. RNAseq was used to explore the transcriptional changes of host genes caused by POR3 and POR3- ΔvopR infection at 45 and 90 min after infection. The results showed that POR3 infection produced 66 differentially expressed genes compared with the uninfected group, while ΔvopR infection produced 117 differentially expressed genes; Temporal expression pattern analysis showed that the two groups of differential genes showed different dynamic expression patterns at 45 and 90 min. The subsequent comparative analysis found that compared with the POR3 infection group, the deletion of vopR gene specifically induced the upregulation of host proinflammatory cytokine genes IL-6, IL-8, CXCL2/3, and FOS/JUN family gene transcription. This upregulation also existed in Caco-2 cells and THP-1 macrophages, showing the inhibitory effect of effector protein VopR on host proinflammatory cytokine transcription during infection, and this inhibitory effect widely exists in different types of cells. KEGG pathway enrichment analysis showed that VopR may be involved in the regulation of the MAPK signaling pathway in the infection of Vibrio parahaemolyticus; Subsequently, the activation of MAPK p38 and Erk1/2 in infection was investigated. It was found that both POR3 and POR3-ΔE4 infection induced the upregulation of phosphorylation of p38 and Erk1/2. Although the deletion of vopR gene did not cause obvious changes in p38 phosphorylation at 90 min after Vibrio parahaemolyticus infection, the phosphorylation level of MAPK-Erk1/2 was further enhanced after vopr gene complementation, suggesting that vopr activated host MAPK-Erk1/2 in infection. To understand the effect of MAPK-Erk1/2 activation on the immunosuppressive function of VopR, HeLa cells were pretreated with MAPK-Erk1/2 activation inhibitor U0126 and then infected with the vopR gene deletion/complementation strain. It was found that the inhibition of IL6, JUN, and FOS transcription induced by VopR disappeared after U0126 treatment, so the transcriptional inhibition of proinflammatory factor IL6 by VopR depended on MAPK-Erk1/2 activation. Therefore, in the process of Vibrio parahaemolyticus infection of host cells, VopR inhibits the pro-inflammatory response of host cells by activating MAPK-Erk1/2. 3. VopR mediates immunosuppression to the host through Rac1-Erk1/2 signaling To continue to explore the specific mechanism of VopR in host cells, this study overexpressed VopR in eukaryotic cells. Indirect immunofluorescence showed that VopR was localized at the periphery of the eukaryotic cell plasma membrane. Using VopR as bait, the potential host proteins interacting with VopR in HeLa cells were pulled down by Co-Immunoprecipitation assay to screen the targets of VopR. After mass spectrometry analysis, a total of 361 host proteins potentially interacting with VopR were obtained. After cell sublocalization screening and Co-IP, laser confocal verification, it was confirmed that the host small GTPase Rac1 specifically binds to VopR. RAC1-/- HeLa cells were constructed by lentiviral packaging using CRISPR/cas9 technology. After 90 min of infection, it was found that POR3-ΔE4-CvopR produced lower LDH release than POR3-ΔE4 in WT cells, while in RAC1-/- HeLa, the recruitment of vopR gene did not affect the release of LDH after infection; In addition, the activating effect of VopR on MAPK-Erk1/2 disappeared after RAC1 gene knockdown; At the same time, RT-qPCR confirmed that the inhibitory effect of VopR on IL-8 transcription was also attenuated in RAC1-/- HeLa cells. In conclusion, VopR needs to activate the Erk1/2 pathway through Rac1 to achieve immunosuppressive function on host cells, to reduce the damage to cells in Vibrio parahaemolyticus infection. 4. Immunosuppression of VopR enhances systemic infection with V. parahaemolyticus Previously, the parenteral infection model has confirmed the key role of T3SS1 in the systemic infection of Vibrio parahaemolyticus. Therefore, to determine whether there is a role for VopR in the systemic infection of Vibrio parahaemolyticus, we used the intraperitoneal infection model of Balb/c mice to evaluate the difference in the role of POR3-ΔE4 and POR3-ΔE4-CvopR in the systemic infection. The results showed that POR3-ΔE4 without all T3SS1 effectors did not cause the death of mice in the infection, but the mortality of POR3-ΔE4-CvopR was significantly higher than that of ΔE4. Subsequently, by detecting the bacterial load in the abdominal liver, spleen and thoracic heart of mice infected with POR3-ΔE4 and POR3-ΔE4-CvopR for 6h, it was found that POR3-ΔE4-CvopR had higher bacterial number in different tissues than POR3-ΔE4; HE stained pathological sections showed that 6 h after infection, the POR3-ΔE4-CvopR group caused severe bleeding to the spleen of mice, showing obvious sepsis; RT-qPCR was used to detect the transcription of pro-inflammatory cytokines in liver, spleen and heart tissues of mice. It was found that IL-1β, IL-6, and TNFα were transcriptionally inhibited in the heart and liver after POR3-ΔE4-CvopR infection. In conclusion, VopR promotes the systemic spread of Vibrio parahaemolyticus by inhibiting the host inflammatory response and ultimately exacerbates systemic infection leading to host death. |
参考文献: |
[1] 廉乐乐 副溶血弧菌Ⅲ型分泌系统1 VscI和VscF蛋白功能研究及效应蛋白VPA0226鉴定 [M] 2021. [2] 王尔群, 宋志琴, 秦超, 杨小蓉, 张林. 成都市新都区2014—2020年副溶血性弧菌食源性暴发事件分离株的分子分型及耐药分析 [J]. 中国热带医学: 1-9. [3] Abanto M., Gavilan R. G., Baker-Austin C., Gonzalez-Escalona N., Martinez-Urtaza J. Global Expansion of Pacific Northwest Vibrio parahaemolyticus Sequence Type 36 [J]. Emerging Infectious Diseases, 2020, 26: 323-326. [4] Abby S. S., Rocha E. P. The non-flagellar type III secretion system evolved from the bacterial flagellum and diversified into host-cell adapted systems [J]. PLoS Genetics, 2012, 8: e1002983. [5] Abrusci P., Vergara-Irigaray M., Johnson S., Beeby M. D., Hendrixson D. R., Roversi P., Friede M. E., Deane J. E., Jensen G. J., Tang C. M., Lea S. M. Architecture of the major component of the type III secretion system export apparatus [J]. Nature Structural & Molecular Biology, 2013, 20: 99-U126. [6] Akeda Y., Okayama K., Kimura T., Dryselius R., Kodama T., Oishi K., Iida T., Honda T. Identification and characterization of a type III secretion-associated chaperone in the type III secretion system 1 of Vibrio parahaemolyticus [J]. FEMS Microbiology Letters, 2009, 296: 18-25. [7] Akeda Y., Galán J. E. Chaperone release and unfolding of substrates in type III secretion [J]. Nature, 2005, 437: 911-915. [8] Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation [J]. Biochim Biophys Acta, 1991, 1072: 129-157. [9] Arthur J. S. C., Ley S. C. Mitogen-activated protein kinases in innate immunity [J]. Nature Reviews Immunology, 2013, 13: 679-692. [10] Baker-Austin C., Oliver J. D., Alamo M., Ali A., Waldor M. K., Qadri F., Martinez-Urtaza J. Vibrio spp. infections [J]. Nature Reviews Disease Primers, 2018, 4. [11] Baker-Austin C., Stockley L., Rangdale R., Martinez-Urtaza J. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: A European perspective. [J]. Environmental Microbiology Reports, 2010, 2: 7-18. [12] Ballister E. R., Lai A. H., Zuckermann R. N., Cheng Y., Mougous J. D. In vitro self-assembly from a simple protein of tailorable nanotubes building block [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 3733-3738. [13] Bandekar J. R., Nerkar D. P. Biological-Activities of Lipid-a from Vibrio-Parahaemolyticus - Stimulation of Murine Peritoneal-Macrophages [J]. Microbiology And Immunology, 1988, 32: 275-282. [14] Basler M., Pilhofer M., Henderson G. P., Jensen G. J., Mekalanos J. J. Type VI secretion requires a dynamic contractile phage tail-like structure [J]. Nature, 2012, 483: 182-U178. [15] Bejjani F., Evanno E., Zibara K., Piechaczyk M., Jariel-Encontre I. The AP-1 transcriptional complex: Local switch or remote command? [J]. Biochim Biophys Acta Rev Cancer, 2019, 1872: 11-23. [16] Beltran S., Munoz-Bergmann C. A., Elola-Lopez A., Quintana J., Segovia C., Trombert A. N. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro [J]. Biological Research, 2016, 49. [17] Bergeron J. R. C., Marlovits T. C. Cryo-EM of the injectisome and type III secretion systems [J]. Current Opinion in Structural Biology, 2022, 75. [18] Bhattacharjee R. N., Park K. S., Kumagai Y., Okada K., Yamamoto M., Uematsu S., Matsui K., Kumar H., Kawai T., Iida T., Honda T., Takeuchi O., Akira S. VP1686, a Vibrio type III secretion protein, induces toll-like receptor-independent apoptosis in macrophage through NF-kappaB inhibition [J]. Journal of Biological Chemistry, 2006, 281: 36897-36904. [19] Boquet P., Lemichez E. Bacterial virulence factors targeting Rho GTPases: parasitism or symbiosis? [J]. Trends in Cell Biology, 2003, 13: 238-246. [20] Boutin B. K., Townsend S. F., Scarpino P. V., Twedt R. M. Demonstration of invasiveness of Vibrio parahaemolyticus in adult rabbits by immunofluorescence [J]. Applied and Environmental Microbiology, 1979, 37: 647-653. [21] Braun V., Wong A., Landekic M., Hong W. J., Grinstein S., Brumell J. H. Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole [J]. Cellular Microbiology, 2010, 12: 1352-1367. [22] Broberg C. A., Zhang L., Gonzalez H., Laskowski-Arce M. A., Orth K. A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity [J]. Science, 2010, 329: 1660-1662. [23] Broberg C. A. A Vibrio effector protein is an inositol phosphatase and disrupts host cell membrane integrity (September, pg 1660, 2010) [J]. Science, 2011, 331: 30-30. [24] Buckley A. F., Kuo C. T., Leiden J. M. Transcription factor KLF is sufficient to program T cell quiescence via a c-Myc-dependent pathway [J]. Nature Immunology, 2001, 2: 698-704. [25] Burdette D. L., Yarbrough M. L., Orvedahl A., Gilpin C. J., Orth K. Vibrio parahaemolyticus orchestrates a multifaceted host cell infection by induction of autophagy, cell rounding, and then cell lysis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 12497-12502. [26] Burdette D. L., Seemann J., Orth K. VopQ induces PI3-kinase-independent autophagy and antagonizes phagocytosis [J]. Molecular Microbiology, 2009a, 73: 639-649. [27] Burdette D. L., Yarbrough M. L., Orth K. Not without cause: Vibrio parahaemolyticus induces acute autophagy and cell death. [J]. Autophagy, 2009b, 5: 100-102. [28] Büttner D. Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria [J]. Microbiology and Molecular Biology Reviews, 2012, 76: 262-310. [29] Calder T., Kinch L. N., Fernandez J., Salomon D., Grishin N. V., Orth K. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins [J]. Plos One, 2014, 9: e104387. [30] Cargnello M., Roux P. P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases [J]. Microbiology and Molecular Biology Reviews, 2011, 75: 50-83. [31] Casselli T., Lynch T., Southward C. M., Jones B. W., Devinney R. Vibrio parahaemolyticus inhibition of Rho family GTPase activation requires a functional chromosome I type III secretion system [J]. Infection and Immunity, 2008, 76: 2202-2211. [32] Chen J., Zhang R. H., Qi X. J., Zhou B., Wang J. K., Chen Y., Zhang H. X. Epidemiology of foodborne disease outbreaks caused by Vibrio parahaemolyticus during 2010-2014 in Zhejiang Province, China [J]. Food Control, 2017, 77: 110-115. [33] Chen X., Zhu Q. Y., Yu F., Zhang W., Wang R. N., Ye X. F., Jin L. F., Liu Y. C., Li S. F., Chen Y. Serology, virulence and molecular characteristics of Vibrio parahaemolyticus isolated from seafood in Zhejiang province [J]. Plos One, 2018, 13. [34] Cherrak Y., Rapisarda C., Pellarin R., Bouvier G., Bardiaux B., Allain F., Malosse C., Rey M., Chamot-Rooke J., Cascales E., Fronzes R., Durand E. Biogenesis and structure of a type VI secretion baseplate [J]. Nature Microbiology, 2018, 3: 1404-1416. [35] Cherrak Y., Flaugnatti N., Durand E., Journet L., Cascales E. Structure and Activity of the Type VI Secretion System [J]. Microbiology Spectrum, 2019, 7. [36] Chien S. C., Chang C. C., Chien S. C. Spontaneous small bowel perforation secondary to Vibrio parahaemolyticus infection: A case report [J]. World Journal of Clinical Cases, 2021, 9: 1210-1214. [37] Chimalapati S., De Souza Santos M., Lafrance A. E., Ray A., Lee W. R., Rivera-Cancel G., Vale G., Pawlowski K., Mitsche M. A., Mcdonald J. G., Liou J., Orth K. Vibrio deploys type 2 secreted lipase to esterify cholesterol with host fatty acids and mediate cell egress [J]. Elife, 2020, 9. [38] Cohen H., Baram N., Fridman C. M., Edry-Botzer L., Salomon D., Gerlic M. Post-phagocytosis activation of NLRP3 inflammasome by two novel T6SS effectors [J]. Elife, 2022, 11. [39] Colle M., Leisner C. P., Wai C. M., Ou S., Bird K. A., Wang J., Wisecaver J. H., Yocca A. E., Alger E. I., Tang H., Xiong Z., Callow P., Ben-Zvi G., Brodt A., Baruch K., Swale T., Shiue L., Song G. Q., Childs K. L., Schilmiller A., Vorsa N., Buell C. R., Vanburen R., Jiang N., Edger P. P. Haplotype-phased genome and evolution of phytonutrient pathways of tetraploid blueberry [J]. Gigascience, 2019, 8. [40] Cornelis G. R. The type III secretion injectisome [J]. Nature Reviews Microbiology, 2006, 4: 811-825. [41] Cossart P., Sansonetti P. J. Bacterial invasion: The paradigms of enteroinvasive pathogens [J]. Science, 2004, 304: 242-248. [42] Craig Ba, Oliver J. D., Munirul A., Afsar A., Waldor M. K., Firdausi Q., Jaime M. U. . Vibrio spp. infections [J]. Nature Reviews Disease Primers, 2018, 4: 8-. [43] Daniels N. A., Mackinnon L., Bishop R., Altekruse S., Ray B., Hammond R. M., Thompson S., Wilson S., Bean N. H., Griffin P. M., Slutsker L. Vibrio parahaemolyticus infections in the United States, 1973-1998 [J]. Journal of Infectious Diseases, 2000, 181: 1661-1666. [44] De Nisco N. J., Casey A. K., Kanchwala M., Lafrance A. E., Coskun F. S., Kinch L. N., Grishin N. V., Xing C., Orth K. Manipulation of IRE1-Dependent MAPK Signaling by a Vibrio Agonist-Antagonist Effector Pair [J]. mSystems, 2021, 6. [45] De Nisco N. J., Kanchwala M., Li P., Fernandez J., Xing C., Orth K. The cytotoxic type 3 secretion system 1 of Vibrio rewires host gene expression to subvert cell death and activate cell survival pathways [J]. Science Signaling, 2017, 10. [46] Dechet A. M., Yu P. A., Koram N., Painter J. Nonfoodborne vibrio infections: an important cause of morbidity and mortality in the United States, 1997-2006 [J]. Clinical Infectious Diseases, 2008, 46: 970-976. [47] Deng W., Marshall N. C., Rowland J. L., Mccoy J. M., Worrall L. J., Santos A. S., Strynadka N. C. J., Finlay B. B. Assembly, structure, function and regulation of type III secretion systems [J]. Nature Reviews Microbiology, 2017, 15: 323-337. [48] Diaz J. H. Skin and soft tissue infections following marine injuries and exposures in travelers [J]. Journal of Travel Medicine, 2014, 21: 207-213. [49] Diepold A., Sezgin E., Huseyin M., Mortimer T., Eggeling C., Armitage J. P. A dynamic and adaptive network of cytosolic interactions governs protein export by the T3SS injectisome [J]. Nature Communications, 2017, 8. [50] Dohlich K., Zumsteg A. B., Goosmann C., Kolbe M. A Substrate-Fusion Protein Is Trapped inside the Type III Secretion System Channel in Shigella flexneri [J]. PLoS Pathogens, 2014, 10. [51] Douzi B., Spinelli S., Blangy S., Roussel A., Durand E., Brunet Y. R., Cascales E., Cambillau C. Crystal Structure and Self-Interaction of the Type VI Secretion Tail-Tube Protein from Enteroaggregative [J]. Plos One, 2014, 9. [52] Durand E., Nguyen V. S., Zoued A., Logger L., Péhau-Arnaudet G., Aschtgen M. S., Spinelli S., Desmyter A., Bardiaux B., Dujeancourt A., Roussel A., Cambillau C., Cascales E., Fronzes R. Biogenesis and structure of a type VI secretion membrane core complex [J]. Nature, 2015, 523: 555-+. [53] Durand E. A., Maldonado-Arocho F. J., Castillo C., Walsh R. L., Mecsas J. The presence of professional phagocytes dictates the number of host cells targeted for Yop translocation during infection [J]. Cellular Microbiology, 2010, 12: 1064-1082. [54] Edgren T., Forsberg Å., Rosqvist R., Wolf-Watz H. Type III secretion in Yersinia: Injectisome or not? [J]. PLoS Pathogens, 2012, 8. [55] Eferl R., Wagner E. F. AP-1: a double-edged sword in tumorigenesis [J]. Nature Reviews Cancer, 2003, 3: 859-868. [56] Eichelberger K. R., Jones G. S., Goldman W. E. Inhibition of neutrophil primary granule release during Yersinia pestis pulmonary infection [J]. mBio, 2019, 10. [57] Eko F. O. Urease production in Vibrio parahaemolyticus: a potential marker for virulence [J]. European Journal of Epidemiology, 1992, 8: 627-628. [58] Etienne-Manneville S., Hall A. Rho GTPases in cell biology [J]. Nature, 2002, 420: 629-635. [59] Fao Advances in science and risk assessment tools for Vibrio parahaemolyticus and V. vulnificus associated with seafood: meeting report [M] 2021. [60] Fujioka S., Niu J., Schmidt C., Sclabas G. M., Peng B., Uwagawa T., Li Z., Evans D. B., Abbruzzese J. L., Chiao P. J. NF-kappaB and AP-1 connection: mechanism of NF-kappaB-dependent regulation of AP-1 activity [J]. Molecular And Cellular Biology, 2004, 24: 7806-7819. [61] Galán J. E., Lara-Tejero M., Marlovits T. C., Wagner S. Bacterial Type III Secretion Systems: Specialized Nanomachines for Protein Delivery into Target Cells [J]. Annual Review of Microbiology, 2014, 68: 415-438. [62] Galán J. E., Waksman G. Protein-Injection Machines in Bacteria [J]. Cell, 2018, 172: 1306-1318. [63] Garrity-Ryan L., Kazmierczak B., Kowal R., Comolli J., Hauser A., Engel J. N. The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of Pseudomonas aeruginosa by epithelial cells and macrophages [J]. Infection and Immunity, 2000, 68: 7100-7113. [64] Gerke C., Falkow S., Chien Y. H. The adaptor molecules LAT and SLP-76 are specifically targeted by Yersinia to inhibit T cell activation [J]. Journal of Experimental Medicine, 2005, 201: 361-371. [65] Getz L. J., Thomas N. A. The Transcriptional Regulator HlyU Positively Regulates the Expression of exsA, Leading to Type III Secretion System 1 Activation in Vibrio parahaemolyticus [J]. Journal of Bacteriology, 2018, 200. [66] Gonzalez-Escaloa N., Jolley K. A., Reed E., Martinez-Urtaza J. Defining a Core Genome Multilocus Sequence Typing Scheme for the Global Epidemiology of Vibrio parahaemolyticus [J]. Journal of Clinical Microbiology, 2017, 55: 1682-1697. [67] Grandjean T., Boucher A., Thepaut M., Monlezun L., Guery B., Faudry E., Kipnis E., Dessein R. The human NAIP-NLRC4-inflammasome senses the Pseudomonas aeruginosa T3SS inner-rod protein [J]. International Immunology, 2017, 29: 377-384. [68] Green E. R., Mecsas J. Bacterial Secretion Systems: An Overview [J]. Microbiology Spectrum, 2016, 4. [69] Hajra D., Nair A. V., Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria [J]. Physics of Life Reviews, 2021, 38: 25-54. [70] Ham H., Orth K. The role of type III secretion system 2 in Vibrio parahaemolyticus pathogenicity [J]. Journal of Microbiology, 2012, 50: 719-725. [71] Han C. X., Tang H., Ren C. L., Zhu X. P., Han D. S. Sero-Prevalence and Genetic Diversity of Pandemic V. parahaemolyticus Strains Occurring at a Global Scale [J]. Frontiers in Microbiology, 2016, 7. [72] Han D. S., Yu F., Chen X., Zhang R., Li J. M. Challenges in Vibrio parahaemolyticus infections caused by the pandemic clone [J]. Future Microbiology, 2019, 14: 437-450. [73] Higa N., Toma C., Koizumi Y., Nakasone N., Nohara T., Masumoto J., Kodama T., Iida T., Suzuki T. Vibrio parahaemolyticus effector proteins suppress inflammasome activation by interfering with host autophagy signaling [J]. PLoS Pathogens, 2013, 9: e1003142. [74] Hiyoshi H., Kodama T., Saito K., Gotoh K., Matsuda S., Akeda Y., Honda T., Iida T. VopV, an F-actin-binding type III secretion effector, is required for Vibrio parahaemolyticus-induced enterotoxicity [J]. Cell Host & Microbe, 2011, 10: 401-409. [75] Hiyoshi H., Okada R., Matsuda S., Gotoh K., Akeda Y., Iida T., Kodama T. Interaction between the Type III Effector VopO and GEF-H1 Activates the RhoA-ROCK Pathway [J]. PLoS Pathogens, 2015, 11. [76] Hiyoshi H., Kodama T., Iida T., Honda T. Contribution of Vibrio parahaemolyticus Virulence Factors to Cytotoxicity, Enterotoxicity, and Lethality in Mice [J]. Infection and Immunity, 2010, 78: 1772-1780. [77] Hoashi K., Ogata K., Taniguchi H., Yamashita H., Tsuji K., Mizuguchi Y., Ohtomo N. Pathogenesis of Vibrio parahaemolyticus: Intraperitoneal and Orogastric Challenge Experiments in Mice [J]. Microbiology and Immunology, 1990, 34: 355-366. [78] Hoefler F., Pouget-Abadie X., Roncato-Saberan M., Lemarié R., Takoudju E. M., Raffi F., Corvec S., Le Bras M., Cazanave C., Lehours P., Guimard T., Allix-Béguec C. Clinical and Epidemiologic Characteristics and Therapeutic Management of Patients with Vibrio Infections, Bay of Biscay, France, 2001-2019 [J]. Emerging Infectious Diseases, 2022, 28: 2367-2373. [79] Honda T., Goshima K., Takeda Y., Sugino Y., Miwatani T. Demonstration of the cardiotoxicity of the thermostable direct hemolysin (lethal toxin) produced by Vibrio parahaemolyticus [J]. Infection and Immunity, 1976, 13: 163-171. [80] Honda T., Ni Y. X., Miwatani T., Adachi T., Kim J. The Thermostable Direct Hemolysin of Vibrio-Parahaemolyticus Is a Pore-Forming Toxin [J]. Canadian Journal of Microbiology, 1992, 38: 1175-1180. [81] Hood R. D., Singh P., Hsu F. S., Güvener T., Carl M. A., Trinidad R. R. S., Silverman J. M., Ohlson B. B., Hicks K. G., Plemel R. L., Li M., Schwarz S., Wang W. Y., Merz A. J., Goodlett D. R., Mougous J. D. A Type VI Secretion System of Targets, a Toxin to Bacteria [J]. Cell Host & Microbe, 2010, 7: 25-37. [82] Hotinger J. A., Pendergrass H. A., May A. E. Molecular Targets and Strategies for Inhibition of the Bacterial Type III Secretion System (T3SS); Inhibitors Directly Binding to T3SS Components [J]. Biomolecules, 2021, 11. [83] Hu J. H., Worrall L. J., Vuckovic M., Hong C., Deng W. Y., Atkinson C. E., Finlay B. B., Yu Z. H., Strynadka N. C. J. T3S injectisome needle complex structures in four distinct states reveal the basis of membrane coupling and assembly [J]. Nature Microbiology, 2019, 4: 2010-2019. [84] Huang Y., Du Y., Wang H., Tan D. M., Su A. R., Li X. G., Kan B. A., Lan L., Qu C., Pang B., Shi Y. L., Lin M. New Variant of Vibrio parahaemolyticus, Sequence Type 3, Serotype O10:K4, China, 2020 [J]. Emerging Infectious Diseases, 2022, 28: 1261-1264. [85] Hubbard T. P., Chao M. C., Abel S., Blondel C. J., Abel Zur Wiesch P., Zhou X., Davis B. M., Waldor M. K. Genetic analysis of Vibrio parahaemolyticus intestinal colonization [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113: 6283-6288. [86] Hueck C. J. Type III protein secretion systems in bacterial pathogens of animals and plants [J]. Microbiology and Molecular Biology Reviews, 1998, 62: 379-+. [87] Jenkins J., Worrall L. J., Strynadka N. C. J. Recent structural advances towards understanding of the bacterial type III secretion injectisome [J]. Trends In Biochemical Sciences, 2022, 47: 795-809. [88] Jennings E., Thurston T. L. M., Holden D. W. SPI-2 Type III Secretion System Effectors: Molecular Mechanisms And Physiological Consequences [J]. Cell Host & Microbe, 2017, 22: 217-231. [89] Jessen D. L., Osei-Owusu P., Toosky M., Roughead W., Bradley D. S., Nilles M. L. Type III secretion needle proteins induce cell signaling and cytokine secretion via Toll-like receptors [J]. Infection and Immunity, 2014, 82: 2300-2309. [90] Jiang W., Han X. G., Wang Q., Li X. T., Yi L., Liu Y. J., Ding C. Vibrio parahaemolyticus enolase is an adhesion-related factor that binds plasminogen and functions as a protective antigen [J]. Applied Microbiology and Biotechnology, 2014, 98: 4937-4948. [91] Jones J. L., Lüdeke C. H. M., Bowers J. C., Garrett N., Fischer M., Parsons M. B., Bopp C. A., Depaola A. Biochemical, Serological, and Virulence Characterization of Clinical and Oyster Isolates [J]. Journal of Clinical Microbiology, 2012, 50: 2343-2352. [92] Jung S. W. A foodborne outbreak of gastroenteritis caused by Vibrio parahaemolyticus associated with cross-contamination from squid in Korea [J]. Epidemiology and Health, 2018, 40. [93] Kanehisa M., Araki M., Goto S., Hattori M., Hirakawa M., Itoh M., Katayama T., Kawashima S., Okuda S., Tokimatsu T., Yamanishi Y. KEGG for linking genomes to life and the environment [J]. Nucleic Acids Research, 2008, 36: D480-484. [94] Kang C. H., Shin Y., Kim W., Kim Y., Song K., Oh E. G., Kim S., Yu H., So J. S. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from oysters in Korea [J]. Environmental Science and Pollution Research, 2016, 23: 918-926. [95] Keshet Y., Seger R. The MAP kinase signaling cascades: a system of hundreds of components regulates a diverse array of physiological functions [J]. Methods in Molecular Biology, 2010, 661: 3-38. [96] Khanppnavar B., Roy A., Chandra K., Uversky V. N., Maiti N. C., Datta S. Deciphering the structural intricacy in virulence effectors for proton-motive force mediated unfolding in type-III protein secretion [J]. International Journal of Biological Macromolecules, 2020, 159: 18-33. [97] Kim D., Langmead B., Salzberg S. L. HISAT: a fast spliced aligner with low memory requirements [J]. Nature Methods, 2015, 12: 357-360. [98] Kim S. K., Yang J. Y., Cha J. Cloning and sequence analysis of a novel metalloprotease gene from Vibrio parahaemolyticus 04 [J]. Gene, 2002, 283: 277-286. [99] Kishishita M., Matsuoka N., Kumagai K., Yamasaki S., Takeda Y., Nishibuchi M. Sequence Variation in the Thermostable Direct Hemolysin-Related Hemolysin (Trh) Gene of Vibrio-Parahaemolyticus [J]. Applied and Environmental Microbiology, 1992, 58: 2449-2457. [100] Kodama T., Rokuda M., Park K. S., Cantarelli V. V., Matsuda S., Iida T., Honda T. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the Vibrio parahaemolyticus type III secretion system 2 [J]. Cellular Microbiology, 2007a, 9: 2598-2609. [101] Kodama T., Rokuda M., Park K. S., Cantarelli V. V., Matsuda S., Iida T., Honda T. Identification and characterization of VopT, a novel ADP-ribosyltransferase effector protein secreted via the type III secretion system 2 [J]. Cellular Microbiology, 2007b, 9: 2598-2609. [102] Kodama T., Yamazaki C., Park K. S., Akeda Y., Iida T., Honda T. Transcription of Vibrio parahaemolyticus T3SS1 genes is regulated by a dual regulation system consisting of the ExsACDE regulatory cascade and H-NS [J]. FEMS Microbiology Letters, 2010, 311: 10-17. [103] Konradt C., Frigimelica E., Nothelfer K., Puhar A., Salgado-Pabon W., Di Bartolo V., Scott-Algara D., Rodrigues C. D., Sansonetti P. J., Phalipon A. The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism [J]. Cell Host & Microbe, 2011, 9: 263-272. [104] Krachler A. M., Orth K. Functional Characterization of the Interaction between Bacterial Adhesin Multivalent Adhesion Molecule 7 ( MAM7) Protein and Its Host Cell Ligands [J]. Journal of Biological Chemistry, 2011, 286: 38939-38947. [105] Kubori T., Matsushima Y., Nakamura D., Uralil J., Lara-Tejero M., Sukhan A., Galán J. E., Aizawa S. Supramolecular structure of the Salmonella typhimurium type III protein secretion system [J]. Science, 1998, 280: 602-605. [106] Kuehl C. J., Crosa J. H. The TonB energy transduction systems in Vibrio species [J]. Future Microbiology, 2010, 5: 1403-1412. [107] Lafrance A. E., Chimalapati S., Garcia Rodriguez N., Kinch L. N., Kaval K. G., Orth K. Enzymatic Specificity of Conserved Rho GTPase Deamidases Promotes Invasion of Vibrio parahaemolyticus at the Expense of Infection [J]. mBio, 2022, 13: e0162922. [108] Langmead B., Salzberg S. L. Fast gapped-read alignment with Bowtie 2 [J]. Nature Methods, 2012, 9: 357-359. [109] Lara-Tejero M., Kato J., Wagner S., Liu X. Y., Gálan J. E. A sorting platform determines the order of protein secretion in bacterial type III systems. [J]. Science, 2011, 331: 1188-1191. [110] Lawrence T. The Nuclear Factor NF-κB Pathway in Inflammation [J]. Cold Spring Harbor Perspectives in Biology, 2009, 1. [111] Leblanc M. A., Fink M. R., Perkins T. T., Sousa M. C. Type III secretion system effector proteins are mechanically labile [J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118. [112] Lee C. Y., Cheng M. F., Yu M. S., Pan M. J. Purification and characterization of a putative virulence factor, serine protease, from Vibrio parahaemolyticus [J]. FEMS Microbiology Letters, 2002, 209: 31-37. [113] Lee W. L., Grimes J. M., Robinson R. C. Yersinia effector YopO uses actin as bait to phosphorylate proteins that regulate actin polymerization [J]. Nature Structural & Molecular Biology, 2015, 22: 248-255. [114] Letchumanan Vengadesh, Chan Kok Gan, Lee Learn Han. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques [J]. Frontiers in Microbiology, 2014, 5: 705. [115] Li B., Dewey C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome [J]. BMC Bioinformatics, 2011, 12: 323. [116] Li C. C., Ye Z. C., Wen L. Y., Chen R., Tian L. H., Zhao F. K., Pan J. Y. Identification of a novel vaccine candidate by immunogenic screening of Vibrio parahaemolyticus outer membrane proteins [J]. Vaccine, 2014a, 32: 6115-6121. [117] Li L., Meng H., Gu D., Li Y., Jia M. Molecular mechanisms of Vibrio parahaemolyticus pathogenesis [J]. Microbiological Research, 2019a, 222: 43-51. [118] Li P., Kinch L. N., Ray A., Dalia A. B., Cong Q., Nunan L. M., Camilli A., Grishin N. V., Salomon D., Orth K. Acute Hepatopancreatic Necrosis Disease-Causing Vibrio parahaemolyticus Strains Maintain an Antibacterial Type VI Secretion System with Versatile Effector Repertoires [J]. Applied and Environmental Microbiology, 2017, 83. [119] Li Y. H., Xie X., Shi X. L., Lin Y. M., Qiu Y. Q., Mou J., Chen Q. C., Lu Y., Zhou L., Jiang M., Sun H. H., Ma H. W., Cheng J. Q., Hu Q. H. Vibrio parahaemolyticus, Southern Coastal Region of China, 2007-2012 [J]. Emerging Infectious Diseases, 2014b, 20: 685-688. [120] Liebermann D. A., Gregory B., Hoffman B. AP-1 (Fos/Jun) transcription factors in hematopoietic differentiation and apoptosis (review) [J]. International Journal of Oncology, 1998, 12: 685-700. [121] Liu A. C., Thomas N. A. Transcriptional profiling of Vibrio parahaemolyticus exsA reveals a complex activation network for type III secretion [J]. Frontiers in Microbiology, 2015, 6: 1089. [122] Lopatek M., Wieczorek K., Osek J. Antimicrobial Resistance, Virulence Factors, and Genetic Profiles of Vibrio parahaemolyticus from Seafood [J]. Applied and Environmental Microbiology, 2018, 84. [123] Loquet A., Sgourakis N. G., Gupta R., Giller K., Riedel D., Goosmann C., Griesinger C., Kolbe M., Baker D., Becker S., Lange A. Atomic model of the type III secretion system needle [J]. Nature, 2012, 486: 276-+. [124] Love M. I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 [J]. Genome Biology, 2014, 15: 550. [125] Luo L. P., Matthews J. D., Robinson B. S., Jones R. M. Vibrio parahaemolyticus VopA Is a Potent Inhibitor of Cell Migration and Apoptosis in the Intestinal Epithelium of Drosophila melanogaster [J]. Infection and Immunity, 2019, 87. [126] Lynch T., Livingstone S., Buenaventura E., Lutter E., Fedwick J., Buret A. G., Graham D., Devinney R. Vibrio parahaemolyticus disruption of epithelial cell tight junctions occurs independently of toxin production [J]. Infection and Immunity, 2005, 73: 1275-1283. [127] Mahoney J. C., Gerding M. J., Jones S. H., Whistler C. A. Comparison of the Pathogenic Potentials of Environmental and Clinical Vibrio parahaemolyticus Strains Indicates a Role for Temperature Regulation in Virulence [J]. Applied and Environmental Microbiology, 2010, 76: 7459-7465. [128] Mai A. T., Chung D., Ngo L., Huynh K. H., Dinh L. T. Multiorgan Dysfunction With Severe Cardiac Injury Secondary to Septic Cellulitis Due to Vibrio parahaemolyticus [J]. Cureus, 2022, 14: e31673. [129] Maik-Rachline G., Wortzel I., Seger R. Alternative Splicing of MAPKs in the Regulation of Signaling Specificity [J]. Cells, 2021, 10. [130] Makino K., Oshima K., Kurokawa K., Yokoyama K., Uda T., Tagomori K., Iijima Y., Najima M., Nakano M., Yamashita A., Kubota Y., Kimura S., Yasunaga T., Honda T., Shinagawa H., Hattori M., Iida T. Genome sequence of Vibrio parahaemolyticus:: a pathogenic mechanism distinct from that of [J]. Lancet, 2003, 361: 743-749. [131] Martinez-Urtaza J., Van Aerle R., Abanto M., Haendiges J., Myers R. A., Trinanes J., Baker-Austin C., Gonzalez-Escalona N. Genomic Variation and Evolution of Vibrio parahaemolyticus ST36 over the Course of a Transcontinental Epidemic Expansion [J]. mBio, 2017, 8. [132] Martinez-Urtaza J., Baker-Austin C., Jones J. L., Newton A. E., Gonzalez-Aviles G. D., Depaola A. Spread of Pacific Northwest Vibrio parahaemolyticus Strain [J]. New England Journal of Medicine, 2013, 369: 1573-1574. [133] Matlawska-Wasowska K., Finn R., Mustel A., O'byrne C. P., Baird A. W., Coffey E. T., Boyd A. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis [J]. BMC Microbiology, 2010a, 10: 329. [134] Matlawska-Wasowska K., Finn R., Mustel A., O'byrne C. P., Baird A. W., Coffey E. T., Boyd A. The Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis [J]. BMC Microbiology, 2010b, 10. [135] Matsuda S., Kodama T., Okada N., Okayama K., Honda T., Iida T. Association of Vibrio parahaemolyticus Thermostable Direct Hemolysin with Lipid Rafts Is Essential for Cytotoxicity but Not Hemolytic Activity [J]. Infection and Immunity, 2010, 78: 603-610. [136] Matsuda S., Hiyoshi H., Tandhavanant S., Kodama T. Advances on Vibrio parahaemolyticus research in the postgenomic era [J]. Microbiology and Immunology, 2020, 64: 167-181. [137] Matz C., Nouri B., Mccarter L., Martinez-Urtaza J. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists [J]. Plos One, 2011, 6. [138] Mclaughlin J. B., Depaola A., Bopp C. A., Martinek K. A., Napolilli N. P., Allison C. G., Murray S. L., Thompson E. C., Bird M. M., Middaugh J. P. Outbreak of Vibrio parahaemolyticus gastroenteritis associated with Alaskan oysters [J]. New England Journal of Medicine, 2005, 353: 1463-1470. [139] Miletic S., Fahrenkamp D., Goessweiner-Mohr N., Wald J., Pantel M., Vesper O., Kotov V., Marlovits T. C. Substrate-engaged type III secretion system structures reveal gating mechanism for unfolded protein translocation [J]. Nature Communications, 2021, 12. [140] Miller K. A., Tomberlin K. F., Dziejman M. Vibrio variations on a type three theme [J]. Current Opinion in Microbiology, 2019, 47: 66-73. [141] Milton D. L., O'toole R., Horstedt P., Wolf-Watz H. Flagellin A is essential for the virulence of Vibrio anguillarum [J]. Journal of Bacteriology, 1996, 178: 1310-1319. [142] Minamino T., Morimoto Y. V., Kinoshita M., Aldridge P. D., Namba K. The bacterial flagellar protein export apparatus processively transports flagellar proteins even with extremely infrequent ATP hydrolysis [J]. Scientific Reports, 2014, 4. [143] Ming X., Yamamoto K., Honda T. Construction and Characterization of an Isogenic Mutant of Vibrio-Parahaemolyticus Having a Deletion in the Thermostable Direct Hemolysin-Related Hemolysin Gene (Trh) [J]. Journal of Bacteriology, 1994, 176: 4757-4760. [144] Molenda J R, Johnson W G, Fishbein M., Wentz B., Mehlman I J, Dadisman T. A. Jr. Vibrio parahaemolyticus Gastroenteritis in Maryland: Laboratory Aspects [J]. Applied Microbiology, 1972, 24: 444. [145] Nandi I., Aroeti B. Mitogen-Activated Protein Kinases (MAPKs) and Enteric Bacterial Pathogens: A Complex Interplay [J]. International Journal of Molecular Sciences, 2023, 24. [146] Naseer N., Egan M. S., Reyes Ruiz V. M., Scott W. P., Hunter E. N., Demissie T., Rauch I., Brodsky I. E., Shin S. Human NAIP/NLRC4 and NLRP3 inflammasomes detect Salmonella type III secretion system activities to restrict intracellular bacterial replication [J]. PLoS Pathogens, 2022, 18: e1009718. [147] Navarre W. W., Schneewind O. Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope [J]. Microbiology and Molecular Biology Reviews, 1999, 63: 174-+. [148] Nguyen A. Q., Shimohata T., Hatayama S., Tentaku A., Kido J., Bui T. M. H., Uebanso T., Mawatari K., Takahashi A. Type III Secretion Effector VopQ of Vibrio parahaemolyticus Modulates Central Carbon Metabolism in Epithelial Cells [J]. mSphere, 2020, 5. [149] Nothelfer K., Arena E. T., Pinaud L., Neunlist M., Mozeleski B., Belotserkovsky I., Parsot C., Dinadayala P., Burger-Kentischer A., Raqib R., Sansonetti P. J., Phalipon A. B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection [J]. Journal of Experimental Medicine, 2014, 211: 1215-1229. [150] Notti R. Q., Stebbins C. E. The Structure and Function of Type III Secretion Systems [J]. Microbiology Spectrum, 2016, 4. [151] O'boyle N., Houeix B., Kilcoyne M., Joshi L., Boyd A. The MSHA pilus of Vibrio parahaemolyticus has lectin functionality and enables TTSS-mediated pathogenicity [J]. International Journal of Medical Microbiology, 2013, 303: 563-573. [152] O'grady E., Mulcahy H., Adams C., Morrissey J. P., O'gara F. Manipulation of host Kruppel-like factor (KLF) function by exotoxins from diverse bacterial pathogens [J]. Nature Reviews Microbiology, 2007, 5: 337-341. [153] Okada N., Iida T., Park K. S., Goto N., Yasunaga T., Hiyoshi H., Matsuda S., Kodama T., Honda T. Identification and Characterization of a Novel Type III Secretion System in trh-Positive Vibrio parahaemolyticus Strain TH3996 Reveal Genetic Lineage and Diversity of Pathogenic Machinery beyond the Species Level [J]. Infection and Immunity, 2009, 77: 904-913. [154] Ono T., Park K. S., Ueta M., Iida T., Honda T. Identification of proteins secreted via Vibrio parahaemolyticus type III secretion system 1 [J]. Infection and Immunity, 2006, 74: 1032-1042. [155] Osei-Adjei G., Gao H., Zhang Y., Zhang L., Yang W., Yang H., Yin Z., Huang X., Zhang Y., Zhou D. Regulatory actions of ToxR and CalR on their own genes and type III secretion system 1 in Vibrio parahaemolyticus [J]. Oncotarget, 2017, 8: 65809-65822. [156] Osei-Adjei G., Huang X. X., Zhang Y. Q. The extracellular proteases produced by Vibrio parahaemolyticus [J]. World Journal of Microbiology & Biotechnology, 2018, 34. [157] Osei-Owusu P., Jessen Condry D. L., Toosky M., Roughead W., Bradley D. S., Nilles M. L. The N terminus of type III secretion needle protein YscF from Yersinia pestis functions to modulate innate immune responses [J]. Infection and Immunity, 2015, 83: 1507-1522. [158] Pais S. V., Kim E., Wagner S. Virulence-associated type III secretion systems in Gram-negative bacteria [J]. Microbiology (Reading), 2023, 169. [159] Palmer T., Finney A. J., Saha C. K., Atkinson G. C., Sargent F. A holin/peptidoglycan hydrolase-dependent protein secretion system [J]. Molecular Microbiology, 2021, 115: 345-355. [160] Pan J., Li C., Ye Z. Immunoproteomic approach for screening vaccine candidates from bacterial outer membrane proteins[C]//Methods in Molecular Biology.2016:519-528. 10.1007/978-1-4939-3389-1_34. [161] Paranjpye R., Hamel O. S., Stojanovski A., Liermann M. Genetic Diversity of Clinical and Environmental Vibrio parahaemolyticus Strains from the Pacific Northwest [J]. Applied and Environmental Microbiology, 2012, 78: 8631-8638. [162] Park K. S., Ono T., Rokuda M., Jang M. H., Okada K., Idia T., Honda T. Functional characterization of two type III secretion systems of Vibrio parahaemolyticus [J]. Infection and Immunity, 2004a, 72: 6659-6665. [163] Park K. S., Ono T., Rokuda M., Jang M. H., Lida T., Honda T. Cytotoxicity and enterotoxicity of the thermostable direct hemolysin-deletion mutants of Vibrio parahaemolyticus [J]. Microbiology and Immunology, 2004b, 48: 313-318. [164] Payinda G. Necrotizing fasciitis due to Vibrio parahaemolyticus [J]. New Zealand Medical Journal, 2008, 121: 99-101. [165] Pazhani G. P., Bhowmik S. K., Ghosh S., Guin S., Dutta S., Rajendran K., Saha D. R., Nandy R. K., Bhattacharya M. K., Mukhopadhyay A. K., Ramamurthy T. Trends in the Epidemiology of Pandemic and Non-pandemic Strains of Vibrio parahaemolyticus Isolated from Diarrheal Patients in Kolkata, India [J]. PloS Neglected Tropical Diseases, 2014, 8. [166] Piel D., Bruto M., James A., Labreuche Y., Lambert C., Janicot A., Chenivesse S., Petton B., Wegner K. M., Stoudmann C., Blokesch M., Le Roux F. Selection of relies on a plasmid expressing a type 6 secretion system cytotoxic for host immune cells [J]. Environmental Microbiology, 2020, 22: 4198-4211. [167] Pilar A. V., Reid-Yu S. A., Cooper C. A., Mulder D. T., Coombes B. K. Active modification of host inflammation by Salmonella [J]. Gut Microbes, 2013, 4: 140-145. [168] Piñeyro P., Zhou X. H., Orfe L. H., Friel P. J., Lahmers K., Call D. R. Development of Two Animal Models To Study the Function of Vibrio parahaemolyticus Type III Secretion Systems [J]. Infection and Immunity, 2010, 78: 4551-4559. [169] Plaza N., Pérez-Reytor D., Corsini G., García K., Urrutia I. M. Contribution of the Type III Secretion System (T3SS2) of Vibrio parahaemolyticus in Mitochondrial Stress in Human Intestinal Cells [J]. Microorganisms, 2024, 12. [170] Portaliou A. G., Tsolis K. C., Loos M. S., Zorzini V., Economou A. Type III Secretion: Building and Operating a Remarkable Nanomachine [J]. Trends in Biochemical Sciences, 2016, 41: 175-189. [171] Pukatzki S., Ma A. T., Sturtevant D., Krastins B., Sarracino D., Nelson W. C., Heidelberg J. F., Mekalanos J. J. Identification of a conserved bacterial protein secretion system in using the host model system [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103: 1528-1533. [172] Ray A., Schwartz N., Santos M. D., Zhang J. M., Orth K., Salomon D. Type VI secretion system MIX-effectors carry both antibacterial and anti-eukaryotic activities [J]. EMBO Reports, 2017, 18: 1978-1990. [173] Rayamajhi M., Zak D. E., Chavarria-Smith J., Vance R. E., Miao E. A. Cutting edge: Mouse NAIP1 detects the type III secretion system needle protein [J]. Journal of Immunology, 2013, 191: 3986-3989. [174] Renault M. G., Beas J. Z., Douzi B., Chabalier M., Zoued A., Brunet Y. R., Cambillau C., Journet L., Cascales E. The gp27-like Hub of VgrG Serves as Adaptor to Promote Hcp Tube Assembly [J]. Journal of Molecular Biology, 2018, 430: 3143-3156. [175] Rezny B. R., Evans D. S. Vibrio parahaemolyticus Infection[C]//StatPearls. Treasure Island (FL) ineligible companies. Disclosure: Daniel Evans declares no relevant financial relationships with ineligible companies.:StatPearls Publishing Copyright © 2025, StatPearls Publishing LLC.,2025, [176] Rohde J. R., Breitkreutz A., Chenal A., Sansonetti P. J., Parsot C. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases [J]. Cell Host & Microbe, 2007, 1: 77-83. [177] Rosales-Reyes R., Pérez-López A., Sánchez-Gómez C., Hernández-Mote R. R., Castro-Eguiluz D., Ortiz-Navarrete V., Alpuche-Aranda C. M. Salmonella infects B cells by macropinocytosis and formation of spacious phagosomes but does not induce pyroptosis in favor of its survival [J]. Microbial Pathogenesis, 2012, 52: 367-374. [178] Russell A. B., Hood R. D., Bui N. K., Leroux M., Vollmer W., Mougous J. D. Type VI secretion delivers bacteriolytic effectors to target cells [J]. Nature, 2011, 475: 343-U392. [179] Saito S., Iwade Y., Tokuoka E., Nishio T., Otomo Y., Araki E., Konuma H., Nakagawa H., Tanaka H., Sugiyama K., Hasegawa A., Sugita-Konishi Y., Hara-Kudo Y. Epidemiological Evidence of Lesser Role of Thermostable Direct Hemolysin (TDH)-Related Hemolysin (TRH) Than TDH on Vibrio parahaemolyticus Pathogenicity [J]. Foodborne Pathogens and Disease, 2015, 12: 131-138. [180] Salomon D., Guo Y. R., Kinch L. N., Grishin N. V., Gardner K. H., Orth K. Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides [J]. Nature Communications, 2013, 4. [181] Scallan E., Griffin P. M., Angulo F. J., Tauxe R. V., Hoekstra R. M. Foodborne Illness Acquired in the United States-Unspecified Agents [J]. Emerging Infectious Diseases, 2011, 17: 16-22. [182] Schlomann B. H., Wiles T. J., Wall E. S., Guillemin K., Parthasarathy R. Sublethal antibiotics collapse gut bacterial populations by enhancing aggregation and expulsion [J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116: 21392-21400. [183] Schroeder G. N., Jann N. J., Hilbi H. Intracellular type III secretion by cytoplasmic Shigella flexneri promotes caspase-1-dependent macrophage cell death [J]. Microbiology-Sgm, 2007, 153: 2862-2876. [184] Shimohata T., Takahashi A. Diarrhea induced by infection of Vibrio parahaemolyticus [J]. Journal of Medical Investigation, 2010, 57: 179-182. [185] Silverman J. M., Brunet Y. R., Cascales E., Mougous J. D. Structure and Regulation of the Type VI Secretion System [J]. Annual Review of Microbiology, 2012, 66: 453-472. [186] Song D., Lian Y., Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy [J]. Frontiers in Immunology, 2023, 14: 1224892. [187] Sorée M., Lozach S., Kéomurdjian N., Richard D., Hughes A., Delbarre-Ladrat C., Verrez-Bagnis V., Rincé A., Passerini D., Ritchie J. M., Heath D. H. Virulence phenotypes differ between toxigenic Vibrio parahaemolyticus isolated from western coasts of Europe [J]. Microbiological Research, 2024, 285. [188] Sreelatha A., Bennett T. L., Zheng H., Jiang Q. X., Orth K., Starai V. J. Vibrio parahaemolyticus effector protein, VopQ, forms a lysosomal gated channel that disrupts host ion homeostasis and autophagic flux [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 11559-11564. [189] Sun H., Kamanova J., Lara-Tejero M., Galán J. E. A family of Salmonella Type III secretion effector proteins selectively targets the NF-κB signaling pathway to preserve host homeostasis [J]. PLoS Pathogens, 2016, 12. [190] Suresh R., Mosser D. M. Pattern recognition receptors in innate immunity, host defense, and immunopathology [J]. Advances in Physiology Education, 2013, 37: 284-291. [191] Takahashi A., Kenjyo N., Imura K., Myonsun Y., Honda T. Cl- secretion in colonic epithelial cells induced by the Vibrio parahaemolyticus hemolytic toxin related to thermostable direct hemolysin [J]. Infection and Immunity, 2000, 68: 5435-5438. [192] Tanabe T., Funahashi T., Shiuchi K., Okajima N., Nakao H., Miyamoto K., Tsujibo H., Yamamoto S. Characterization of Vibrio parahaemolyticus genes encoding the systems for utilization of enterobactin as a xenosiderophore [J]. Microbiology-Sgm, 2012, 158: 2039-2049. [193] Tchelet D., Keppel K., Bosis E., Salomon D. Vibrio parahaemolyticus T6SS2 effector repertoires [J]. Gut Microbes, 2023, 15. [194] Theethakaew C., Feil E. J., Castillo-Ramírez S., Aanensen D. M., Suthienkul O., Neil D. M., Davies R. L. Genetic relationships of Vibrio parahaemolyticus isolates from clinical, human carrier, and environmental sources in Thailand, determined by multilocus sequence analysis [J]. Applied and Environmental Microbiology, 2013, 79: 2358-2370. [195] Torok Valeria Anna, Mahbub Khandaker Rayhan, Grey Paul A., Fletcher Graham Clive, Turnbull Alison R. Survey of foodborne pathogenic Vibrio species in commercial Tasmanian bivalve shellfish and predictors of risk at harvest [J]. International Journal of Food Microbiology, 2025, 430: 111033. [196] Trosky J. E., Mukherjee S., Burdette D. L., Roberts M., Mccarter L., Siegel R. M., Orth K. Inhibition of MAPK signaling pathways by VopA from Vibrio parahaemolyticus [J]. Journal of Biological Chemistry, 2004, 279: 51953-51957. [197] Trosky J. E., Li Y., Mukherjee S., Keitany G., Ball H., Orth K. VopA inhibits ATP binding by acetylating the catalytic loop of MAPK kinases [J]. Journal of Biological Chemistry, 2007, 282: 34299-34305. [198] Urmersbach S., Alter T., Koralage M. S. G., Sperling L., Gerdts G., Messelhäusser U., Huehn S. Population analysis of originating from different geographical regions demonstrates a high genetic diversity [J]. BMC Microbiology, 2014, 14. [199] Verma P., Chattopadhyay K. Current Perspective on the Membrane-Damaging Action of Thermostable Direct Hemolysin, an Atypical Bacterial Pore-forming Toxin [J]. Frontiers in Molecular Biosciences, 2021, 8. [200] Waddell B., Southward C. M., Mckenna N., Devinney R. Identification of VPA0451 as the specific chaperone for the Vibrio parahaemolyticus chromosome 1 type III-secreted effector VPA0450 [J]. FEMS Microbiology Letters, 2014, 353: 141-150. [201] Wagner S., Grin I., Malmsheimer S., Singh N., Torres-Vargas C. E., Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells [J]. FEMS Microbiology Letters, 2018, 365. [202] Wallden K., Rivera-Calzada A., Waksman G. Type IV secretion systems: versatility and diversity in function [J]. Cellular Microbiology, 2010, 12: 1203-1212. [203] Wang R., Zhong Y., Gu X., Yuan J., Saeed A. F., Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus [J]. Frontiers in Microbiology, 2015, 6: 144. [204] Whitaker W. B., Richards G. P., Boyd E. F. Loss of Sigma Factor RpoN Increases Intestinal Colonization of Vibrio parahaemolyticus in an Adult Mouse Model [J]. Infection and Immunity, 2014, 82: 544-556. [205] Whitney J. C., Beck C. M., Goo Y. A., Russell A. B., Harding B. N., De Leon J. A., Cunningham D. A., Tran B. Q., Low D. A., Goodlett D. R., Hayes C. S., Mougous J. D. Genetically distinct pathways guide effector export through the type VI secretion system [J]. Molecular Microbiology, 2014, 92: 529-542. [206] Wieland G. D., Nehmann N., Müller D., Eibel H., Siebenlist U., Sühnel J., Zipfel P. F., Skerka C. Early growth response proteins EGR-4 and EGR-3 interact with immune inflammatory mediators NF-κB p50 and p65 [J]. Journal of Cell Science, 2005, 118: 3203-3212. [207] Williamson Diane BiteSized Immunology: Pathogens & Disease(Host − Pathogen interactions and immune evasion) [M]. BiteSized Immunology; https://www.immunology.org/public-information/bitesized-immunology/pathogens-disease/host-pathogen-interactions-and-immune#:~:text=Any%20microorganism%20which%20is%20able%20to%20cause%20disease,in%20a%20host%20organism%20is%20termed%20a%20pathogen. [208] Woolery A. R., Yu X. B., Labaer J., Orth K. AMPylation of Rho GTPases Subverts Multiple Host Signaling Processes [J]. Journal of Biological Chemistry, 2014, 289. [209] Xu F., Ilyas S., Hall J. A., Jones S. H., Cooper V. S., Whistler C. A. Genetic characterization of clinical and environmental Vibrio parahaemolyticus from the Northeast USA reveals emerging resident and non-indigenous pathogen lineages [J]. Frontiers in Microbiology, 2015, 6. [210] Xue J., Huang Y. X., Zhang H., Hu J. Q. Z., Pan X., Peng T., Lv J., Meng K., Li S. Arginine GlcNAcylation and Activity Regulation of PhoP by a Type III Secretion System Effector in Salmonella [J]. Frontiers in Microbiology, 2022, 12. [211] Yang H., De Souza Santos M., Lee J., Law H. T., Chimalapati S., Verdu E. F., Orth K., Vallance B. A. A Novel Mouse Model of Enteric Vibrio parahaemolyticus Infection Reveals that the Type III Secretion System 2 Effector VopC Plays a Key Role in Tissue Invasion and Gastroenteritis [J]. mBio, 2019, 10. [212] Yang J., Zhao Y., Shi J., Shao F. Human NAIP and mouse NAIP1 recognize bacterial type III secretion needle protein for inflammasome activation [J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110: 14408-14413. [213] Yang Y. J., Lee N. K., Lee N. Y., Lee J. W., Park S. J. Cell death mediated by Vibrio parahaemolyticus type III secretion system 1 is dependent on ERK1/2 MAPK, but independent of caspases [J]. Journal of Microbiology and Biotechnology, 2011, 21: 903-913. [214] Yarbrough M. L., Li Y., Kinch L. N., Grishin N. V., Ball H. L., Orth K. AMPylation of Rho GTPases by VopS Disrupts Effector Binding and Downstream Signaling [J]. Science, 2009, 323: 269-272. [215] Yen H., Sugimoto N., Tobe T. Enteropathogenic Escherichia coli uses NleA to inhibit NLRP3 inflammasome activation [J]. PLoS Pathogens, 2015, 11. [216] Yu B., Cheng H. C., Brautigam C. A., Tomchick D. R., Rosen M. K. Mechanism of actin filament nucleation by the bacterial effector VopL [J]. Nature Structural & Molecular Biology, 2011, 18: 1068-1074. [217] Yu Y., Yang H., Li J., Zhang P., Wu B., Zhu B., Zhang Y., Fang W. Putative type VI secretion systems of Vibrio parahaemolyticus contribute to adhesion to cultured cell monolayers [J]. Archives of Microbiology, 2012, 194: 827-835. [218] Zahm J. A., Padrick S. B., Chen Z. C., Pak C. W., Yunus A. A., Henry L., Tomchick D. R., Chen Z., Rosen M. K. The Bacterial Effector VopL Organizes Actin into Filament-like Structures [J]. Cell, 2013, 155: 423-434. [219] Zakaria D., Matsuda S., Iida T., Hayashi T., Arita M. Genome Analysis Identifies a Novel Type III Secretion System (T3SS) Category in Vibrio Species [J]. Microorganisms, 2023, 11. [220] Zha Z. Z., Li C. C., Li W. Y., Ye Z. C., Pan J. Y. LptD is a promising vaccine antigen and potential immunotherapeutic target for protection against Vibrio species infection [J]. Scientific Reports, 2016, 6. [221] Zhang L., Krachler A. M., Broberg C. A., Li Y., Mirzaei H., Gilpin C. J., Orth K. Type III effector VopC mediates invasion for Vibrio species [J]. Cell Report, 2012, 1: 453-460. [222] Zhang L. L., Weng Y. W., Wu Y., Wang X. Y., Yin Z., Yang H. Y., Yang W. H., Zhang Y. Q. H-NS is an activator of exopolysaccharide biosynthesis genes transcription in Vibrio parahaemolyticus [J]. Microbial Pathogenesis, 2018, 116: 164-167. [223] Zhang L. Y., Osei-Adjei G., Zhang Y., Gao H., Yang W. H., Zhou D. S., Huang X. X., Yang H. Y., Zhang Y. Q. CalR is required for the expression of T6SS2 and the adhesion of Vibrio parahaemolyticus to HeLa cells [J]. Archives of Microbiology, 2017, 199: 931-938. [224] Zhao Y., Yang J., Shi J., Gong Y. N., Lu Q., Xu H., Liu L., Shao F. The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus [J]. Nature, 2011, 477: 596-600. [225] Zhong X. J., Pan Z. H., Mu Y. J., Zhu Y. C., Zhang Y., Ma J. L., Yang M. H., Yao H. C. Characterization and epidemiological analysis of Vibrio parahaemolyticus isolated from different marine products in East China [J]. International Journal of Food Microbiology, 2022, 380. [226] Zhou X., Gewurz B. E., Ritchie J. M., Takasaki K., Greenfeld H., Kieff E., Davis B. M., Waldor M. K. A Vibrio parahaemolyticus T3SS effector mediates pathogenesis by independently enabling intestinal colonization and inhibiting TAK1 activation [J]. Cell Report, 2013, 3: 1690-1702. [227] Zhou X., Konkel M. E., Call D. R. Regulation of type III secretion system 1 gene expression in Vibrio parahaemolyticus is dependent on interactions between ExsA, ExsC, and ExsD [J]. Virulence, 2010, 1: 260-272. [228] Zhu Y., Xie J., Shi J. Rac1/ROCK-driven membrane dynamics promote natural killer cell cytotoxicity via granzyme-induced necroptosis [J]. BMC Biology, 2021, 19: 140. [229] Fujino T., Okuno Y., Nakada D., Aoyama A., Ueho T. On the bacteriological examination of Shirasu food poisoning [J]. Med.j.osaka Univ, 1953, 4: 299-304. [230] Tanabe T. Regulation of the Expression of Iron-acquisition System Genes in Pathogenic Species [J]. Yakugaku Zasshi-Journal of the Pharmaceutical Society of Japan, 2016, 136: 1525-1532. [231] Matsuda S. [Mechanisms of action of Vibrio parahaemoltyicus cytotoxins] [J]. Nihon Saikingaku Zasshi, 2020, 75: 215-225. |
中图分类号: | S85 |
开放日期: | 2025-06-13 |