中文题名: | 宽幅低功耗小麦播种施肥一体机的设计与研发 |
姓名: | |
学号: | 2019812082 |
保密级别: | 公开 |
论文语种: | chi |
学科代码: | 085227 |
学科名称: | 工学 - 工程 - 农业工程 |
学生类型: | 硕士 |
学位: | 工程硕士 |
学校: | 南京农业大学 |
院系: | |
专业: | |
研究方向: | 智能农业装备 |
第一导师姓名: | |
第一导师单位: | |
完成日期: | 2021-06-01 |
答辩日期: | 2021-06-01 |
外文题名: | Design and development of a wide-width and low-power wheat seeding and fertilization integrated machine |
中文关键词: | |
外文关键词: | precise seeding ; variable fertilization ; seeding and fertilizer applicator ; simulation analysis ; performance evaluation |
中文摘要: |
我国是小麦种植大国,小麦种植面积为全国耕地总面积的22-30%和粮食作物总面积的20-27%。提高小麦单位面积的产量对我国农业的发展有着非常重大的意义。提高小麦产量的重要环节是播种与施肥,播种施肥作业质量的好坏直接影响小麦的生长发育和产量,所以研制出高质量的播种施肥机成为了我国农业发展的迫切要求。 外槽轮式播种施肥机是我国小麦播种施肥的主流机型,目前实际使用的机型以地轮驱动为主,作业精度较低,适应性较差;基于电机为驱动的变量施肥和精量播种机型是外槽轮式播种施肥机的发展趋势,但由于电机驱动型播种施肥机功耗大、控制本质开环(控制精度容易受到作业工况变化和排料器物理特性改变的影响)等原因未能得到广泛应用。 针对电机驱动型外槽轮式播种施肥机存在的主要问题,本文以临海农场实际使用的宽幅(4米)旋耕机为安装平台,将团队已有的基于播量检测的外槽轮式播种施肥机研发成果进行转化移植,通过整机机构设计、改进外槽轮排料器功能结构,优化驱动与传动机构,研发一种基于电机驱动,可实现闭环控制(融合课题组已有的播量检测装置)的宽幅、低功耗小麦播种施肥一体机,为推广应用电机驱动型小麦播种施肥机一体机开展技术实践。 主要研究内容和成果如下: (1)播种施肥一体机箱体结构设计 完成了箱体的设计:合理地设计了箱体结构,保证了物料在箱体排料通道口处的流动性;设计了箱体与播量检测装置之间的固定安装机构和箱体中间支撑结构,既保证了检测装置测量性能的发挥,也保证了大跨度箱体的稳定性和安装精度;通过优化设计箱体与播种施肥器的连接机构,保证了播种施肥器槽轮设计轴心与实际驱动轴心之间安装同轴度,有效减少了摩擦扭矩。 (2)驱动系统安装机构的设计 设计了一种高精度且拆装方便的组合式安装机构,既保证了驱动系统安装的稳定性与可靠性,又保证了传动系统各零件的安装精度。 (3)外槽轮式播种施肥器优化设计 针对现有外槽轮式播种施肥器存在运转阻力大,易卡种磨损种子、播种施肥不均匀等问题对其进行优化:安装了薄壁轴承,保证槽轮能够精准定位,消除了槽轮和播种施肥器主体间的摩擦,槽轮运转阻力小;槽轮定位环与轴承和槽轮之间的配合关系使得槽轮易更换。 (4)仿真与分析 使用有限元分析软件ANSYS对箱体、连接件、氮气弹簧安装支架等主要受力部件进行静应力分析,判断结构设计安全性与可靠性;使用离散元分析软件EDEM对播种施肥器工作过程进行仿真,分析物料在播种施肥器中的分布与运动情况,判断播种施肥器的密封性以及结构设计的可行性。 (5)综合性能测试与评估 播种施肥器排量一致性和排量稳定性评估试验表明:播种量变异系数最大值、平均值、标准差、非线性误差分别2.27%、1.23%、0.48%、0.66%,施肥量相应数据分别为2.65%、1.7%、0.46%、0.98%;水泥路面(少量坑洼)车载式动态播量试验表明:累积播量相对误差平均值和标准差分别为3.52%和1.14%;在播种施肥机的工作范围内,输出功率最大值为270W,最小值为82.8W。 以上试验结果表明:本文设计的播种施肥一体机在机载状态下播量检测装置能有效获取测量信号,整机结构具有较好的稳定性;通过与课题组现有宽幅2.3米的播种施肥一体机作对比,本文设计的播种施肥一体机功耗较低,具有较好的排量一致性和稳定性。 |
外文摘要: |
China is a big wheat planting country, with wheat planting area accounting for 22-30% of the country's total arable land and 20-27% of the total grain crop area. Improving wheat yield per unit area is of great significance to the development of agriculture in China. The important link to improve wheat yield is sowing and fertilization. The quality of sowing and fertilization directly affects the growth and yield of wheat. Therefore, it has become an urgent requirement for agricultural development in China to develop a high-quality sowing and fertilizer application machine. Trough wheel seeding and fertilizing machine is the mainstream type of wheat seeding and fertilizing machine in China. At present, ground wheel driving is the main type of machine in actual use, which has low operating accuracy and poor adaptability. Variable fertilization and precision seeder based on motor drive are the development trend of external groove wheel seeder and fertilizer applicator. However, due to the large power consumption of motor drive seeder and fertilizer applicator and the open loop control essence (the control precision is easily affected by the change of operating conditions and the physical characteristics of the feeder), it has not been widely used. Outside groove for motor driven wheel main problems of sowing machinery, this paper takes linhai farm actually use the (4 meters) wide rotary cultivator for installation platform, the team has been based on information quantity detection of outer tank wheeled into transplants in sowing machinery research and development achievements through the whole body design, improvement of outside slot round row feeder function structure, optimize the drive and transmission mechanism, A wide-width, low-power wheat seeding and fertilization integrated machine based on motor drive can realize closed-loop control (fusion seeding quantity detection device), and carry out technical practice for the promotion and application of motor driven wheat seeding and fertilizer application integrated machine. The main research contents and results are as follows: (1) The structure design of an integrated planting and fertilizing cabinet The design of the box body is completed: the box body structure is reasonably designed to ensure the fluidity of the material at the outlet of the box body discharge channel; the fixed installation mechanism and the box body intermediate support between the box body and the seeding rate detection device are designed The structure not only ensures the measurement performance of the detection device, but also ensures the stability and installation accuracy of the large-span box; through the optimized design of the connecting mechanism between the box and the seeding and fertilizer applicator, it ensures that the design axis of the seeding and fertilizer applicator is The coaxiality is installed between the actual drive shafts, which effectively reduces the friction coefficient. (2) Design of drive system installation mechanism A high-level and easy-to-disassemble combined installation mechanism is designed, which not only ensures the stability and reliability of the drive system installation, but also ensures the installation accuracy of the components of the drive system. (3) Optimized design of outer groove wheel type seeding and fertilizer applicator The existing outer groove wheel type fertilizer applicator has large running resistance, easy to jam and wear seeds, and uneven sowing and fertilization. It is optimized: a thin-walled bearing is installed to ensure that the groove wheel can be accurately positioned, eliminating the problem of the groove wheel and the The friction between the main body of the seeding and fertilizer applicator, the running resistance of the sheave wheel is small; the matching relationship between the sheave wheel positioning ring and the bearing and the sheave wheel and the sheave wheel is easy to replace. (4) Simulation and analysis Use the finite element analysis software ANSYS to perform static stress analysis on the main stressed components such as the box body, connectors, and nitrogen spring mounting brackets to determine the safety and reliability of the structural design; use the discrete element analysis software EDEM to simulate the working process of the seeding and fertilizer applicator Analyze the distribution and movement of materials in the seeding and fertilizer applicator, and judge the sealing performance of the seeding and fertilizer applicator and the feasibility of structural design. (5) Comprehensive performance test and evaluation The corresponding data of fertilization amount are 2.23%, 1.23%, 0.48%, 0.66%, and the corresponding data of fertilization amount are 2.65%, 1.7%, 0.46%, 0.98% respectively; the vehicle-mounted dynamic seeding test on cement road (a few potholes) shows : The relative error and standard deviation of the cumulative sowing amount are 3.52% and 1.14% respectively; within the working range of the sowing and fertilizer applicator, the output power can be 270W, and the default is 82.8W. The above test results show that the planting and fertilizing integrated machine designed here has better stability in the on-board state; by comparing with the group of existing two-meter wide sowing and fertilizing integrated machines, the planting and fertilizing integrated machine designed here Machine power consumption, with better displacement consistency and stability. |
参考文献: |
[1] 韩一军. 我国小麦产业发展现状分析及未来展望[J]. 农业展望, 2010, 6(11): 25-28. [2] 焦善伟. 2020年国内小麦市场形势展望[J]. 种业导刊, 2020(04):13-17. [3] 邱军. 我国小麦产业现状及展望[J]. 种子世界, 2005(01):1-3. [4] 卢布, 丁斌, 吕修涛, 于振文, 赵广才, 万富世. 中国小麦优势区域布局规划研究[J]. 中国农业资源与区划, 2010,31(02):6-12+61. [5] 李明辉, 周玉玺, 周林, 杨洁, 王盈桦. 中国小麦生产区域优势度演变及驱动因素分析[J]. 中国农业资源与区划, 2015, 36(05):7-15. [6] 王玉庭, 李哲敏. 中国小麦区域比较优势分析[J]. 中国农学通报, 2010, 26(15):353-356. [7] 叶志标. 中国小麦空间格局演变及其驱动因素贡献份额研究[D]. 中国农业科学院, 2017. [8] 曹慧, 钟永玲. 当前小麦市场形势分析及后期展望[J]. 农业展望, 2011, 7(05):7-11. [9] 卫云宗, 刘新月, 张久刚, 张定一. 小麦生产的生态定位及发展策略[J]. 农业现代化研究, 2003(05):392-395. [10]张涛, 张俊侠. 探索小麦宽幅播种[J]. 农家参谋, 2021(02):41-42. [11]焦军伟, 翟二华. 打好播种基础是小麦获得丰收的重要因素[J]. 河南农业, 2020(19):13. [12]刘后军. 小麦播种机发展现状与未来[J]. 农民致富之友, 2016(20):228-229. [13]钱善凤. 浅谈小麦种植机械化问题与新技术[J]. 农民致富之友, 2017(10):230. [14]王建吉, 弥宁, 敬志臣, 寇元哲. 多功能小麦播种机的设计与研究[J]. 农业机械, 2016(03):117-119. [15]张国斌, 邹金波. 小麦免耕播种配方施肥模式探索[J]. 农业与技术, 2017,37(13):123-124. [16]金鑫, 李倩文, 苑严伟, 邱兆美, 周利明, 贺智涛. 2BFJ-24型小麦精量播种变量施肥机设计与试验[J]. 农业机械学报, 2018,49(05):84-92. [17]史常亮, 朱俊峰, 栾江. 我国小麦化肥投入效率及其影响因素分析——基于全国15个小麦主产省的实证[J]. 农业技术经济, 2015(11):69-78. [18]赵毅, 王瑞华. 精确农业背景下我国农业发展趋势分析[J]. 南方农机, 2020, 51(20):7-8. [19]葛新. 精确农业背景下对农机化发展的影响[J]. 农机使用与维修, 2021(01):119-120. [20]尚衍坤. 农业信息技术与精确农业的发展[J]. 农业工程技术,2020,40(18):53-54. [21]洪立华, 姜连花, 吕井文, 莫桂玲, 王静波. 机械精密播种技术[J]. 农业开发与装备, 2009(10):40-41. [22]王新峰, 许广林. 进口精密播种机的技术优势及对国产播种机的影响[J]. 装备制造, 2010(04):127. [23]陈建国. 小麦精量播种与精准控制智能决策系统研究与设计[D]. 上海交通大学, 2019. [24]许剑平, 谢宇峰, 陈宝昌. 国外气力式精密播种机技术现状及发展趋势[J]. 农机化研究, 2008(12):203-206. [25]杜辉, 樊桂菊, 刘波. 气力式精量播种机与排种器的研究现状[J]. 农业装备技术, 2002(03):13-14. [26]马丽君. 小麦精播机应用现状及发展前景[J]. 农机使用与维修, 2011(06):16. [27]周延冰. 分析精密播种机的运用发展趋势[J]. 黑龙江科技信息, 2015(18):7. [28]霍文国, 肖继军, 吕钊钦. 浅析气力式精密播种机的发展及研究现状[J]. 山东农机, 2003(03):11-12. [29]李洪昌, 高芳, 赵湛, 刘伟. 国内外精密排种器研究现状与发展趋势[J]. 中国农机化学报, 2014, 35(02):12-16+56. [30]许剑平, 谢宇峰, 徐涛. 国内外播种机械的技术现状及发展趋势[J]. 农机化研究, 2011, 33(02):234-237. [31] Kadir Sabanc? and Muhammed Fahri Unlersen Unlersen and Cevat Aydin. Determination of Seed Volume in the Seed Tank of Pneumatic Precision Seeder by Using Microcontroller Based Control System[J]. International Journal of Applied Mathematics, Electronics and Computers, 2017, : 7-11. [32]李社潮, 吕平. 从2019年中国国际农机展看播种机技术特点及发展趋势[J]. 农业工程, 2019, 9(12): 18-21. [33]丁元法, 肖继军, 张晓辉. 精密播种机的现状与发展趋势[J]. 山东农机, 2001(06):3-5. [34] Pankaj Kumar, G. Ashok,Design and fabrication of smart seed sowing robot, Materials Today: Proceedings, Volume 39, Part 1, 2021, Pages 354-358, [35] Bhimanpallewar R N , Narasingarao M R . AgriRobot: implementation and evaluation of an automatic robot for seeding and fertiliser microdosing in precision agriculture[J]. International Journal of Agricultural Resources, Governance and Ecology, 2020, 16(1):33. [36] Mcleod C D , Misener G C , Tai G C C , et al. A precision seeding device for true potato seed[J]. American Potato Journal, 1992, 69(4):255-264. [37] S. Kamgar, F. Noei-Khodabadi, S.M. Shafaei, Design, development and field assessment of a controlled seed metering unit to be used in grain drills for direct seeding of wheat, Information Processing in Agriculture, Volume 2, Issues 3–4, 2015, Pages 169-176, [38]石宏, 李达. 目前国内外播种机械发展走向(Ⅱ)[J]. 农业机械化与电气化, 2000(02):42. [39]刘恩宏, 吴家安, 高明宇. 我国精密播种机械的现状及发展趋势[J]. 现代化农业, 2016(10):60-61. [40]康丽梅, 王晓伟, 林静. 精密播种机发展现状与前景分析[J]. 农业机械化与电气化, 2003(01):27-28. [41]林静, 宫元娟, 李国臣. 浅谈精密播种机的发展优势与前景[J]. 农业机械, 2004(04):43-44. [42]郭春华. 播种机的现状与发展趋势[J]. 农村实用科技信息, 2011(03):63. [43]霍文国, 吕钊钦. 浅析气力式精密播种机的发展及研究现状[J]. 农业机械, 2003(04):50-51. [44]史永博. 我国播种机研发现状与发展趋势[J]. 农机使用与维修, 2019(04):25-26. [45]刘曙光, 尚书旗, 杨然兵, 郑月男, 赵建亮. 小区播种机的发展分析[J]. 农机化研究, 2011,33(03):237-241. [46]甘露, 孙大明, 李世柱. 我国大功率拖拉机配套农具的现状及发展趋势[J]. 农机化研究, 2008(04):209-211. [47]金荣圣. 我国播种机械的发展与技术创新[J]. 农业开发与装备, 2019(04):32. [48]赵文罡, 韩国靖, 李洪刚, 赵新天, 于洪斌, 吴尚华. 电力驱动精密播种机设计与试验研究[J].吉林农业, 2018(23):55-56. [49]佘大庆. 我国播种机械的发展与创新[J]. 农业工程, 2017, 7(03):12-14+40. [50] ISSN 2214-3173,Liu Wei,Hu Jianping,Zhao Xingsheng,Pan Haoran,Lakhiar Imran Ali,Wang Wei,Zhao Jun. Development and Experimental Analysis of a Seeding Quantity Sensor for the Precision Seeding of Small Seeds.[J]. Sensors (Basel, Switzerland), 2019,19(23). [51]梁留锁, 马旭. 精密播种机数字化设计的研究现状与展望[A]. 中国农业机械学会. 走中国特色农业机械化道路——中国农业机械学会2008年学术年会论文集(下册)[C]. 中国农业机械学会:中国农业机械学会, 2008:3. [52]吕黄珍, 汪雄伟, 范云涛, 杨炳南. “十一五”农业机械科研进展综述与未来发展方向探讨[J]. 农业工程, 2011, 1(02):1-7. [53]王忠民. 耕耘六十载 拼搏铸辉煌——江苏省临海农场成立60周年礼赞[J]. 中国农垦, 2020(10):64-65. [54]纪占华. 小麦机械化播种技术[J]. 现代农业科技, 2014(12):57-58. [55]王凯. 多功能小麦播种机设计与三维建模[D]. 山东农业大学, 2013. [56]刘凡一. 清选装置中小麦颗粒和短茎秆离散元建模研究[D]. 西北农林科技大学, 2018. [57]李伟海. 不同土壤肥力施肥配方及水平对小麦产量、品质和肥料利用的影响[D]. 扬州大学, 2007. [58]陈冠锋. 浅谈钣金零件加工工艺[J]. 科学技术创新, 2018(19):159-160. [59]李育斌. 复杂钣金零件工序形状设计技术的研究[D]. 华中科技大学, 2007. [60]焦伟. 浅析步进电机的选择与使用[J]. 科技资讯, 2015,13(06):256. [61]张瑞芹. 浅析步进电机的选择计算方法[J]. 技术与市场, 2014, 21(04):165. [62]赵首集. 步进电机的合理选择与应用分析[J]. 电子制作, 2013(07):189. [63]熊青松, 刘光普, 未巍, 王丽娟. 浅谈联轴器的选择[J]. 时代农机, 2018, 45(08):190. [64]潘汉军, 刘娅, 陈进. 联轴器的连接状态分析[J]. 机械科学与技术, 2005(08):894-897. [65]聂普顺. 条播排种器的种类及构造[J]. 农机使用与维修, 2014(05):66. [66]陈立东, 何堤. 论精密排种器的现状及发展方向[J]. 农机化研究, 2006(04):16-18. [67]梁国栋,梁国梁,张桂荣.播种机排种器技术特点与可靠性提升途径[J]. 农机使用与维修, 2020(11):84-85. [68]黄鸿浩. 精量排种器现状及发展分析[J]. 时代农机, 2019, 46(05):34-35. [69]王仁贵. 对外槽轮排种器采用电控调节的探讨[J]. 农业技术与装备, 2009(04):31-32. [70]史士财, 吴剑威, 李荣, 司圣洁, 刘宏. 薄壁角接触球轴承轴向刚度分析及其实验[J]. 哈尔滨工业大学学报, 2012, 44(07):32-37. [71]王亚珍, 赵坤, 姜祎,等. 预应力对柔性薄壁轴承疲劳寿命的影响[J]. 润滑与密封, 2017, 042(003):54-58,123. [72]翟萌萌. 基于EDEM的小麦宽幅精量播种装置优化设计与试验[D]. 山东农业大学, 2018. |
中图分类号: | S23 |
开放日期: | 2021-06-04 |